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Separated Continuous Linear Programming

A Continuous-Time LP Model:

(SCLP ) max
∫ T

0
((γ + (T − t)c)′u(t) + d′x(t))dt

s.t. α + ta− ∫ t

0
Gu(s)ds− Fx(t) ≥ 0,

b−Hu(t) ≥ 0,

u(t) ≥ 0, x(t) ≥ 0, t ∈ [0, T ].

Shuzhong Zhang, SEEM, CUHK
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History

• Bellman (1953)

• Andersen (1978)

• Andersen and Nash (1987)

• Anstreicher, Pullan, Bertimas, Luo, Fleischer, Sethuramen, ... ...

• Shapiro (2001)

• Weiss (2000)
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A Fact to Note

If (SCLP) has an optimal solution, then there is a particular
optimal solution with the following property: there is a finite
partition of [0, T ] and u(·) is piecewise constant over each
sub-interval.

Problem (SCLP) is thus essentially a finite problem!

Shuzhong Zhang, SEEM, CUHK
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Separated Continuous Conic Programming

The Model:

(SCCP ) max
∫ T

0
((γ + (T − t)c)′u(t) + d′x(t))dt

s.t. α + ta− ∫ t

0
Gu(s)ds− Fx(t) ∈ K1,

b−Hu(t) ∈ K2,

u(t) ∈ K3, x(t) ∈ K4, t ∈ [0, T ],

where Ki, i = 1, 2, 3, 4, are given closed convex cones.

Shuzhong Zhang, SEEM, CUHK
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Applications

• Queueing networks

• Production planning and scheduling

• Economic systems

• Traffic control

• Water resources control

• ... ...

Shuzhong Zhang, SEEM, CUHK
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Duality

Like ordinary conic programming, there is a symmetric duality
structure for SCCP:

(SCCP ∗) min
∫ T

0
((α + (T − t)a)′p(t) + b′q(t))dt

s.t.
∫ t

0
G′p(s)ds + H ′q(t)− (γ + tc) ∈ K∗3,

F ′p(t)− d ∈ K∗4,
p(t) ∈ K∗1, q(t) ∈ K∗2, t ∈ [0, T ].

Shuzhong Zhang, SEEM, CUHK
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Weak duality holds in a straightforward manner.

How about the strong duality relation?

Consider the following two auxiliary problems

(CP0) max c′u + d′x

s.t. α + Ta−Gu− Fx ∈ K1,

T b−Hu ∈ K2,

u ∈ K3, x ∈ K4

and
(CP ∗0 ) min a′p + b′q

s.t. G′p + H ′q − (γ + Tc) ∈ K∗3,
F ′p− Td ∈ K∗4,
p ∈ K∗1, q ∈ K∗2.

Shuzhong Zhang, SEEM, CUHK
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Theorem (Wang, Yao, and Z., 2005). If (CP0) and (CP ∗0 ) satisfy the
Slater condition with finite optimum values, then the strong duality
holds between (SCCP ) and (SCCP ∗).

Shuzhong Zhang, SEEM, CUHK
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Sketch of the proof:

Let πm be a partition of the interval [0, T ] into m subintervals.

Let ti be the ith grid of the partition.

Consider the discretized version of (SCCP ), which we shall call
(CP (πm)):

max
m∑

i=1

(
(γ + (T − ti + ti−1

2
)c)′û(ti−1) + d′

x̂(ti) + x̂(ti−1)
2

(ti − ti−1)
)

s.t. α + tia− (Gû(t0) + · · ·+ Gû(ti−1) + Fx̂(ti)) ∈ K1,

(ti − ti−1)b−Hû(ti−1) ∈ K2,

û(ti−1) ∈ K3, x̂(ti) ∈ K4, i = 1, . . . , m.

Shuzhong Zhang, SEEM, CUHK
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Similarly, we introduced the discretized version of (SCCP ∗), to be
called (CP ∗(πm)):

min
m∑

i=1

(
(α + (T − ti + ti−1

2
)a)′p̂(ti−1) + b′

q̂(ti) + q̂(ti−1)
2

(ti − ti−1)
)

s.t. G′p̂(t0) + G′p̂(t1) + · · ·+ G′p̂(ti−1) + H ′q̂(ti)− (γ + tic) ∈ K∗3,
F ′p̂(ti−1)− (ti − ti−1)d ∈ K∗4,
p̂(ti−1) ∈ K∗1, q̂(ti) ∈ K∗2, i = 1, . . . ,m.

Shuzhong Zhang, SEEM, CUHK
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Remarks:

• (CP (πm)) is a discretized version of (SCCP ), and (CP ∗(πm)) is a
discretized version of (SCCP ∗). But they are not a dual pair of
conic programs!

• However, the dual of (CP (πm)) is closely related to (CP ∗(πm)).

• The feasible set of (CP0) is identical to the feasible set of
(CP (π1)), and the feasible set of (CP ∗0 ) is identical to the feasible
set of (CP ∗(π1)), with slightly altered objective functions.

Shuzhong Zhang, SEEM, CUHK



Workshop on SDP, January 2006, Singapore 14

Further Facts:

• If there is feasible solution of (CP (πm)), then the solution can be
extended to a feasible solution of (SCCP ) with precisely the same
objective value.

• The reverse is also true. That is, if there is a piecewise constant
function u(·) (according to πm) that is a feasible control for
(SCCP ), then this function can be truncated as a feasible solution
of (CP (πm)) with the same objective value as u(·) is for (SCCP ).

• (CP0) satisfies the Slater condition implies that so is true for all
(CP (πm)) with any positive integer value m.

Shuzhong Zhang, SEEM, CUHK
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By the weak duality relationship and the nature of discretization, we
have

v(CP (πm)) ≤ v(SCCP ) ≤ v(SCCP ∗) ≤ v(CP ∗(πm)).

The question is how to bound the gap v(CP ∗(πm))− v(CP (πm)).

Now we turn to a particular case where πm is a trivial partition.

Shuzhong Zhang, SEEM, CUHK
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As we remarked before,

• Although (CP (πm)) and (CP ∗(πm)) are not exactly a dual pair,

• they almost are.

... ...

The key is to establish the following relationship:

There is Γ > 0 such that

v(CP ∗(πm))− v(CP (πm)) ≤ Γ
m

.

Shuzhong Zhang, SEEM, CUHK
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This is done by investigating the relationships between a sequence of
bridging conic programs:

min ĝ′up̂ + f̂ ′uq̂

s.t. Â1p̂ + Â2q̂ − ĥu ∈ K∗3 × · · · × K∗3︸ ︷︷ ︸
m

,

Â3p̂− d̂u ∈ K∗4 × · · · × K∗4︸ ︷︷ ︸
m

,

p̂ ∈ K∗1 × · · · × K∗1︸ ︷︷ ︸
m

, q̂ ∈ K∗2 × · · · × K∗2︸ ︷︷ ︸
m

Shuzhong Zhang, SEEM, CUHK
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and its dual

max ĥ′uû + d̂′ux̂

s.t. ĝu − Â′1û− Â′3x̂ ∈ K1 × · · · × K1︸ ︷︷ ︸
m

,

f̂u − Â′2û ∈ K2 × · · · × K2︸ ︷︷ ︸
m

,

û ∈ K3 × · · · × K3︸ ︷︷ ︸
m

, x̂ ∈ K4 × · · · × K4︸ ︷︷ ︸
m

.

Shuzhong Zhang, SEEM, CUHK
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and another conic program

min ĝ′lp̂ + f̂ ′l q̂

s.t. Â1p̂ + Â2q̂ − ĥl ∈ K∗3 × · · · × K∗3︸ ︷︷ ︸
m

,

Â3p̂− d̂l ∈ K∗4 × · · · × K∗4︸ ︷︷ ︸
m

,

p̂ ∈ K∗1 × · · · × K∗1︸ ︷︷ ︸
m

, q̂ ∈ K∗2 × · · · × K∗2︸ ︷︷ ︸
m

Shuzhong Zhang, SEEM, CUHK
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and its dual

max ĥ′lû + d̂′lx̂

s.t. ĝl − Â′1û− Â′3x̂ ∈ K1 × · · · × K1︸ ︷︷ ︸
m

,

f̂l − Â′2û ∈ K2 × · · · × K2︸ ︷︷ ︸
m

,

û ∈ K3 × · · · × K3︸ ︷︷ ︸
m

, x̂ ∈ K4 × · · · × K4︸ ︷︷ ︸
m

,

Shuzhong Zhang, SEEM, CUHK
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where

Â1 =




G′
G′ G′
· · ·
G′ G′ · · · G′


 , Â2 =




H′
H′

. . .

H′


 , Â3 =




F ′
F ′

. . .

F ′




ĝu =




α + (T − ε)a

α + (T − 3ε)a

.

.

.

α + εa


 , ĝl =




α + T a

α + (T − 2ε)a

.

.

.

α + 2εa


 , f̂u =




2εb

.

.

.

2εb

εb


 , f̂l =




2εb

2εb

.

.

.

2εb


 ,

and

ĥu =




γ + 2εc

γ + 4εc

.

.

.

γ + T c


 , ĥl =




γ + εc

γ + 3εc

.

.

.

γ + (T − ε)c


 , d̂u =




2εd

2εd

.

.

.

2εd


 , d̂l =




εd

2εd

.

.

.

2εd


 .
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In a precise form, what we have established is the following:

Theorem (Wang, Yao, Z., 2005).

v(CP ∗(πm))− v(CP (πm)) ≤ Γ
m

with
Γ = v(CP ∗0 )− v(CP0) + b′q̂(t0)− d′x̂(t0).

Shuzhong Zhang, SEEM, CUHK
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Solution Methods

The above proof procedure actually suggests solution methods.

Algorithm SCCP (primal)

Let δ be the pre-defined precision.

Step 0 Choose

x̂(t0) ∈ {x | α−Fx ∈ K1}∩K4 and q̂(t0) ∈ {q | H ′q−γ ∈ K∗3}∩K∗2.

Step 1 Let

m := d T

2δ
(v(CP2)− v(CP1) + b′q̂(t0)− d′x̂(t0))e

and solve (CP (πm)).

Step 2 Use the extension of the optimal solution obtained for
(CP (πm)) to construct a feasible solution for (SCCP ). Stop.

Shuzhong Zhang, SEEM, CUHK
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Algorithm SCCP (primal-dual)

Let δ be the pre-defined precision.

Step 0 Choose

x̂(t0) ∈ {x | α−Fx ∈ K1}∩K4 and q̂(t0) ∈ {q | H ′q−γ ∈ K∗3}∩K∗2.

Let m = 1, and go to Step 1.

Step 1 Solve (CP (πm)) and (CP ∗(πm)).

Step 2 If v(CP ∗(πm))− v(CP (πm)) ≤ δ stop; otherwise, let m := 2m

and go to Step 1.

Shuzhong Zhang, SEEM, CUHK
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Numerical Example

An input/output model.

There are 8 assets, k = 1, . . . , 8, 12 activities, j = 1, . . . , 12, and 5
resources. Initially, there are some inventories for these 8 assets. We
also can use these 12 activities to produce more inventories for some of
these 8 assets, at the price of consuming the other assets within these
8 assets.

Shuzhong Zhang, SEEM, CUHK
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The data matrices.

c 2 7 3 5 2 7 2 4 6 3 4 3 α a

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.6 0.0 0.0 36.0 1.2

0.0 0.0 0.0 -2.8 0.0 0.0 0.0 3.0 -3.7 -1.1 -3.4 8.1 28.0 1.1

2.9 3.1 7.4 8.9 0.0 0.0 -3.5 -2.9 -3.7 0.0 0.0 0.0 31.0 1.2

G -1.9 0.0 0.0 0.0 0.0 5.4 8.4 0.0 4.5 3.6 3.3 -1.6 29.0 1.3

0.0 0.0 0.0 -1.5 0.0 -3.4 -2.2 -1.2 0.0 0.0 -3.5 -3.2 26.0 1.0

-2.2 0.0 0.0 0.0 -2.5 0.0 0.0 -2.8 -2.7 0.0 0.0 0.0 30.0 1.9

0.0 -1.9 0.0 0.0 0.0 0.0 -3.7 0.0 0.0 0.0 0.0 0.0 26.0 1.4

0.0 0.0 0.0 -3.5 5.2 -2.7 0.0 0.0 -3.7 -1.9 0.0 0.0 34.0 1.3

b

6.5 8.0 6.0 6.4 5.4 7.8 6.5 5.6 7.4 3.6 7.3 6.9 106.0

0.0 3.9 5.8 4.8 0.0 0.0 0.0 7.4 0.0 7.3 0.0 3.8 66.0

H 0.0 0.0 3.1 0.0 5.9 0.0 5.8 6.4 0.0 7.1 5.5 0.0 ≤ 115.0

4.9 0.0 7.5 5.2 4.6 7.4 0.0 6.9 0.0 0.0 0.0 6.4 86.0

7.0 4.3 4.9 0.0 0.0 0.0 3.6 0.0 7.5 0.0 6.2 0.0 112.0

Shuzhong Zhang, SEEM, CUHK
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Numerical results of our method.

Number of Intervals

1 3 7 11

T value gap value gap value gap value gap

0.5 11.8340 0.0140 11.8433 0.0047 11.8460 0.0020 11.8467 0.0008

1.3 78.6555 0.9756 79.2561 0.1547 79.3402 0.0757 79.3609 0.0206

1.4 90.7811 1.4709 91.7172 0.3131 91.8267 0.0799 91.8360 0.0490

2.2 218.7587 7.8659 221.7020 1.5392 222.1393 0.3631 222.2853 0.0944

3.7 606.2048 18.1425 612.0795 3.3616 613.3126 0.6850 613.5420 0.1761

4.4 853.1338 21.9009 858.6794 6.1350 861.1191 0.7014 861.4035 0.2505

4.8 1006.9197 30.1000 1017.3889 8.8249 1021.1853 0.6306 1021.1081 0.6635

5.2 1155.5733 57.1707 1186.9810 12.4132 1192.1926 2.5073 1193.3943 0.8260

Shuzhong Zhang, SEEM, CUHK
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More Applications

Sign-constrained linear quadratic control

min
∫ T

0
(x(t)′Qx(t) + u(t)′Ru(t))dt

s.t. ẋ(t) = Bu(t) + b,

x(0) = α, α ≥ 0,

a−Hu(t) ∈ <n1
+ ,

u(t) ∈ <m
+ , x(t) ∈ <n

+.

Shuzhong Zhang, SEEM, CUHK
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The problem can be reformulated as

min
∫ T

0
(y0(t) + z0(t))dt

s.t. α + bt +
∫ t

0
Bu(s)ds − x(t) = 0,

a −Hu(t) ∈ <n1
+

,

u(t) ∈ <m
+ , x(t) ∈ <n

+,(
x0(t)

Q
1
2 x(t)

)
∈ SOC(n + 1),

(
1 + y0(t)

1 − y0(t)

2x0(t)

)
∈ SOC(3),

(
u0(t)

R
1
2 u(t)

)
∈ SOC(m + 1),

(
1 + z0(t)

1 − z0(t)

2u0(t)

)
∈ SOC(3).

Shuzhong Zhang, SEEM, CUHK
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A fluid network example

A network processes a continuous flow of jobs at two machines.

At t = 0, the initial levels of fluid at the three steps are 50, 20 and 120
units.

The input rates of fluid from outside to the three buffers are 0.01,
0.01, 0.01.

To process each unit of job (“fluid”), the time requirements at the
three steps are 0.4, 0.8, 0.2 time units.

The problem is to find the processing rates at the three steps,
ui(t), i = 1, 2, 3, which determine the fluid levels in the three buffers,
xi(t), i = 1, 2, 3, during a given time interval [0, T ] such that the fluid
levels in the three buffers are maintained as close as possible to a
prespecified constant level d = (30 10 80)′.

Shuzhong Zhang, SEEM, CUHK
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The problem can be formulated as:

min
∫ T

0

[(x(t)− d)′(x(t)− d)]dt

s.t.
∫ t

0

Gu(s)ds + x(t) = α + ta,

b−Hu(t) ≥ 0,

u(t) ≥ 0, x(t) ≥ 0, t ∈ [0, T ],

where

G =

(
1 0 0

−1 1 0

0 −1 1

)
, H =

(
0.4 0 0.2

0 0.8 0

)
,

α =

(
50

20

120

)
, a =

(
0.01

0.01

0.01

)
, b =

(
1

1

)
.

Shuzhong Zhang, SEEM, CUHK
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Number of Intervals

1 4 8 16

T value e.b. value e.b. value e.b. value e.b.

3 17354.55 168.08 17459.59 10.50 17464.85 2.63 17466.16 0.66

7 42632.05 2091.45 43933.57 123.03 43994.47 31.71 44010.30 7.76

9 55388.58 3907.64 57763.82 210.32 57867.90 55.86 57895.76 13.30

Objective values and error bounds (e.b.) for the SCCP.

Shuzhong Zhang, SEEM, CUHK
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Robust separated continuous linear programming (SCLP)

(SCLP ) max
∫ T

0
((γ + (T − t)c)′u(t) + d′x(t))dt

s.t. α + ta− ∫ t

0
Gu(s)ds− Fx(t) ∈ <n

+,

b−Hu(t) ∈ <l
+,

u(t) ∈ <m
+ , x(t) ∈ <k

+, t ∈ [0, T ].

Suppose that F is subject to the uncertainty set
F ∈ Y = {F 0 +

∑k3
j=1 yjF

j | y′y ≤ 1}.
The robust version of the constraint then becomes

 αi

0


+t


 ai

0


−

∫ t

0


 Gi

0


 u(s)ds−


 F 0

i

−Fi


 x(t) ∈ SOC(1+k3),

for i = 1, 2, . . . , n.

Shuzhong Zhang, SEEM, CUHK
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Conclusions

• A novel model for continuous time optimization

• Practical solvability

• Computable and verifiable error bounds

• Ample opportunities for applications

• Beautiful theoretical structures

• Only a beginning ... ...

Shuzhong Zhang, SEEM, CUHK
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Thank you!
and

Q & A?
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