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Max-Cut (1)

Unconstrained quadratic 1/-1 optimization:

max xT Lx such that x ∈ {−1, 1}n

Linearize (and simplify) to get tractable relaxation
xT Lx = 〈L, xxT 〉, New variable is X.
Basic SDP relaxation:

max〈L, X〉 : diag(X) = e, X � 0

See Poljak, Rendl (1995) primal-dual formulation, Goemans,

Williams (1995) worst-case error analysis (at most 14 %

above optimum if weights nonnegative)
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Max-Cut (2)

This SDP relaxation can be further tightened by including
Combinatorial Cutting Planes: A simple observation:
Barahona, Mahjoub (1986): Cut Polytope,
Deza, Laurent (1997): Hypermetric Inequalities

x ∈ {−1, 1}n, f = (1, 1, 1, 0, . . . , 0)T ⇒ |fT x| ≥ 1.

Results in xT f fT x = 〈(xxT ), (ffT )〉 = 〈X,ffT〉 ≥ 1.
Can be applied to any triangle i < j < k.
Nonzeros of f can also be -1.
There are 4

(

n
3

)

such triangle inequality constraints.

Direct application of standard methods not possible for n ≈

100.
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SDP edge-model for Max-Cut (1)

The previous SDP (implicitely) assumes that the graph is
dense. If the number m of edges is small, say O(n), then
the following model provides a stronger relaxation, see
Dissertation Wiegele, Klagenfurt, 2006.

Using x ∈ {1,−1}n we form an edge vector y = (yij) indexed
by 0 and [ij] ∈ E(G) as follows

y0 = 1, yij = xixj for [ij] ∈ E(G).

Forming Y = yyT we get the SDP edge-relaxation for
Max-Cut by putting the cost coefficients in the row and
column corresponding to y0, yielding LE.

Note that Y is now of order m + 1 instead of n before.
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SDP edge-model for Max-Cut (2)

Constraints on Y :

diag(Y ) = e, Y � 0 like in node model

If i, j, k is a triangle in G:

yij,ik = y0,jk because yij,ik = (xixj)(xixk) = xjxk = y0,jk

If i, j, k, l is 4-cycle in G:

yij,kl = xixjxkxl = xixlxjxk = yil,jk

yij,jk = yil,lk

Similar to second lifting of Anjos, Wolkowicz (2002), and

Lasserre (2002) in case of complete graphs.
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SDP edge-model for Max-Cut (3)

The second lifting of Anjos, Wolkowicz and Lasserre goes
from matrices of order n to matrices of order

(

n

2

)

+ 1,
independent of the number m of edges.

It is computationally intractable once n ≈ 100.

The present model can handle graphs with up to 2000
edges (number of vertices is irrelevant). Computational
results in the forthcoming dissertation of Wiegele
(Klagenfurt, 2006).

This model assumes that the graph contains a star. If not,
add edges of weight 0 from node 1 to all other nodes.

The resulting SDP is too expensive for standard methods,

once number of triangle and 4-cycles gets large.
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Stable sets and theta function

G = (V, E) . . . Graph on n vertices.
xi = 1 if i in some stable set, otherwise xi = 0.

max
∑

i

xi such that xixj = 0 ij ∈ E, xi ∈ {0, 1}

Linearization trick: Consider X = 1

xT x
xxT .

X satisfies:

X � 0, tr(X) = 1, xij = 0∀ij ∈ E, rank(X) = 1

Note also: eT x = xT x, so eT x = 〈J, X〉. Here J = eeT .

Lovasz (1979): relax the (diffcult) rank constraint
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Stable sets and theta function (2)

ϑ(G) := max{〈J, X〉 : X � 0, tr(X) = 1, xij = 0 (ij) ∈ E}

This SDP has m + 1 equations, if |E| = m.

Can be solved by interior point methods if n ≈ 500 and
m ≈ 5000.

Notation: We write AG(X) = 0 for xij = 0, (ij) ∈ E(G).
Hence AG(X)ij = 〈Eij , X〉 with Eij = eie

T
j + eje

T
i .

Any symmetric matrix M can therefore be written as

M = Diag(m) + AG(u) + AḠ(v).
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Coloring and dual theta function

We now consider Graph Coloring and recall the Theta
function:

ϑ(G) := {max〈J, X〉 : X � 0, tr(X) = 1, AG(X) = 0}

= min t such that tI + AT
G(y) � J.

Here AT
G(y) =

∑

ij yijEij. Coloring viewpoint: Consider
complement graph Ḡ and partition V into stable sets
s1, . . . , sr in Ḡ, where χ(Ḡ) = r.

Let M =
∑r

i sis
T
i where si is characteristic vector of stable

set in Ḡ. M is called coloring matrix.
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Coloring Matrices

Adjacency matrix A of a graph (left), associated Coloring

Matrix (right). The graph can be colored with 5 colors.
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Coloring Matrices (2)

Note: A 0-1 matrix M is coloring matrix if and only if

mij = 0 (ij) ∈ E, diag(M) = e, (tM−J � 0 ⇔ t ≥ rank(M))

Hence
χ(Ḡ) = min t such that

tM − J � 0, diag(M) = e, mij = 0 ∀(ij) ∈ Ē, mij ∈ {0, 1}

Setting Y = tM we get Y = tI +
∑

ij∈E yijEij = tI + AG(y).
Leaving out mij ∈ {0, 1} gives dual of theta function.

ϑ(G) = min t : such that tI + AG(y) − J � 0.

This gives Lovasz sandwich theorem: α(G) ≤ ϑ(G) ≤ χ(Ḡ).
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Sparse and dense Graphs

Since m ≤
(

n
2

)

, we say that G is sparse if m < 1

2

(

n
2

)

and call
it dense otherwise.

ϑ(G) := max〈J, X〉 such that X � 0, tr(X) = 1, AG(X) = 0

= min t such that tI + AT
G(y) − J � 0.

There are m + 1 equations in the primal, so this can be

handled by interior-point methods if m is not too large. For

dense graphs, we can use the following reformulation. Let

Y = tI + AT
G(y) and set Z = Y − J .
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Sparse and dense Graphs (2)

Z = Y − J � 0 has the following properties:
AḠ(Z) = −2e, because zij = −1 for [ij] /∈ E.
te − diag(Z) = e, because diag(Y ) = te. Hence we get the
theta function equivalently as

ϑ(G) = min{t : te − diag(Z) = e, −AḠ = 2e, Z � 0} =

max{eT x + 2eT ξ : Diag(x) + AḠ(ξ) � 0, eT x = 1}.

Here the dual has m̄ + n equations, hence this is good for
dense graphs (m̄ small in this case).

See Dukanovic and Rendl, working paper, Klagenfurt 2005.
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Comparing the two models

The two models have the following running times on graphs
with n = 100 and various edge densities.

density 0.90 0.75 0.50 0.25 0.10
m 4455 3713 2475 1238 495

dense 1 7 42 130 238
sparse 223 118 34 5 1

Comparison of the computation times (in seconds) for ϑ on
five random graphs with 100 vertices and different densities
in the dense and the sparse model.

The computation takes no more than half a minute.
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Copositive Relaxation of Stable-Set

DeKlerk, Pasechnik (SIOPT 2002) consider the following
copositive relaxation of Stable-Set and show:

α(G) := max〈J, X〉 such that

X ∈ C∗, tr(X) = 1, AG(X) = 0.

The proof uses
(a) extreme rays are of form xxT with x ≥ 0
(b) support of x = some stable set
(c) maximization makes x nonzeros of x equal to one
another.

Could also be shown using the Motzkin-Strauss Theorem.
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A copositive approximation of Coloring

We have seen that copositive relaxation gives exact value of
stable set. Since coloring matrices M are in C∗, we consider

t∗ := min t such that

tI + AT
Ḡ
(y) � J, tI + AT

Ḡ
(y) ∈ C∗

We clearly have
ϑ ≤ t∗ ≤ χ

Unlike in the stable set case, where the copositive model
gave the exact problem, we will show now the following.
Theorem (I. Dukanovic, F. Rendl 2005): t∗ ≤ χf ≤ χ

χf denotes the fractional chromatic number.
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Fractional Chromatic Number

χf (G) is defined as follows. Let s1, . . . be the characteristic
vectors of (all) stable sets in G.

χf (G) := min
∑

i

λi such that
∑

i

λisi = e, λi ≥ 0.

(χ is obtained by asking λi = 0 or 1.)

Lemma Let xi be 0-1 vectors and λi ≥ 0. Let Xλ :=
∑

i xix
T
i .

Then M := (
∑

j λj)Xλ − diag(Xλ)diag(Xλ)T � 0.
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Proof of Lemma

M := (
∑

j λj)Xλ − diag(Xλ)diag(Xλ)T .

We have
(a) diag(xix

T
i ) = xi

(b) diag(Xλ) =
∑

i λixi

(c) M = (
∑

j λj)(
∑

i λixix
T
i ) −

∑

ij λiλjxix
T
j

(d) Let y be arbitrary and set ai := xT
i y.

(e) yT My =
∑

ij λiλja
2

i −
∑

ij λiλjaiaj =
∑

i<j λiλj(a
2

i + a2

j −

2aiaj) ≥ 0.
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Proof of Theorem

Let λi be feasible for χf (G), hence λi ≥ 0,
∑

i λisi = e.

Let Xλ :=
∑

i λisis
T
i ∈ C∗.

Then diag(Xλ) =
∑

i λisi = e.
Set t =

∑

i λi.
The Lemma shows that tXλ � J and so we have feasible
solution (with same value t).

We do not know whether t∗ = χf holds in general, but it is

true for vertex-transitive graphs.
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