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The Quadratic Assignment Problem

Data: A, B symmetric matrices of order n

C: n × n

(Π is set of permutation matrices)

min
X∈Π

∑

i,j,k,l

ai,jbk,lxi,kxj,l +
∑

i,k

ci,kxi,k

More compact using the trace

min
X∈Π

tr AXBXT + tr CXT

QAP is NP-hard
Problems of size n = 30 considered very difficult

introduced by Koopmans, Beckmann (1957)
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QAP: A small example

tr A(XBXT )

Note that XBXT is permuted B (after row/column
permutation):

B =











1 7 0 1

7 2 6 8

0 6 3 9

1 8 9 4











, π = (3, 1, 4, 2), X =











0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0











,

XBXT =











3 0 9 6

0 1 1 7

9 1 4 8

6 7 8 2










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QAP: Related Problems

Traveling Salesman Problem
A is matrix of edge weights, B is adjacency matrix of tour

Bandwidth
A adjacency matrix, bij = 1 for |i − j| > k, else bij = 0

If value of QAP = 0, then bandwidth of A no more than k

Graph isomorphism
A, B adjacency matrices of two graphs GA and GB; these
are isomorph iff ∃X ∈ Π such that A = XBXT , leads to
QAP.

Complexity status unknown, but conjectured to be on the

boundary between polynomial and NP-complete problems
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QAP: Applications

Location theory

Wiring problems

Hospital layout

Graph theoretic problems (TSP, etc)

see e.g. E. Cela: QAP: Theory and Applications, Kluwer

(1998)
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Orthogonal relaxations

Permutation matrices X are orthogonal.

What can we say about

min
XT X=XXT =I

tr AXBXT ??

Notation: λA denotes vector of eigenvalues of (sym) A

λ+

A, (λ−

A) vector sorted increasingly (decreasingly)

Hoffman-Wielandt Theorem:

min
XT X=XXT =I

trAXBXT = 〈λ−

A, λ+

B〉

goes back to Hoffman, Wielandt (1957), J.v. Neumann

(1937)
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Orthogonal relaxation (2)

Permutation matrices also have row/column sums = 1.
Let V be n × (n − 1) such that V T e = 0, V T V = In−1.

Parametrization

Xe = XT e = e iff ∃Y such that X =
1

n
J + V Y V T

X orthogonal iff Y orthogonal

Substitute this into Hoffman-Wielandt Theorem to get
better relaxation.

trA(
1

n
J + V Y V T )B(

1

n
J + V Y T V T ) =

= . . . = tr(V T AV )Y (V T BV )Y T + rest
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Orthogonal relaxation (3)

The quadratic part can be bounded using the
Hoffman-Wielandt inequality.

The remaining part can be bounded independently by
solving linear assignment problem.
This gives Projection bound from Hadley, Rendl, Wolkowicz,
Math of OR (1992)

This will be shown to be equivalent to a special SDP bound.
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QAP: Lagrangian dual (1)

Alternative idea: Lagrangian dual

min
XT X=XXT =I

tr AXBXT≥

max
S,T

min
X

tr [AXBXT + S(I − XXT ) + T (I − XT X)]

Here the Kronecker notation is useful: x = vec(X), and

vec(AXBT ) = (B ⊗ A)x

Cost function now xT (B ⊗ A − I ⊗ S − T ⊗ I)x + tr(S + T ).
The inner minimization is bounded only if

B ⊗ A − I ⊗ S − T ⊗ I � 0
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QAP: Lagrangian dual (2)

Making this constraint explicit gives SDP:

max
S,T

tr (S + T ) such that B ⊗ A − I ⊗ S − T ⊗ I � 0

How does it compare to the eigenvalue bound?

It’s all the same: Theorem (Anstreicher, Wolkowicz (2001))
Orthogonal relaxation: minXXT =XT X=I tr AXBXT =
Lagrangian dual
maxS,T tr(S + T ) : B ⊗ A − I ⊗ S − T ⊗ I � 0

Note: SDP constraint is on matrix of order n2.

Orthogonal relaxation involves eigenvalue decomposition of

matrices of order n.
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QAP: Sum of Squares (SOS) Idea

Let us consider the function
f(X) = tr [AXBXT + S(I − XXT ) + T (I − XT X)] +
∑

ij yij(x
2
ij − xij) − γ.

Here S, T, y and γ can be chosen arbitrarily.
If f(X) is SOS, then we know that for any X ∈ Π

tr AXBXT ≥ γ

Best choice is given by max γ such that f(X) SOS.
Here the maximization is over S, T, y, γ. This leads again to
SDP, in fact to the dual of SDP from before.
Prove this as exercise. (Hint: use Zhao et al. JOCO (1998))
Research Project:

Check stronger functions (with fourth order terms)
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QAP: linearization idea

(QAP) min〈AXB + C, X〉 such that X is permutation matrix

Using x = vec(X), x ◦ x = x we get

〈AXB + C, X〉 = 〈B ⊗ A + Diag(vec(C)), xxT 〉

Now linearize Y = xxT to get SDP or copositive relaxations.

A technical problem:
How translate permutation properties from x to Y ?

X = (x1, . . . , xn), Y =







Y 11 . . . Y 1n

...
...

Y n1 . . . Y nn






, Y ij = xix

T
j

F. Rendl, Singapore workshop 2006 – p.16/19



QAP: linearization idea (2)

∑

i

Y ii =
∑

i

xix
T
i = I, tr(Y ij) = xT

i xj = δij

〈J, Y 〉 = (eT x)(xT e) = n2

X is orthogonal, sum of all elements is =n.

F := {Y ∈ C∗,
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y 〉 = n2, ∀i, j}

Theorem (J. Povh, F. Rendl 2005)

F = conv{xxT : x = vec(X), X permutation matrix} = Π
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Proof

By construction, Π ⊆ F . Now let Y ∈ F , hence
Y =

∑

k yky
T
k =

∑

k Zk and yk ≥ 0.

Yk is n × n matrix formed from yk ∈ IRn2

.
The proof is based on the following facts:
(a) each main diagonal block Zii

k is diagonal

(b) each off diagonal block has diag(Z ij
k ) = 0 ∀i 6= j

(c) each Yk has at most one nonzero in each row / column.

(d) Each Yk is multiple of permutation matrix.
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Copositive relaxation of QAP

L := B ⊗ A + Diag(vec(C)).

As a consequence, QAP is equivalent to the copositive
program

min〈L, Y 〉 such that
∑

i

Y ii = I, tr(Y ij) = δij , 〈J, Y 〉 = n2, Y ∈ C∗.

Replacing Y ∈ C∗ by Y � 0 gives SDP relaxation
investigated by Zhao, Karisch, Wolkowicz, Sotirov, Rendl.
Further constraints could be added, like

Yij,ik = 0, Y ≥ 0.

This leads to primal form of SDP presented before.
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