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Interior-Point Methods to solve SDP (1)

max{〈C, X〉 : A(X) = b, X � 0} = min{bT y : AT (y)−C = Z � 0}

Primal-Dual Path-following Methods:
At start of iteration: (X � 0, y, Z � 0)
Linearized system to be solved for (∆X, ∆y, ∆Z):

A(∆X) = rP := b− A(X) primal residue

AT (∆y)−∆Z = rD := Z + C − AT (y) dual residue

Z∆X + ∆ZX = µI − ZX path residue

The last equation can be reformulated in many ways, which

all are derived from the complementarity condition ZX = 0
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Interior-Point Methods to solve SDP (2)

Direct approach with partial elimination:
Using the second and third equation to eliminate ∆X and
∆Z, and substituting into the first gives

∆Z = AT (∆y)− rD, ∆X = µZ−1 −X − Z−1∆ZX,

and the final system to be solved:

A(Z−1AT (∆y)X) = µA(Z−1)− b + A(Z−1rDX)

Note that
A(Z−1AT (∆y)X) = M∆y,

but the m×m matrix M may be expensive to form.
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Computational effort

• explicitely determine Z−1 O(n3)

• several matrix multiplications O(n3)

• final system of order m to compute ∆y O(m3)

• forming the final system matrix O(mn3 + m2n2)

• line search to determine

X+ := X + t∆X, Z+ := Z + t∆Z is at least O(n3)

Effort to form system matrix depends on structure of A(.)
Limitations: n ≈ 1000, m ≈ 5000. See Mittelmann’s site:

http://plato.asu.edu/ftp/sdplib.html
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Example 1: Basic Max-Cut Relaxation

We solve max〈L, X〉 : diag(X) = e, X � 0.
Matrices of order n, and n simple equations xii = 1

n seconds
200 2
400 7
600 16
800 35

1000 80
1500 260
2000 500

Computing times to solve the SDP on a PC (Pentium 4, 2.1

Ghz). Implementation in MATLAB, 30 lines of source code
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Example 2: Lovasz Theta Function

Given a graph G = (V, E) with |V | = n, |E| = m.

ϑ(G) = max{〈J, X〉 : tr(X) = 1, xij = 0 ∀(ij) ∈ E, X � 0}

The number of constraints depends on the edge set |E|. If
m is small, then this SDP can be solved efficiently

n 100 200 300 400
|E| 490 2050 4530 8000

time 2 52 470 2240
|E| 1240 5100 11250 20000

time 11 560 *** ***

Times in seconds for computing θ(G) on random graphs with

different densities( p = 0.1 and p=0.25).
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What if m too large?

Now we consider

z∗ := max〈C, X〉 such that A(X) = a, B(X) = b, X � 0.

The idea: Optimizing over A(X) = a without B(X) = b is
’easy’, but inclusion of B(X) = b makes SDP difficult.
(Could also have inequalities B(X) ≤ b.)
Partial Lagrangian Dual (y dual to b):

L(X, y) := 〈C, X〉+ yT (b−B(X))

Dual functional:

f(y) := max
A(X)=a, X�0

L(X, y).
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Minimize f (y) using Bundle Method

weak duality: z∗ ≤ f(y) ∀y
strong duality: z∗ = miny f(y).

Note: f(y) = bT y + maxx∈F 〈C −BT (y), X〉
with F := {X : A(X) = a, X � 0}.
(Matrix structure of X is not important.)
Basic assumption: We can compute f(y) easily, yielding
also maximizer X∗ and g∗ := b−B(X∗).
f(y) = bT y + 〈C −BT (y), X∗〉 = yT g∗ + 〈C, X∗〉,

f(v) ≥ vT g∗ + 〈C, X∗〉, therefore

f(v) ≥ f(y) + 〈g∗, v − y〉

(This means g∗ is subgradient of f at y.)
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Minimize f using Bundle Method (2)

Current iterate: ŷ with maximizer X̂, i.e. f(ŷ) = L(X̂, ŷ). We
also assume to have a ’bundle’ of other Xi ∈ F, i = 1, . . . , k

with X̂ being one of them.
Compute gi := b−B(Xi), φi := 〈C, Xi〉.
Using subgradient inequalities for gi we can minorize f by

f(y) ≥ l(y) := max
i
{φi + 〈gi, y〉}

= max
λ∈Λ

φT λ + 〈Gλ, y〉.

Here λ := {λ : λi ≥ 0,
∑

i λi = 1}. The key idea:

min
y

l(y) +
1

2t
‖y − ŷ‖2
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Minimize f using Bundle Method (3)

This is essentially convex quadratic programming in k

variables. After exchanging min and max we get:

max
λ∈Λ

(φ + GT ŷ)T λ−
t

2
‖Gλ‖2,

and new trial point is given by

y = ŷ − tGλ.

Note: Gλ is convex combination of subgradients gi.
We move in the direction of a subgradient of ’small’ norm!!

See Lemarechal, Kiwiel 1970s, Zowe, Shor, Nesterov 1980’
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Computations: Max-Cut + triangles

Big graphs (from Helmberg). The number of bundle
iterations is 50 for n = 800, and 30 for n = 2000.

problem n cut initial bd gap final bd gap

G1 800 11612 12083.2 4.06 12005.4 3.39

G11 800 564 629.2 11.56 572.7 1.54

G14 800 3054 3191.6 4.51 3140.7 2.84

G18 800 985 1166.0 18.38 1063.4 7.96

G22 2000 13293 14135.9 6.34 14045.8 5.66

G27 2000 3293 4141.7 25.77 4048.4 22.94

G39 2000 2373 2877.7 21.27 2672.7 12.63
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Spectral Bundle Method

What if m and n is large?
In addition to before, we now assume that working with
symmetric matrices X of order n is too expensive (no
Cholesky, no matrix multiplication!)

One possibility: Get rid of Z � 0 by using eigenvalue argu-

ments.
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Constant trace SDP

A has constant trace property if I is in the range of AT ,
equivalently

∃η such that AT (η) = I

The constant trace property implies:

A(X) = b, AT (η) = I then

tr(X) = 〈I, X〉 = 〈η, A(X)〉 = ηT b =: a

Constant trace property holds for many combinatorially deri-

ved SDP!
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Reformulating Constant Trace SDP

Reformulate dual as follows:

min{bT y : AT (y)− C = Z � 0}

Adding (redundant) primal constraint tr(X) = a introduces
new dual variable, say λ, and dual becomes:

min{bT y + aλ : AT (y)− C + λI = Z � 0}

At optimality, Z is singular, hence λmin(Z) = 0.

Will be used to compute dual variable λ explicitely.
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Dual SDP as eigenvalue optimization

Compute dual variable λ explicitely:

λmax(−Z) = λmax(C−AT (y))−λ = 0,⇒ λ = λmax(C−AT (y))

Dual equivalent to

min{a λmax(C − AT (y)) + bT y : y ∈ <m}

This is non-smooth unconstrained convex problem in y.
Minimizing f(y) = λmax(C − AT (y)) + bT y:
Note: Evaluating f(y) at y amounts to computing largest
eigenvalue of C − AT (y).

Can be done by iterative methods for very large (sparse)

matrices.
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Spectral Bundle Method (1)

If we have some y, how do we move to a better point?

λmax(X) = max{〈X, W 〉 : tr(W ) = 1, W � 0}

Define
L(W, y) := 〈C − AT (y), W 〉+ bT y.

Then f(y) = max{L(W, y) : tr(W ) = 1, W � 0}.
Idea 1: Minorant for f(y)
Fix some m× k matrix P . k ≥ 1 can be chosen arbitrarily.
The choice of P will be explained later.
Consider W of the form W = PV P T with new k × k matrix
variable V .

f̂(y) := max{L(W, y) : W = PV P T , V � 0} ≤ f(y)
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Spectral Bundle Method (2)

Idea 2: Proximal point approach

The function f̂ depends on P and will be a good
approximation to f(y) only in some neighbourhood of the
current iterate ŷ.
Instead of minimizing f(y) we minimize

f̂(y) +
u

2
‖y − ŷ‖2.

This is a strictly convex function, if u > 0 is fixed.

Substitution of definition of ŷ gives the following min-max

problem
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Quadratic Subproblem (1)

min
y

max
W

L(W, y) +
u

2
‖y − ŷ‖2 = . . .

= max
W, y=ŷ+ 1

u
(A(W )−b)

L(W, y) +
u

2
‖y − ŷ‖2

= max
W
〈C − AT (ŷ), W 〉+ bT ŷ −

1

2u
〈A(W )− b, A(W )− b〉.

Note that this is a quadratic SDP in the k × k matrix V , be-

cause W = PV P T .
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Quadratic Subproblem (2)

Once V is computed, we get with W = PV P T that
y = ŷ + 1

u(A(W )− b)

see: Helmberg, Rendl: SIOPT 10, (2000), 673ff

Update of P :
Having new point y, we evaluate f at y (sparse eigenvalue
computation), which produces also an eigenvector v to
λmax.
The vector v is added as new column to P , and P is purged
by removing unnecessary other columns.
Convergence is slow, once close to optimum

Can approximately solve SDP with quite large matrices, n ≈

5000.
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References

See web-site of Christoph Helmberg and his software packa-

ge SBMETHOD
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Augmented Lagrangian Method

Augmented Lagrangian applied to (D)
X . . . Lagrange Multiplier for dual equations
σ > 0 penalty parameter

Lσ(y, Z, X) = bT y + 〈X, Z + C −AT (y)〉+
σ

2
‖Z + C −AT (y)‖2

Generic Method:
repeat until convergence

(a) Keep X fixed: solve miny,Z�0 Lσ(y, Z, X) to get y, Z � 0

(b) update X: X ← X + σ(Z + C − AT (y))
(c) update σ

Original version: Powell, Hestenes (1969)

σ carefully selected gives linear convergence
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Inner Subproblem

Inner mimization: X and σ are fixed.

W (y) := AT (y)− C −
1

σ
X

Lσ = bT y + 〈X, Z + C − AT (y)〉+
σ

2
‖Z + C − AT (y)‖2 =

= bT y +
σ

2
‖Z −W (y)‖2 + const = f(y, Z) + const.

Note that dependence on Z looks like projection problem,
but with additional variables y.

Alltogether this is convex quadratic SDP!
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Optimality conditions (1)

Introduce Lagrange multiplier V � 0 for Z � 0:

L(y, Z, V ) = f(y, Z)− 〈V, Z〉

Recall:

f(y, Z) = bT y +
σ

2
‖Z −W (y)‖2, W (y) = AT (y)− C −

1

σ
X.

∇yL = 0 gives σAAT (y) = σA(Z + C) + A(X)− b,

∇ZL = 0 gives V = σ(Z −W (y)),

V � 0, Z =� 0, V Z = 0.

Since Slater constraint qualification holds, these are neces-

sary and sufficient for optimality.
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Optimality conditions (2)

Note also: For y fixed we get Z by projection: Z = W (y)+.
From matrix analysis:

W = W+ + W−, W+ � 0, −W− � 0, 〈W+, W−〉 = 0.

We have: (y, Z, V ) is optimal if and only if:

AAT (y) =
1

σ
(A(X)− b) + A(Z + C),

Z = W (y)+, V = σ(Z −W (y)) = −σW (y)−.

Solve linear system (of order m) to get y.

Compute eigenvalue decomposition of W (y) (order n).
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Coordinatewise Minimization

If Z (and X) is kept constant, y given by unconstrained
quadratic minimization:

σAAT y = σA(C + Z) + A(X)− b

If y (and X) is kept constant, Z is given by projection onto
PSD:

min
Z�0
‖Z −W (y)‖2

Solved by eigenvalue decomposition of W (y). Optimal Z

given by Z = W (y)+.

see also Burer and Vandenbussche (2004) for a similar ap-

proach applied to primal SDP
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Why boundary-point method?

Observe that the update on X is given by

X ← X + σ(Z + C − AT (y)) =

(X+σC−σAT (y))+σZ = σ(−W (y)+W (y)+) = −σW (y)− � 0

We have
Z = W (y)+, X = −σW (y)−

therefore X and Z are always in PSD and

ZX = 0.

Maintain complementarity and semidefiniteness. Once we

reach primal and dual feasibility, we are optimal.
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Inner stopping condition

Inner optimality conditions:

AAT (y) =
1

σ
(A(X)− b) + A(Z + C),

Z = W (y)+, V = σ(Z −W (y)) = −σW (y)−.

Equations defining Z and V hold for current y. So error
occurs only in first equation.
A(V ) = A(σ(Z + C − AT (y)) + X), so
b− A(V ) = σAAT (y)− σA(Z + C + 1

σX) + b.

‖AAT (y)−
1

σ
(A(X)− b)− A(Z + C)‖ =

1

σ
‖A(V )− b‖.

Inner error is primal infeasibility of V .
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Boundary Point Method

Start: σ > 0, X � 0, Z � 0

repeat until ‖Z − AT (y) + C‖ ≤ ε:
• repeat until ‖A(V )− b‖ ≤ σε (X, σ fixed):

- Solve for y: AAT (y) = rhs

- Compute Z = W (y)+, V = −σW (y)−
• Update X : X = −σW (y)−

Note: Outer stopping condition is dual feasibility.

See working paper: Malick, Povh, Rendl, Wiegele (Klagen-

furt 2006)
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Application to Theta Function

We solve

ϑ(G) = max〈J, X〉 : tr(X) = 1, X � 0, xij = 0 ∀[ij] ∈ E(G)

Constraints are of form

2xij = 〈Eij , X〉 = 0, with Eij = eie
T
j + eje

T
i .

But 〈Eij , Ekl〉 6= 0 only if [ij] = [kl], hence AAT is diagonal.

Currently best computational results by Kim Toh (2003), and

M. Kocvara (2005)
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Theta Number revisited

Boundary point times in seconds to solve SDP, (Pentium 4,
3 Ghz), 7 digits accuracy

n |E| secs
200 10000 13
300 22500 40
400 40000 120
500 62500 170
600 90100 270
800 160000 670

1000 250000 1360

Interior Point method takes half hour for n=200
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Convergence Analysis

Unfortunately, the convergence analysis of the boundary
point method is rudimentary. We can show convergence,
but no analysis of speed of convergence.
There are instances, where convergence is much slower.
Currently under investigation.

A technical report by Malick (Grenoble), Povh, Rendl and

Wiegele (Klagenfurt) is under preparation.
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