SEMIPARAMETRIC SINGLE-INDEX MODELS

by

Joel L. Horowitz
Department of Economics
Northwestern University

INTRODUCTION

- Much of applied econometrics and statistics involves estimating a conditional mean function:
$\boldsymbol{E}(Y \mid X=x)$
- Y may be continuous or binary
- If binary, then $\boldsymbol{E}(Y \mid X=x)$ is $\boldsymbol{P}(Y=1 \mid X=x)$
- In binary response model, Y may indicate an individual's choice among two alternatives, occurrence or non-occurrence of an event, etc.
- Possible approaches
- Fully parametric
- Fully nonparametric
- Semiparametric

FULLY PARAMETRIC MODELING

- In fully parametric model, $\boldsymbol{E}(Y \mid X=x)$ is known up to a finite-dimensional parameter:

$$
\boldsymbol{E}(Y=1 \mid X=x)=F(x, \theta)
$$

- F is known function
- θ is unknown, finite-dimensional parameter
- Example: binary probit or logit model
- Advantages: If F is correctly specified
- Maximizes estimation efficiency
- Permits extrapolation of x beyond range of data
- Often has natural behavioral interpretation
- Disadvantages:
- F rarely known in applications
- Can be highly misleading if F is misspecified

FULLY NONPARAMETRIC MODELING

- $\boldsymbol{E}(Y \mid X=x) \equiv G(x)$ assumed to be smooth function of x
- Nothing assumed about shape of G.
- G estimated by nonparametric mean regression of Y on X
- This minimizes a priori assumptions and likelihood of specification error
- Disadvantages:
- Hard to incorporate behavioral hypotheses drawn from economic or other theory models
- Estimation precision is exponentially decreasing function of dimension of X
- Extrapolation not possible

SEMIPARAMETRIC MODELING

- Achieves greater precision than nonparametric models but with weaker assumptions than parametric models
- Does this by restricting $G(x)$ so as to reduce effective dimension of x.
- Risk of specification error greater than with fully nonparametric model but less than with parametric one
- Examples:
- Single-index model:

$$
G(x)=F(x \beta)
$$

where F is unknown

- Additive model:
$G(x)=H\left[f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)\right]$,
where H is known or unknown function and f_{i} 's are unknown

IDENTIFICATION OF SINGLE-INDEX MODELS

$$
\boldsymbol{E}(Y \mid X=x)=G(x \beta)
$$

- β not identified if G is constant function.
- Sign, scale, and location normalizations needed to identify β
- To implement assume X has no intercept and $\beta_{1}=1$.
- X_{1} must be continuously distributed conditional on other components of X.
- Let $X=\left(X_{1}, X_{2}\right)^{\prime}$ and $X^{\prime} \beta=X_{1}+\beta_{2} X_{2}$.
- G and β_{2} can be anything that satisfy:

$\left(X_{1}, X_{2}\right)$	$G\left(\mathrm{X}_{1}+\beta_{2} \underline{X}_{2}\right)$	$\mathrm{E}(Y \mid X)$
$(0,0)$	$G(0)$	0
$(1,0)$	$G(1)$	1
$(0,1)$	$G\left(\beta_{2}\right)$	3
$(1,1)$	$G\left(1+\beta_{2}\right)$	4

OPTIMZATION ESTIMATORS

- If G known, β can be estimated by nonlinear least squares.

$$
\underset{b}{\operatorname{minimize}}: n^{-1} \sum_{i=1}^{n} w\left(X_{i}\right)\left[Y_{i}-G\left(X_{i} b\right]^{2}\right.
$$

where $w(\cdot)$ is a weight function.

- When G unknown, replace $G\left(X_{i} b\right)$ with nonparametric estimator of $\mathrm{E}\left(Y \mid X_{i} b\right)$ (e.g., kernel).
- Estimator now solves

$$
\underset{b}{\operatorname{minimize}}: n^{-1} \sum_{i=1}^{n} w\left(X_{i}\right)\left[Y_{i}-G_{n}\left(X_{i} b\right)\right]^{2}
$$

- w may be chosen to
- Keep denominator of G away from 0
- Achieve asymptotic efficiency

ASYMPTOTIC NORMALITY

- Ichimura (1993) gives conditions under which

$$
n^{1 / 2}\left(b_{n}-\beta\right) \rightarrow N(0, V)
$$

where b_{n} is weighted NLS estimator

- Proof based on standard Taylor series methods of asymptotic distribution theory
- Estimator has $n^{-1 / 2}$ rate of convergence
- Hall and Ichimura (1991) derived asymptotic efficiency bound for β in

$$
Y_{i}=G\left(X_{i} \beta\right)+\sigma\left(X_{i} \beta\right) U_{i}
$$

where the U_{i} are iid with mean 0

- Hall and Ichimura also derived asymptotically efficient estimator
- Uses estimate of $\sigma\left(X_{i} \beta\right)^{-1}$ as weight function in NLS objective function and kernel estimator of G.

MLE FOR BINARY RESPONSE MODEL

- If $Y=0$ or $1, G(x \beta)=P(Y=1 \mid X=x)$
- If G known, \log likelihood is

$$
\log L(b)=\sum_{i=1}^{n}\left\{\log G\left(X_{i} b\right)+\left(1-Y_{i}\right) \log \left[1-G\left(X_{i} b\right)\right]\right\}
$$

- If G unknown, replace it with estimator G_{n} $\log L(b)=$

$$
\sum_{i=1}^{n} \tau_{i}\left\{\log G_{n}\left(X_{i} b\right)+\left(1-Y_{i}\right) \log \left[1-G_{n}\left(X_{i} b\right)\right]\right\}
$$

- τ_{i} trims away observations for which $G_{n}\left(X_{i} b\right)$ is too close to 0 or 1 .
- Klein and Spady (1993) gave conditions under which semiparametric MLE estimator is $n^{1 / 2}$ consistent and asymptotically normal
- Chamberlain (1986) and Cosslett (1987) derived asymptotic efficiency bound for case in which G is a CDF
- Semiparametric MLE achieves bound

DIRECT ESTIMATORS

- NLS and ML estimators are hard to compute
- Direct estimators avoid need to solve optimization problem
- Direct estimators are not asymptotically efficient
- Efficient estimator can be obtained easily by one-step method
- If X is continuous random vector, β proportional to average derivative of G
- $\beta \propto \boldsymbol{E}[w(X) \partial G(X \beta) \partial X]$
where w is a weight function
- Only weighted average derivative needed because β identified only up to scale
- If w is identity function, get average derivative estimator of β (Härdle and Stoker 1989)
- This estimator is hard to analyze because of its random denominator

DENSITY WEIGHTED AVERAGE DERIVATIVE ESTIMATORS

- Random denominator problem can be overcome by setting $w(x)=f(x)$, density of X
- Integration by parts gives

$$
\begin{aligned}
\delta & \equiv \boldsymbol{E}[f(X) \partial G(X \beta) \partial X] \\
& =-2 E[G(X \beta) \partial f(X) / \partial X] \\
& =-2 E[Y \partial f(X) \partial X]
\end{aligned}
$$

- Estimate δ by replacing E with sample average and f with kernel estimator to get

$$
\delta_{n}=(-2 / n) \sum_{i=1}^{n} Y_{i}\left[\frac{\partial f_{i}\left(X_{i}\right)}{\partial x}\right]
$$

where f_{i} is leave-one-out kernel estimator of $f(x)$.

- Powell, Stock, and Stoker (1989) gave conditions under which $n^{1 / 2}\left(\delta_{n}-\delta\right) \rightarrow N(0, V)$

METHOD OF PROOF

- Write δ_{n} as U statistic of order 2 with bandwidthdependent kernel
- U statistic is asymptotically equivalent to its projection, which gives

$$
\delta_{n}=(2 / n) \sum_{i=1}^{n} r_{n}\left(Y_{i}, X_{i}\right)+o_{p}\left(n^{-1 / 2}\right)
$$

where
$r_{n}\left(Y_{i}, X_{i}\right)=$

$$
-\int\left(\frac{1}{h}\right)^{k+1} K^{\prime}\left(\frac{X_{i}-x}{h}\right)\left[Y_{i}-E(Y \mid X=x)\right] f(x) d x
$$

- Changing variables in integral shows that leading term of r_{n} does not depend on h or n
- So δ_{n} is asymptotically equivalent to a sum of iid random variables
- $n^{-1 / 2}$-consistency and asymptotic normality follow from Lindeberg-Levy theorem

TECHNICAL DETAILS

- Must use higher-order K with undersmoothing to insure that asymptotic distribution of $n^{1 / 2}\left(\delta_{n}-\delta\right)$ is centered at 0 .
- Härdle and Tsybakov (1993) and Powell and Stoker (1996) describe methods for selecting h in applications.
- Horowitz and Härdle (1996) show how to include discrete components of X in direct estimator.

ESTIMATOR WITH DISCRETE COVARIATES

- Write model as $E(Y \mid X=x, Z=z)=G(X \beta+Z \alpha)$, where X is continuous and Z is discrete with M points of support.
- Identification requires a continuous covariate
- Assume estimator of β, b_{n} is available, possibly average of average derivative estimates computed at each point in support of Z.
- Suppose there are finite numbers $c_{0}, c_{1}, v_{0}, v_{1}$ such that
- $G(v+z \alpha)$ is bounded for all $\mathrm{v} \in\left[\mathrm{v}_{0}, \mathrm{v}_{1}\right]$ and $z \in \operatorname{supp}(Z)$.
- $v \leq v_{0} \Rightarrow G(v+z \alpha) \leq c_{0}$ for each $z \in \operatorname{supp}(Z)$
- $v \geq v_{1} \Rightarrow G(v+z \alpha)>c_{1}$ for each $z \in \operatorname{supp}(Z)$
- Define

$$
\begin{aligned}
J(z)= & \int_{v_{0}}^{v_{1}}\left\{c_{0} I\left[G(v+z \alpha)<c_{0}\right]+c_{1} I\left[G(v+z \alpha)>c_{1}\right]\right. \\
& \left.+G(v+z \alpha) I\left[c_{0} \leq G(v+z \alpha) \leq c_{1}\right]\right\} d v
\end{aligned}
$$

DISCRETE COVARIATES (cont.)

- Then for $i=2, \ldots, M$

$$
J\left[z^{(i)}\right]-J\left[z^{(1)}\right]=\left(c_{1}-c_{0}\right)\left[z^{(i)}-z^{(1)}\right] \alpha .
$$

- This is $M-1$ linear equations in components of α. To solve, write
$\Delta J=\left[\begin{array}{l}J\left[z^{(2)}\right]-J\left[z^{(1)}\right] \\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\ J\left[z^{(M)}\right]-J\left[z^{(1)}\right]\end{array}\right] ; \quad W=\left[\begin{array}{l}z^{(2)}-z^{(1)} \\ \ldots \ldots \ldots \ldots . . \\ z^{(M)}-z^{(1)}\end{array}\right]$.
- Then

$$
\alpha=\left(c_{1}-c_{0}\right)^{-1}\left(W^{\prime} W\right)^{-1} W^{\prime} \Delta J
$$

- Obtain estimator by replacing G with nonparametric regression estimate of

$$
\boldsymbol{E}\left(Y \mid X b_{n}=v, Z=z\right) .
$$

- Let ΔJ_{n} be resulting estimator of ΔJ
- Estimator of α is

$$
\alpha_{n}=\left(c_{0}-c_{1}\right)^{-1}\left(W^{\prime} W\right)^{-1} W^{\prime} \Delta J_{n}
$$

- Horowitz and Härdle (1996) give conditions under which $n^{1 / 2}\left(\alpha_{n}-\alpha\right) \rightarrow^{d} N\left(0, V_{\alpha}\right)$.

- $\left(c_{0}, c_{1}\right)=(0.2,0.8),\left(v_{0}, v_{1}\right)=-(2.85,0.85)$

$$
J\left[z^{(1)}\right]=A C G E+C D H G+G H K
$$

$$
\begin{aligned}
& =2 c_{0}+1.7 c_{0}+G H K \\
J\left[z^{(2)}\right] & =A B F E+B D K J+E F J \\
& =1.7 c_{0}+2 c_{1}+E F J
\end{aligned}
$$

$$
\text { - } J\left[z^{(2)}\right]-J\left[z^{(1)}\right]=2\left(c_{1}-c_{0}\right)=\left(c_{1}-c_{0}\right)\left[z^{(2)}-z^{(1)}\right] \alpha
$$

HIGH-DIMENSIONAL X

- Average derivative estimators require G and f to have many derivatives) if X is high dimensional.
- This is form of curse of dimensionality
- Implies that finite-sample precision of average derivatives may be low if $\operatorname{dim}(X)$ large.
- Hristache, Juditsky, and Spokoiny (2001) proposed method for iteratively improving an average derivative estimator.
- Method uses two bandwidths: a large one in the direction orthogonal to current estimate and a small one in parallel direction.
- Calculate new estimate of β using average derivatives with the two bandwidths
- This procedure yields estimator that is $n^{-1 / 2}$ consistent and asymptotically normal regardless of dimension of X when G is twice differentiable.
- Monte Carlo evidence indicates that iterated estimator has smaller finite-sample errors than noniterated one.

OUTLINE OF ITERATIVE METHOD

- Initialization: Specify parameters $\rho_{1}, \rho_{\text {min }}, a_{\rho}, h_{1}$, $h_{\max }, a_{h}, k=1, \hat{\beta}_{0}$ (initial estimate of β)
- Compute $S_{k}=\left(I+\rho_{k}^{-2} \hat{\beta}_{k-1} \hat{\beta}_{k-1}^{\prime}\right)^{1 / 2}$
- For every $i=1, \ldots, n$, compute $\nabla \hat{f}_{k}\left(X_{i}\right)$ from

$$
\begin{aligned}
& {\left[\begin{array}{c}
\hat{f}_{k}\left(X_{i}\right) \\
\nabla \hat{f}_{k}\left(X_{i}\right)
\end{array}\right]=\left[\sum_{j=1}^{n}\binom{1}{X_{i j}}\binom{1}{X_{i j}}^{\prime} K\left(\frac{\left|S_{k} X_{i j}\right|^{2}}{h_{k}^{2}}\right)\right]^{-1}} \\
& \quad \times \sum_{j=1}^{n} Y_{j}\binom{1}{X_{i j}} K\left(\frac{\left|S_{k} X_{i j}\right|^{2}}{h_{k}^{2}}\right)
\end{aligned}
$$

where $X_{i j}=X_{j}-X_{i}$

- Compute $\hat{\beta}_{k}=n^{-1} \sum_{j=1}^{n} \nabla \hat{f}_{k}\left(X_{i}\right)$
- Set $h_{k+1}=a_{h} h_{k}, \rho_{k+1}=a_{\rho} \rho_{k}$. If $\rho_{k+1}>\rho_{\min }$, set $k=k+1$ and return to step 2. Otherwise, stop.

AN APPLICATION

- Model of product innovation by German manufacturers of investment goods
- Data assembled by IFO Institute in Munich
- Consist of observations on 1100 manufacturers
- Model: $P(Y=1 \mid X=x)=G(X \beta)$, where
- $Y=1$ if manufacturer realized an innovation in a specific product category in 1989 and 0 otherwise
- Variables: no. of employees in product category (EMPLP), no. of employees in entire firm (EMPLF), indicator of firm's production capacity utilization (CAP), DEM $=1$ if firm expected increasing demand for product and 0 otherwise

ESTIMATED COEFFICIENTS FOR MODEL OF PRODUCT INNOVATION

EMPLP	EMPLF	CAP	DEM
	Semiparametric Model		
1	0.032	0.346	1.732
	(0.028)	(0.078)	(0.509)

Probit Model

1
0.516
0.520
1.895
(0.242)
(0.163)
(0.387)

CONCLUSIONS

- Single-index models:
- Provide compromise between restrictions of parametric models and imprecision of fully nonparametric models
- May be structural (e.g., random utility binaryresponse model)
- Asymptotic efficiency bounds available in some cases
- Two classes of estimators
- Nonlinear optimization: provides asymptotically efficient estimator in some cases
- Direct: Non-iterative, does not require solving nonlinear optimization problem
- One-step estimation from direct-estimate yields asymptotic efficiency when efficient estimator available
- Example based on real data illustrates usefulness

