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INTRODUCTION

e Much of applied econometrics and statistics
involves estimating a conditional mean function:

E(Y|X =x)

e Y may be continuous or binary
e If binary, then E(Y | X =x)1s P(Y =1| X =x)
e In binary response model, ¥ may indicate an

individual’s choice among two alternatives,

occurrence or non-occurrence of an event, etc.

e Possible approaches
e Fully parametric
e Fully nonparametric

e Semiparametric



FULLY PARAMETRIC MODELING

e In fully parametric model, E(Y | X = x) 1s known
up to a finite-dimensional parameter:

E(Y=1|X =x) = F(x,0)

e [ 1s known function
e @ is unknown, finite-dimensional parameter
e Example: binary probit or logit model
e Advantages: If F'is correctly specified
e Maximizes estimation efficiency
e Permits extrapolation of x beyond range of data

e Often has natural behavioral interpretation

e Disadvantages:
e [ rarely known in applications

e Can be highly misleading if F' is misspecified



FULLY NONPARAMETRIC MODELING

e E(Y|X =x)=G(x) assumed to be smooth
function of x

e Nothing assumed about shape of G.

e ( estimated by nonparametric mean regression
of Y on X

e This minimizes a priori assumptions and
likelihood of specification error

e Disadvantages:

e Hard to incorporate behavioral hypotheses drawn
from economic or other theory models

e Estimation precision is exponentially decreasing
function of dimension of X

e Extrapolation not possible



SEMIPARAMETRIC MODELING

e Achieves greater precision than nonparametric
models but with weaker assumptions than
parametric models

e Does this by restricting G(x) so as to reduce
effective dimension of x.

e Risk of specification error greater than with fully
nonparametric model but less than with
parametric one

e Examples:

e Single-index model:

G(x)=F(xp),
where F 1s unknown

e Additive model:
G(x)=H[f (x)+...+ f,(x,)],

where H is known or unknown function and f;’s
are unknown



IDENTIFICATION OF SINGLE-INDEX
MODELS

E(Y|X =x)=G(xf)

e [ not identified if G 1s constant function.

e Sign, scale, and location normalizations needed to
identify [

e To implement assume X has no intercept and

p =1

e X, must be continuously distributed conditional on
other components of X .

o Let X =(X,X,) and X'f=X,+ [,X,.

e G and f, can be anything that satisfy:

(X1.X0) G(X+ 5HXo) E(Y1X)

(0,0) G(0) 0
(1,0) G(1) ]
(0,1) G(/) 3
(1,1) G(1 + ) 4



OPTIMZATION ESTIMATORS

e If G known, £ can be estimated by nonlinear least
squares.

T | < . 2
minimize: n ZZ:; w(X )Y, — G(X,b]

where w(-) 1s a weight function.

e When G unknown, replace G(X:b) with non-
parametric estimator of E(Y|X;b) (e.g., kernel).

e Estimator now solves

minignize:n_1 Z w(X )Y, -G, (XD
i=1

e w may be chosen to
e Keep denominator of G away from 0

e Achieve asymptotic efficiency



ASYMPTOTIC NORMALITY
Ichimura (1993) gives conditions under which

nl/ 2(bn ~ B)— N(0,V)

where b, 1s weighted NLS estimator

e Proof based on standard Taylor series methods
of asymptotic distribution theory

1/

Estimator has n~"'* rate of convergence

Hall and Ichimura (1991) derived asymptotic
efficiency bound for £in

Y. =GX. B)+o(X,pU,

where the U, are 11d with mean 0

Hall and Ichimura also derived asymptotically
efficient estimator

e Uses estimate of o(X;5)" as weight function in

NLS objective function and kernel estimator of
G.



MLE FOR BINARY RESPONSE MODEL
o [f Y=0o0r1, G(xp)=P(Y=1|X=x)

e If G known, log likelihood is

n

logL(b)=)_ {logG(X,b)+(1-Y,)log[l-G(X,b)]!

i=l1

e If G unknown, replace it with estimator G,
log L(b) =

> 7 {10, (X;b) +(1-Y)log[1-G, (X, b)]}

e 7; trims away observations for which G, (X,b)1s too
close to 0 or 1.

e Klein and Spady (1993) gave conditions under
which semiparametric MLE estimator is n''°-

consistent and asymptotically normal

e Chamberlain (1986) and Cosslett (1987) derived
asymptotic efficiency bound for case in which G is
a CDF

e Semiparametric MLE achieves bound



DIRECT ESTIMATORS

e NLS and ML estimators are hard to compute

e Direct estimators avoid need to solve optimization

problem
e Direct estimators are not asymptotically efficient

e Efficient estimator can be obtained easily by
one-step method

If X 1s continuous random vector, £ proportional to
average derivative of G

o [ E[w(X)@G(X,B)@X]
where w 1s a weight function

Only weighted average derivative needed because
fidentified only up to scale

If w is identity function, get average derivative
estimator of 4 (Héardle and Stoker 1989)

e This estimator is hard to analyze because of its
random denominator



DENSITY WEIGHTED AVERAGE
DERIVATIVE ESTIMATORS

e Random denominator problem can be overcome by
setting w(x) = f(x), density of X

e Integration by parts gives

6= E[f(X)oG(X B)oX]
=2E[GXP)of (X)/oX]

=-2E[Yof (X)oX|

e Estimate 0 by replacing E with sample average and
f with kernel estimator to get

5 =(-2/ )ZY{aféX)}

where f; 1s leave-one-out kernel estimator of f(x).

e Powell, Stock, and Stoker (1989) gave conditions
under which #"*(8, —8) = N(0,V)



METHOD OF PROOF

e Write o, as U statistic of order 2 with bandwidth-
dependent kernel

e U statistic 1s asymptotically equivalent to its
projection, which gives

5,=2/n)) r(Y,X)+o,(n"?),
i=1

where

rn(K’Xi):

_j(%j ' K’LXih_xj[Y" CE(Y| X =2)]f(x)dx

e Changing variables in integral shows that leading
term of », does not depend on / or n

e So 0, is asymptotically equivalent to a sum of 1id
random variables

e 1 '"?-consistency and asymptotic normality follow
from Lindeberg-Levy theorem



TECHNICAL DETAILS

e Must use higher-order K with undersmoothing to
insure that asymptotic distribution of n”?(3, - §) is
centered at 0.

e Hairdle and Tsybakov (1993) and Powell and
Stoker (1996) describe methods for selecting / in
applications.

e Horowitz and Hérdle (1996) show how to include
discrete components of X in direct estimator.



ESTIMATOR WITH DISCRETE COVARIATES
e Write model as E(Y|X=x, Z=2)= GX[+ Za),

where X i1s continuous and Z 1is discrete with M
points of support.

¢ Identification requires a continuous covariate

e Assume estimator of S, b, 1s available, possibly

average of average derivative estimates
computed at each point in support of Z.

e Suppose there are finite numbers ¢y, ¢y, vy, v such
that

e G(v+za)is bounded for all v € [vy,v{] and
z e supp(Z2).

o v<vy=G(v+za)<c, for each z e supp(2)
e v>v, = G(v+za) > ¢ for each z e supp(Z)
e Define

J(z) = j (e[GO +2a) < ¢y ]+ I[G(v+ za) > ¢; ]

+G(v+za)l[cy < G(v+za) < c]tdv



DISCRETE COVARIATES (cont.)
e Thenfori=2,...M
JzD1-J1z201= (¢ =)z =z ]ar.

e This 1s M - 1 linear equations in components of a.
To solve, write

J[Z(z)] —J[Z(l)] -(2) _ (D) |
AW A X W=\
_J[Z(M)] —J[Z(l)]_ _Z(M) _Z(l)_
e Then

a=(c,—cy)  (WW) 'WAJ.

e Obtain estimator by replacing G with non-

parametric regression estimate of
EY|Xb,=v,Z =z).

e Let AJ, be resulting estimator of AJ

e Estimator of « i1s
a, = (CO —q )_I(W’W)_l W,A‘]n

e Horowitz and Héardle (1996) give conditions under
which n''%(a, —a) > N(0,V,).
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® (c,,¢,)=1(0.2,0.8), (vy,v,) =—(2.85,0.85)

J[z" 1= ACGE + CDHG + GHK

=2¢, +1.7¢, + GHK

J[z¥]= ABFE + BDKJ + EFJ

=1.7¢, +2c, + EFJ

o JzP1-J12"1=2c,—¢,) = (¢ —¢)[z" ~ 2" ]a



HIGH-DIMENSIONAL X

e Average derivative estimators require G and f to
have many derivatives) if X is high dimensional.

e This is form of curse of dimensionality

e Implies that finite-sample precision of average
derivatives may be low if dim(.X') large.

e Hristache, Juditsky, and Spokoiny (2001) proposed
method for iteratively improving an average
derivative estimator.

e Method uses two bandwidths: a large one in the
direction orthogonal to current estimate and a small
one in parallel direction.

e Calculate new estimate of [ using average
derivatives with the two bandwidths

e This procedure yields estimator that is n "*-

consistent and asymptotically normal regardless of
dimension of X when G is twice differentiable.

e Monte Carlo evidence indicates that iterated
estimator has smaller finite-sample errors than non-
iterated one.



OUTLINE OF ITERATIVE METHOD

e Initialization: Specify parameters p,, p ., a

h ., a,, k=1, 3 (initial estimate of /)

max ?

h,,

p?

e Compute S, =({+ plzzﬁk—lﬁl;—l)l/z

e For every i =1,...,n, compute V]A‘k (X,) from

- -1

fix) | Z[ ! ]( 1 ]’K£|Skxl,. J
Vi (X)) ] | T K X Iy

L 1 S X. I
J=1 Xij hk

where Xl.j :XJ—XI.

e Compute ,6A’k = n_IZ;ka (X))

o Set I, =ah, Pry=a,p It P> P, set
k =k +1 and return to step 2. Otherwise, stop.



AN APPLICATION

e Model of product innovation by German
manufacturers of investment goods

e Data assembled by IFO Institute in Munich

e Consist of observations on 1100 manufacturers
e Model: P(Y=1|X=x)= G(X[), where

e Y =1 if manufacturer realized an innovation in
a specific product category in 1989 and 0
otherwise

e Variables: no. of employees in product
category (EMPLP), no. of employees in entire
firm (EMPLF), indicator of firm’s production
capacity utilization (CAP), DEM = 1 if firm
expected increasing demand for product and 0
otherwise



ESTIMATED COEFFICIENTS FOR MODEL
OF PRODUCT INNOVATION

EMPLP EMPLF CAP DEM

Semiparametric Model

1 0.032 0346  1.732
(0.028)  (0.078)  (0.509)

Probit Model

1 0.516 0.520  1.895
(0.242)  (0.163)  (0.387)



G(V)

dG/dv
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CONCLUSIONS

¢ Single-index models:

e Provide compromise between restrictions of
parametric models and imprecision of fully
nonparametric models

e May be structural (e.g., random utility binary-
response model)

e Asymptotic efficiency bounds available in some
cases

e Two classes of estimators

e Nonlinear optimization: provides asymptotically
efficient estimator in some cases

e Direct: Non-iterative, does not require solving
nonlinear optimization problem

e One-step estimation from direct-estimate yields
asymptotic efficiency when efficient estimator
available

e Example based on real data illustrates usefulness



