SEMIPARAMETRIC SINGLE-INDEX MODELS

by

Joel L. Horowitz Department of Economics Northwestern University

INTRODUCTION

• Much of applied econometrics and statistics involves estimating a conditional mean function:

 $\boldsymbol{E}(Y \mid X = x)$

- *Y* may be continuous or binary
- If binary, then E(Y | X = x) is P(Y = 1 | X = x)
 - In binary response model, *Y* may indicate an individual's choice among two alternatives, occurrence or non-occurrence of an event, etc.
- Possible approaches
 - Fully parametric
 - Fully nonparametric
 - Semiparametric

FULLY PARAMETRIC MODELING

• In fully parametric model, E(Y | X = x) is known up to a finite-dimensional parameter:

$$\boldsymbol{E}(Y=1 \mid X=x) = F(x,\theta)$$

- *F* is known function
- θ is unknown, finite-dimensional parameter
- Example: binary probit or logit model
- Advantages: If F is correctly specified
 - Maximizes estimation efficiency
 - Permits extrapolation of x beyond range of data
 - Often has natural behavioral interpretation
- Disadvantages:
 - *F* rarely known in applications
 - Can be highly misleading if *F* is misspecified

FULLY NONPARAMETRIC MODELING

- $E(Y | X = x) \equiv G(x)$ assumed to be smooth function of x
 - Nothing assumed about shape of G.
 - *G* estimated by nonparametric mean regression of *Y* on *X*
- This minimizes *a priori* assumptions and likelihood of specification error
- Disadvantages:
 - Hard to incorporate behavioral hypotheses drawn from economic or other theory models
 - Estimation precision is exponentially decreasing function of dimension of *X*
 - Extrapolation not possible

SEMIPARAMETRIC MODELING

- Achieves greater precision than nonparametric models but with weaker assumptions than parametric models
 - Does this by restricting G(x) so as to reduce effective dimension of x.
 - Risk of specification error greater than with fully nonparametric model but less than with parametric one
- Examples:
 - Single-index model:

 $G(x) = F(x\beta),$

where F is unknown

• Additive model:

 $G(x) = H[f_1(x_1) + ... + f_d(x_d)],$

where *H* is known or unknown function and f_i 's are unknown

IDENTIFICATION OF SINGLE-INDEX MODELS

 $\boldsymbol{E}(Y \mid X = x) = \boldsymbol{G}(x\beta)$

- β not identified if G is constant function.
- Sign, scale, and location normalizations needed to identify β
 - To implement assume X has no intercept and $\beta_1 = 1$.
- X₁ must be continuously distributed conditional on other components of X.
 - Let $X = (X_1, X_2)'$ and $X'\beta = X_1 + \beta_2 X_2$.
 - G and β_2 can be anything that satisfy:

(X_1, X_2)	$G(X_1 + \beta_2 X_2)$	E(Y X)
(0,0)	G(0)	0
(1,0)	G(1)	1
(0,1)	$G(\beta_2)$	3
(1,1)	$G(1 + \beta_2)$	4

OPTIMZATION ESTIMATORS

• If G known, β can be estimated by nonlinear least squares.

minimize:
$$n^{-1} \sum_{i=1}^{n} w(X_i) [Y_i - G(X_i b)]^2$$

where $w(\cdot)$ is a weight function.

- When *G* unknown, replace $G(X_ib)$ with nonparametric estimator of $E(Y|X_ib)$ (e.g., kernel).
 - Estimator now solves $\min_{b} \operatorname{inimize} : n^{-1} \sum_{i=1}^{n} w(X_i) [Y_i - G_n(X_i b)]^2$
- *w* may be chosen to
 - Keep denominator of *G* away from 0
 - Achieve asymptotic efficiency

ASYMPTOTIC NORMALITY

• Ichimura (1993) gives conditions under which

$$n^{1/2}(b_n - \beta) \rightarrow N(0, V)$$

where b_n is weighted NLS estimator

- Proof based on standard Taylor series methods of asymptotic distribution theory
- Estimator has $n^{-1/2}$ rate of convergence
- Hall and Ichimura (1991) derived asymptotic efficiency bound for β in

$$Y_{i} = G(X_{i}\beta) + \sigma(X_{i}\beta)U_{i}$$

where the U_i are iid with mean 0

- Hall and Ichimura also derived asymptotically efficient estimator
 - Uses estimate of $\sigma(X_i\beta)^{-1}$ as weight function in NLS objective function and kernel estimator of *G*.

MLE FOR BINARY RESPONSE MODEL

- If Y = 0 or 1, $G(x\beta) = P(Y=1|X=x)$
- If G known, log likelihood is

$$\log L(b) = \sum_{i=1}^{n} \left\{ \log G(X_i b) + (1 - Y_i) \log \left[1 - G(X_i b) \right] \right\}$$

• If G unknown, replace it with estimator $G_n \log L(b) =$

$$\sum_{i=1}^{n} \tau_{i} \left\{ \log G_{n}(X_{i}b) + (1 - Y_{i}) \log \left[1 - G_{n}(X_{i}b) \right] \right\}$$

- τ_i trims away observations for which $G_n(X_i b)$ is too close to 0 or 1.
- Klein and Spady (1993) gave conditions under which semiparametric MLE estimator is $n^{1/2}$ -consistent and asymptotically normal
- Chamberlain (1986) and Cosslett (1987) derived asymptotic efficiency bound for case in which *G* is a CDF
 - Semiparametric MLE achieves bound

DIRECT ESTIMATORS

- NLS and ML estimators are hard to compute
- Direct estimators avoid need to solve optimization problem
 - Direct estimators are not asymptotically efficient
 - Efficient estimator can be obtained easily by one-step method
- If X is continuous random vector, β proportional to average derivative of G
 - $\beta \propto E[w(X)\partial G(X\beta)\partial X]$

where *w* is a weight function

- Only weighted average derivative needed because β identified only up to scale
- If w is identity function, get average derivative estimator of β (Härdle and Stoker 1989)
 - This estimator is hard to analyze because of its random denominator

DENSITY WEIGHTED AVERAGE DERIVATIVE ESTIMATORS

- Random denominator problem can be overcome by setting w(x) = f(x), density of X
- Integration by parts gives

 $\delta \equiv \boldsymbol{E} \big[f(\boldsymbol{X}) \partial G(\boldsymbol{X} \boldsymbol{\beta}) \partial \boldsymbol{X} \big]$

 $= -2E \left[G(X\beta) \partial f(X) / \partial X \right]$

 $= -2E \big[Y \partial f(X) \partial X \big]$

 Estimate δ by replacing E with sample average and *f* with kernel estimator to get

$$\delta_n = (-2/n) \sum_{i=1}^n Y_i \left[\frac{\partial f_i(X_i)}{\partial x} \right]$$

where f_i is leave-one-out kernel estimator of f(x).

• Powell, Stock, and Stoker (1989) gave conditions under which $n^{1/2}(\delta_n - \delta) \rightarrow N(0, V)$

METHOD OF PROOF

- Write δ_n as *U* statistic of order 2 with bandwidthdependent kernel
- *U* statistic is asymptotically equivalent to its projection, which gives

$$\delta_n = (2/n) \sum_{i=1}^n r_n(Y_i, X_i) + o_p(n^{-1/2}),$$

where

 $r_n(Y_i, X_i) =$

$$-\int \left(\frac{1}{h}\right)^{k+1} K'\left(\frac{X_i - x}{h}\right) \left[Y_i - E(Y \mid X = x)\right] f(x) dx$$

- Changing variables in integral shows that leading term of r_n does not depend on h or n
- So δ_n is asymptotically equivalent to a sum of iid random variables
- $n^{-1/2}$ -consistency and asymptotic normality follow from Lindeberg-Levy theorem

TECHNICAL DETAILS

- Must use higher-order *K* with undersmoothing to insure that asymptotic distribution of $n^{1/2}(\delta_n \delta)$ is centered at 0.
- Härdle and Tsybakov (1993) and Powell and Stoker (1996) describe methods for selecting *h* in applications.
- Horowitz and Härdle (1996) show how to include discrete components of *X* in direct estimator.

ESTIMATOR WITH DISCRETE COVARIATES

- Write model as $E(Y|X = x, Z = z) = G(X\beta + Z\alpha)$, where *X* is continuous and *Z* is discrete with *M* points of support.
 - Identification requires a continuous covariate
 - Assume estimator of β, b_n is available, possibly average of average derivative estimates computed at each point in support of Z.
- Suppose there are finite numbers c_0, c_1, v_0, v_1 such that
 - G(v+zα) is bounded for all v ∈ [v₀,v₁] and z ∈ supp(Z).
 - $v \le v_0 \Rightarrow G(v + z\alpha) \le c_0$ for each $z \in \operatorname{supp}(Z)$
 - $v \ge v_1 \Longrightarrow G(v + z\alpha) > c_1$ for each $z \in \text{supp}(Z)$

• Define

$$J(z) = \int_{v_0}^{v_1} \{c_0 I[G(v + z\alpha) < c_0] + c_1 I[G(v + z\alpha) > c_1]\}$$

$$+G(v+z\alpha)I[c_0 \le G(v+z\alpha) \le c_1]\}dv$$

DISCRETE COVARIATES (cont.)

• Then for
$$i = 2, ..., M$$

$$J[z^{(i)}] - J[z^{(1)}] = (c_1 - c_0)[z^{(i)} - z^{(1)}]\alpha.$$

This is *M* - 1 linear equations in components of α.
 To solve, write

$$\Delta J = \begin{bmatrix} J[z^{(2)}] - J[z^{(1)}] \\ \dots \\ J[z^{(M)}] - J[z^{(1)}] \end{bmatrix}; \qquad W = \begin{bmatrix} z^{(2)} - z^{(1)} \\ \dots \\ z^{(M)} - z^{(1)} \end{bmatrix}.$$

• Then

$$\alpha = (c_1 - c_0)^{-1} (W'W)^{-1} W' \Delta J.$$

- Obtain estimator by replacing G with nonparametric regression estimate of $E(Y | Xb_n = v, Z = z).$
 - Let ΔJ_n be resulting estimator of ΔJ
 - Estimator of α is

$$\alpha_n = (c_0 - c_1)^{-1} (W'W)^{-1} W' \Delta J_n$$

• Horowitz and Härdle (1996) give conditions under which $n^{1/2}(\alpha_n - \alpha) \rightarrow^d N(0, V_{\alpha})$.

• $(c_0, c_1) = (0.2, 0.8), (v_0, v_1) = -(2.85, 0.85)$ $J[z^{(1)}] = ACGE + CDHG + GHK$ • $= 2c_0 + 1.7c_0 + GHK$ $J[z^{(2)}] = ABFE + BDKJ + EFJ$ • $= 1.7c_0 + 2c_1 + EFJ$ • $J[z^{(2)}] - J[z^{(1)}] = 2(c_1 - c_0) = (c_1 - c_0)[z^{(2)} - z^{(1)}]\alpha$

HIGH-DIMENSIONAL X

- Average derivative estimators require G and f to have many derivatives) if X is high dimensional.
 - This is form of curse of dimensionality
 - Implies that finite-sample precision of average derivatives may be low if dim(X) large.
- Hristache, Juditsky, and Spokoiny (2001) proposed method for iteratively improving an average derivative estimator.
- Method uses two bandwidths: a large one in the direction orthogonal to current estimate and a small one in parallel direction.
 - Calculate new estimate of β using average derivatives with the two bandwidths
- This procedure yields estimator that is $n^{-1/2}$ consistent and asymptotically normal regardless of
 dimension of X when G is twice differentiable.
- Monte Carlo evidence indicates that iterated estimator has smaller finite-sample errors than non-iterated one.

OUTLINE OF ITERATIVE METHOD

- Initialization: Specify parameters ρ_1 , ρ_{\min} , a_{ρ} , h_1 , h_{\max} , a_h , k = 1, $\hat{\beta}_0$ (initial estimate of β)
- Compute $S_k = (I + \rho_k^{-2} \hat{\beta}_{k-1} \hat{\beta}'_{k-1})^{1/2}$
- For every i = 1, ..., n, compute $\nabla \hat{f}_k(X_i)$ from

$$\begin{bmatrix} \hat{f}_k(X_i) \\ \nabla \hat{f}_k(X_i) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n \binom{1}{X_{ij}} \binom{1}{X_{ij}}' K\left(\frac{|S_k X_{ij}|^2}{h_k^2}\right) \end{bmatrix}^{-1}$$

$$\times \sum_{j=1}^{n} Y_{j} \begin{pmatrix} 1 \\ X_{ij} \end{pmatrix} K \left(\frac{|S_{k}X_{ij}|^{2}}{h_{k}^{2}} \right)$$

where $X_{ij} = X_j - X_i$

- Compute $\hat{\beta}_k = n^{-1} \sum_{j=1}^n \nabla \hat{f}_k(X_i)$
- Set $h_{k+1} = a_h h_k$, $\rho_{k+1} = a_\rho \rho_k$. If $\rho_{k+1} > \rho_{\min}$, set k = k+1 and return to step 2. Otherwise, stop.

AN APPLICATION

- Model of product innovation by German manufacturers of investment goods
 - Data assembled by IFO Institute in Munich
 - Consist of observations on 1100 manufacturers
- Model: $P(Y=1|X=x) = G(X\beta)$, where
 - *Y* = 1 if manufacturer realized an innovation in a specific product category in 1989 and 0 otherwise
 - Variables: no. of employees in product category (EMPLP), no. of employees in entire firm (EMPLF), indicator of firm's production capacity utilization (CAP), DEM = 1 if firm expected increasing demand for product and 0 otherwise

ESTIMATED COEFFICIENTS FOR MODEL OF PRODUCT INNOVATION

EMPLP	EMPLF	CAP	DEM	
Semiparametric Model				
1	0.032 (0.028)	0.346 (0.078)	1.732 (0.509)	
	Probit Model			
1	0.516 (0.242)	0.520 (0.163)	1.895 (0.387)	

CONCLUSIONS

- Single-index models:
 - Provide compromise between restrictions of parametric models and imprecision of fully nonparametric models
 - May be structural (e.g., random utility binary-response model)
- Asymptotic efficiency bounds available in some cases
- Two classes of estimators
 - Nonlinear optimization: provides asymptotically efficient estimator in some cases
 - Direct: Non-iterative, does not require solving nonlinear optimization problem
 - One-step estimation from direct-estimate yields asymptotic efficiency when efficient estimator available
- Example based on real data illustrates usefulness