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INTRODUCTION 
 

• Much of applied econometrics and statistics 
involves estimating a conditional mean function:  

 
 ( |Y X x= )E  
 

•  may be continuous or binary Y

• If binary, then ( | )Y X x=E  is ( 1| )Y X x= =P  

• In binary response model, Y  may indicate an 

individual’s choice among two alternatives, 

occurrence or non-occurrence of an event, etc. 

• Possible approaches 
 

• Fully parametric 
 

• Fully nonparametric 
 

• Semiparametric 



FULLY PARAMETRIC MODELING 
 
• In fully parametric model, ( | )Y X x=E  is known 

up to a finite-dimensional parameter: 

( 1| ) ( ,Y X x F x )θ= = =E  

• F  is known function 

• θ  is unknown, finite-dimensional parameter 

• Example:  binary probit or logit model 

• Advantages:  If F is correctly specified 

• Maximizes estimation efficiency 

• Permits extrapolation of  beyond range of data x

• Often has natural behavioral interpretation 

• Disadvantages: 

• F rarely known in applications 

• Can be highly misleading if F is misspecified 



FULLY NONPARAMETRIC MODELING 

• ( | ) (Y X x G x= ≡ )E  assumed to be smooth 
function of   x

• Nothing assumed about shape of G . 

•  estimated by nonparametric mean regression 
of Y  on 
G

X  

• This minimizes a priori assumptions and 
likelihood of specification error 

• Disadvantages: 

• Hard to incorporate behavioral hypotheses drawn 
from economic or other theory models 

• Estimation precision is exponentially decreasing 
function of dimension of X 

• Extrapolation not possible 



SEMIPARAMETRIC MODELING 

• Achieves greater precision than nonparametric 
models but with weaker assumptions than 
parametric models 

 
• Does this by restricting G x  so as to reduce 

effective dimension of . 
( )

x

• Risk of specification error greater than with fully 
nonparametric model but less than with 
parametric one 

• Examples: 
 

• Single-index model: 

( ) ( )G x F xβ= , 

where F is unknown  
 

• Additive model: 

1 1( ) [ ( ) ... ( )]d dG x H f x f x= + + , 

where H is known or unknown function and fi’s 
are unknown   

 



IDENTIFICATION OF SINGLE-INDEX 
MODELS 

 
( | ) (Y X x G x )β= =E  

 
• β  not identified if G  is constant function. 

• Sign, scale, and location normalizations needed to 
identify β  

• To implement assume X  has no intercept and 
1 1β = . 

• 1X  must be continuously distributed conditional on 
other components of X . 

• Let 1 2( , )X X X ′=  and 1 2 2X X Xβ β′ = + . 

•  and G 2β   can be anything that satisfy: 
 

  (X  1,X  2)         G(X  1 + β  2X  2)         E(Y|X) 
(0,0)                     G(0)                    0 
(1,0)                     G(1)                    1 
(0,1)                     G(β2)                  3 
(1,1)                 G(1 + β2)                4 



OPTIMZATION ESTIMATORS 
 
• If G known, β can be estimated by nonlinear least 

squares. 
1 2

1

minimize: ( )[ ( ]
n

i i ib i
n w X Y G X b−

=

−∑  

 
 where w  is a weight function. ( )⋅

• When G unknown, replace G(Xib) with non-
parametric estimator of E(Y|Xib) (e.g., kernel). 

• Estimator now solves 
1 2

1

minimize: ( )[ ( )]
n

i i n ib i
n w X Y G X b−

=

−∑  

• w may be chosen to 

• Keep denominator of G away from 0 

• Achieve asymptotic efficiency 



ASYMPTOTIC NORMALITY 

• Ichimura (1993) gives conditions under which 

1/ 2( ) (0,n b N Vn β− → )  
 
    where bn is weighted NLS estimator 

• Proof based on standard Taylor series methods 
of asymptotic distribution theory 

• Estimator has  rate of convergence 1/ 2n−

• Hall and Ichimura (1991) derived asymptotic 
efficiency bound for β in 

 
( ) ( )i iY G X X Ui iβ σ β= +  

 
 where the Ui are iid with mean 0 
 
• Hall and Ichimura also derived asymptotically 

efficient estimator 

• Uses estimate of σ(Xiβ)-1 as weight function in 
NLS objective function and kernel estimator of 
G. 



MLE FOR BINARY RESPONSE MODEL 
 
• If Y = 0 or 1, G(xβ) = P(Y=1|X=x) 
 
• If G known, log likelihood is  
 

[ ]{ }
1

log ( ) log ( ) (1 ) log 1 ( )
n

i i i
i

L b G X b Y G X b
=

= + − −∑  

 
• If G  unknown, replace it with estimator Gn  

[ ]{ }
1

log ( )

log ( ) (1 ) log 1 ( )
n

i n i i n i
i

L b

G X b Y G X bτ
=

=

+ − −∑
 

• τi trims away observations for which G X is too 
close to 0 or 1. 

( )n ib

 
• Klein and Spady (1993) gave conditions under 

which semiparametric MLE estimator is n -
consistent and asymptotically normal 

1/ 2

 
• Chamberlain (1986) and Cosslett (1987) derived 

asymptotic efficiency bound for case in which G is 
a CDF 

 
• Semiparametric MLE achieves bound 



DIRECT ESTIMATORS 
 
• NLS and ML estimators are hard to compute 
 
• Direct estimators avoid need to solve optimization 

problem 
 

• Direct estimators are not asymptotically efficient 
 

• Efficient estimator can be obtained easily by 
one-step method 

 
• If X is continuous random vector, β proportional to 

average derivative of G  
 

• [ ]( ) ( )w X G X Xβ β∝ ∂E ∂  
 
    where w is a weight function 
 
• Only weighted average derivative needed because 

β identified only up to scale 
 
• If w is identity function, get average derivative 

estimator of β (Härdle and Stoker 1989) 
 

• This estimator is hard to analyze because of its 
random denominator 



DENSITY WEIGHTED AVERAGE 
DERIVATIVE ESTIMATORS 

 
• Random denominator problem can be overcome by 

setting w(x) = f(x), density of X  
  
• Integration by parts gives 
 

[ ]

[ ]

[ ]

( ) ( )

2 ( ) ( ) /

2 ( )

f X G X X

E G X f X X

E Y f X X

δ β

β

≡ ∂ ∂

= − ∂ ∂

= − ∂ ∂

E

 

 
• Estimate δ by replacing E with sample average and 

f with kernel estimator to get 
 

1

( )( 2 / )
n

i i
n i

i

f Xn Y
x

δ
=

∂ = −  ∂ 
∑  

 
    where fi is leave-one-out kernel estimator of f(x). 
 
• Powell, Stock, and Stoker (1989) gave conditions 

under which 1/ 2 ( ) (0,nn N )Vδ δ− →  



METHOD OF PROOF 
 
• Write δn as U statistic of order 2 with bandwidth-

dependent kernel 
 
• U statistic is asymptotically equivalent to its 

projection, which gives 
 

1/ 2

1
(2 / ) ( , ) ( ),

n

n n i i p
i

n r Y X o nδ −

=

= +∑  

 
where 
 

[ ]
1

( , )

1 ( | ) ( )

n i i

k
i

i

r Y X

X xK Y E Y X x f
h h

+

=

−   ′− − =   
   ∫ x dx

 

 
• Changing variables in integral shows that leading 

term of rn does not depend on  or n h
 
• So δn is asymptotically equivalent to a sum of iid 

random variables 
 
• -consistency and asymptotic normality follow 

from Lindeberg-Levy theorem 
1/ 2n−



TECHNICAL DETAILS 
 
• Must use higher-order K with undersmoothing to 

insure that asymptotic distribution of n1/2(δn - δ) is 
centered at 0. 

• Härdle and Tsybakov (1993) and Powell and 
Stoker (1996) describe methods for selecting  in 
applications. 

h

• Horowitz and Härdle (1996) show how to include 
discrete components of X  in direct estimator. 



ESTIMATOR WITH DISCRETE COVARIATES 

• Write model as E(Y|X = x, Z = z) = G(Xβ + Zα),  
where X is continuous and Z  is discrete with M  
points of support. 

• Identification requires a continuous covariate 

• Assume estimator of β , b  is available, possibly 
average of average derivative estimates 
computed at each point in support of 

n

Z . 

• Suppose there are finite numbers c0, c1, v0, v1 such 
that 

• (G v z )α+
supp(z Z∈

is bounded for all v ∈ [v0,v1] and 
. )

• 0 0( )v v G v z cα≤ ⇒ + ≤  for each supp( )z Z∈  

• 1 1( )v v G v z cα≥ ⇒ + >  for each supp( )z Z∈  

• Define 

1

0
0 0 1

0 1

( ) { [ ( ) ] [ ( )

( ) [ ( ) ]}

v

v 1]J z c I G v z c c I G v z c

G v z I c G v z c dv

α α

α α

= + < + +

+ + ≤ + ≤

∫ >

 



DISCRETE COVARIATES (cont.) 

• Then for i M  2,...,=

( ) (1) ( ) (1)
1 0[ ] [ ] ( )[ ]i iJ z J z c c z z .α− = − −  

• This is M - 1 linear equations in components of α. 
To solve, write  

(2) (1)

( ) (1)

[ ] [ ]
....................... ;

[ ] [ ]M

J z J z
J

J z J z

 −
 

∆ =  
 − 

           W

(2) (1)

( ) (1)

............... .
M

z z

z z

 −
 

=  
 − 

 

• Then  
1 1

1 0( ) ( )c c W W W J .α − −′ ′= − ∆  

• Obtain estimator by replacing G  with non-
parametric regression estimate of 

. ( | , )Y Xb v Z z= =E n

• Let nJ∆  be resulting estimator of J∆  

• Estimator of α  is  
1 1

0 1( ) ( )n nc c W W W Jα − −′ ′= − ∆  

• Horowitz and Härdle (1996) give conditions under 
which 1/ 2 )d V( ) (0,nn N αα α− → . 



DCBA

G(V + 2)

G(V)G

V
-2.85 -0.85-1.15 .85

0

.2

.8

1

F G

J K

HE

• , 0 1( , ) (0.2,0.8)c c = 0 1( , ) (2.85,0.85)v v = −  

• 

(1)

0 0

[ ]

2 1.7

J z ACGE CDHG GH

c c GHK

= + +

= + +

K
 

• 

(2)

0 1

[ ]

1.7 2

J z ABFE BDKJ EFJ

c c EFJ

= + +

= + +
 

• (2) (1) (2) (1)
1 0 1 0[ ] [ ] 2( ) ( )[ ]J z J z c c c c z z α− = − = − −  



HIGH-DIMENSIONAL X 

• Average derivative estimators require G  and  to 
have many derivatives) if 

f
X  is high dimensional. 

• This is form of curse of dimensionality 

• Implies that finite-sample precision of average 
derivatives may be low if dim( )X  large. 

• Hristache, Juditsky, and Spokoiny (2001) proposed 
method for iteratively improving an average 
derivative estimator. 

• Method uses two bandwidths: a large one in the 
direction orthogonal to current estimate and a small 
one in parallel direction. 

• Calculate new estimate of β  using average 
derivatives with the two bandwidths 

• This procedure yields estimator that is -
consistent and asymptotically normal regardless of 
dimension of 

1/ 2n−

X  when G  is twice differentiable. 

• Monte Carlo evidence indicates that iterated 
estimator has smaller finite-sample errors than non-
iterated one. 



OUTLINE OF ITERATIVE METHOD 

• Initialization:  Specify parameters 1ρ , minρ , aρ , , 
, , , 

1h

maxh ha 1k = 0β̂  (initial estimate of β ) 

• Compute  2 1
1 1

ˆ ˆ( )k k k kS I ρ β β−
− −′= + / 2

n )• For every i , compute ∇  from 1,...,= ˆ (k if X
1

2

2
1

2

2
1

ˆ 1 1 | |( )
ˆ ( )

1 | |

n
k ijk i

ij ijj kk i

n
k ij

j
ijj k

S Xf X
K

X X hf X

S X
Y K

X h

−

=

=

 ′      =        ∇         

  
×        

∑

∑

 

where ij j iX X X= −  

• Compute 1
1

ˆˆ ( )n
k kj

n fβ −
=

= ∇ iX∑  

• Set , 1k hh a+ = k 1k kaρh ρ ρ+ = .  If 1 mk inρ ρ+ > , set 
 and return to step 2.  Otherwise, stop. 1+k k=

 



AN APPLICATION 

• Model of product innovation by German 
manufacturers of investment goods 

• Data assembled by IFO Institute in Munich 

• Consist of observations on 1100 manufacturers 

• Model:  P(Y=1|X=x) = G(Xβ), where 

• Y = 1 if manufacturer realized an innovation in 
a specific product category in 1989 and 0 
otherwise 

• Variables:  no. of employees in product 
category (EMPLP), no. of employees in entire 
firm (EMPLF), indicator of firm’s production 
capacity utilization (CAP), DEM = 1 if firm 
expected increasing demand for product and 0 
otherwise 



ESTIMATED COEFFICIENTS FOR MODEL 
OF PRODUCT INNOVATION 

 
   EMPLP          EMPLF          CAP          DEM    

                         Semiparametric Model                  

         1                  0.032           0.346         1.732      
                            (0.028)        (0.078)       (0.509)    

 
                                  Probit Model                           
 
         1                  0.516           0.520         1.895      
                            (0.242)        (0.163)       (0.387)    
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CONCLUSIONS 

 
• Single-index models: 

• Provide compromise between restrictions of 
parametric models and imprecision of fully 
nonparametric models 

• May be structural (e.g., random utility binary-
response model) 

• Asymptotic efficiency bounds available in some 
cases 

• Two classes of estimators 

• Nonlinear optimization:  provides asymptotically 
efficient estimator in some cases 

• Direct:  Non-iterative, does not require solving 
nonlinear optimization problem 

• One-step estimation from direct-estimate yields 
asymptotic efficiency when efficient estimator 
available 

• Example based on real data illustrates usefulness 


