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INTRODUCTION

e Single-index model achieves dimension reduction
by assuming that E(Y | X =x)=F(f'X) for some
unknown F and /.
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e Can estimate 4 with n''? rate of convergence

and F with n2"° rate if it is twice differentiable.

e A nonparametric additive model is alternative way
to achieve dimension reduction.

e [t has form

d
E(Y|X=x)=pu+) m;x'),
j=I

where dim(X) =d, x/ is j ’th component of x,
and u and the m;’s are unknown.

e Additive models are non-nested with single-index
models

e A single-index model is not additive unless F' is
the 1dentity function.

e An additive model is not single-index unless the

m; ’s are linear.



PROPERTIES OF ADDITIVE MODELS

e Additive components m; can be estimated with

one-dimensional nonparametric rate of
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convergence (n if the components are twice

differentiable)
e Asymptotically normal estimators are available

e Each component can be estimated with same
accuracy that it would have if other components
were known

e This is called “oracle property.”

e Three kinds of estimators are available:

e Marginal 1ntegration yields asymptotically
normal estimators but is not oracle-efficient.

e Backfitting yields asymptotically normal, oracle
efficient estimators.

e Two-step  estimator based on  series-
approximation first step 1s asymptotically normal
and oracle-efficient.



MARGINAL INTEGRATION

e Model:
d o
EY|X=x)=pu+) m;(x))
j=l

 Need location normalization to identify the m;’s.

e Achieve this by setting E[m (X7)]=0.
e Get 1dentifying relations
e u=E(Y)

m (xl) =
[E@ ' =", XY =) p (¢ )a D

_ﬂ’

where XV is vector consisting of all components
of X except X ! and p_; 1s density of X D,



ESTIMATION

Estimate x and m; by replacing population

quantities with sample analogs 1n 1identifying
relations

This gives estimator of x: 1= n_IZ?:lYl-.

Let g(xl,x(_l)) be nonparametric estimator of
EY | X' =x!, xCD = x(D)

e Example: Kernel or local linear estimator

Estimator of mj 1s
1 1N 1 1
i () =n" g(x', X - p.
i=1

Under regularity conditions:
i (1) —my (x')] =9 N[B (x), 7 (xH)]

for suitable b, and V]



ASYMPTOTIC DISTRIBUTION

o [f g is local-linear estimator with bandwidth
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h=cyn and kernel K in x' direction and other

conditions hold, then
b (x")=0.5¢iRem(X)

( ))dx(_l),

Vl(x )=c¢p VKJVar(U|x e 1))]9 ;fzcx)

where p 1s density of X,

Ry = [VK(v)av,
vi = [K(v) dv.

e In homoskedastic case

P- l(x( ))dx(—l)
p(x)

]
Vl(x )=c¢p VKUU

-1

e Oracle estimator gives Vl(xl) = ¢y, VKO'(2] / Py (xl),

which 1s smaller.

e Marginal integration estimator 1s not oracle
efficient.



PROPERTIES (cont.)

e Need m;’s and p to have at least d continuous

derivatives

e So marginal integration estimator has curse of
dimensionality

e This 1s caused by full-dimensional non-
parametric estimation in first step.

e Marginal integration estimator is hard to compute.

o Computing (xl) requires »n nonparametric

- 1
regressions for each value of x .

e Marginal integration estimator can be modified to
overcome the curse of dimensionality.



MODIFIED MI ESTIMATOR
e Write model as
m(x) = p+my(x)+m_ (x7)

e [et g and ¢g_;, respectively, be “smooth”

density functions on R and R, respectively.

* Define ¢ =qq_,

e Use location normalization

[ (g (xax' =0

[ D) (a0

e This normalization makes it possible to use
smoothness of g to reduce bias of estimator

instead of using smoothness of m.



ESTIMATOR (cont.)

e Let 4 and /s, be bandwidths, and K and L be
kernel functions.

e Let p be kernel estimator of density of X .

e Define
m, (x) =
1 &Y X)X x D
— l K l l
nhyhd™ S p(X;) hy hy

This 1s form of kernel estimator of E(Y | X = x).

e Define
m(x) = [m()g (i —p.
e Under location normalization 77; = m,

e Estimator of 77, 1s

(x") = [, (g (7 dx™

~ [, 00y



PROPERTIES

e Hengartner and Sperlich (2005) give conditions
under which

[ (xh) = (xH)] > N[B, (xh), 7, (x1)]

where b, and V, are the bias and variance

functions.

e Conditions require m to be only twice
differentiable, regardless of dim(X).

e Therefore, curse of dimensionality is avoided
e But modified estimator 1s not oracle efficient.

e Computation can be simplified by letting g_; be
Dirac ¢ function centered at some x‘ value.

e This gives
i(x') = n, (x',xDy - jﬁan (Zl,x(_l))ql (zhd:!
e Asymptotic normality and rate result still holds

e Hengartner and Sperlich do not investigate
extent to which this causes loss of asymptotic
efficiency



ACHIEVING ORACLE EFFICIENCY

e Oracle efficiency means:  Estimator of each
additive component has asymptotic distribution it
would have if the other components were known

e Asymptotically, there is no penalty for having to
estimate other components.

e Marginal integration estimators are not oracle
efficient but can be made so by taking one
“backfitting” step.

e Main idea: Suppose m,,...,m; and ¢ were known.
e Define W, =7, —y—mZ(Xl-z)—...—md(Xid)
e Then model is
W= ml(Xl'l)+Ui

e Can estimate m, by, for example, kernel or local-

linear regression of W on X :

e Estimator is oracle efficient by definition.



ACHIEVING ORACLE EFFICIENCY (cont.)

e In applications, replace u,m,,....m; with

preliminary  (possibly  marginal integration)
estimates (i, m,,...,m .

o Define W, =Y, — ji— ity (X7) —...— i, (X?)

e Estimate m; by kernel or local-linear regression
of W on X'

For case d =2, Linton (1997) gives conditions
under which resulting estimator of m; 1s

asymptotically normal with same mean and
variance as estimator from regression of W, on X .

e Conditions include undersmoothing in estimating
the m;’s (j =2,...,d).

e This makes the bias of preliminary estimator
asymptotically negligible

e Variance increases but is reduced by the
averaging entailed in second estimation step.

Is unknown whether oracle efficiency for d > 2 can
be achieved by starting with Hengartner-Sperlich
estimator



ACHIEVING ORACLE EFFICIENCY (cont.)

e Other methods are available for achieving oracle
efficiency with d > 2

e Two-step estimation can be used in more general
settings to achieve oracle efficiency.



BACKFITTING
For j=1,...,d, define

W =Y, —p= ) m(X;)
k+j

Write model as
_ J
W, =m;(X})+U,

Let ,[10, rhg ,...,rh?l be preliminary estimates, and set

d
Z iy (X7)

Backfitting consists of:

e Estimate m; by nonparametric regression of WIO

on X'. Let n%ll denote resulting estimate.

o Set W, =Y, — i —my (X})- erfzo(XJ

e Estimate m, by nonparametric regression of Wzl

on X?%. Let n%é denote resulting estimate.



BACKFITTING (cont.)

Wy =Y, — i =i (X]) =y (X7) - Z 2(x7)

e Iterate procedure to convergence, thus obtaining
estimators of all additive components and u

This version of backfitting i1s hard to analyze
theoretically

e Little known about 1its convergence or
distributional properties

Modified versions of backfitting are easier to
analyze

e Mammen et al. (1999) have found conditions
under which a suitably modified version 1is
asymptotically normal and oracle efficient



MODIFIED BACKFITING

e Notation

° m; (xj ) denotes Nadaraya-Watson kernel

estimator of E(Y | X 7 =x7).

e p;and p, respectively are kernel estimators of
density of X/ and joint density of (X7, X k )

0

e /m; 1s Initial guess at estimator of m;, possibly

m ; or a marginal integration estimator

f)k,[ﬁ](xk) = J‘lajk (xj,xk )dx‘j D‘]A?] (Xj)dxj }_1

N RCOVRENTS
my . = : ;
R PR

e Location normalization: Em ;(X 7y=0.



ITERATIVE SCHEME AND ASYMPTOTICS

e In »’th 1teration, estimate of m j 1S

m (x") =m;(x")—my,

_Zj my (x ){ij((x]) ) lak,[j+](xk)}dxk

k<j

_ij {ij( )—f?ka[ﬁ](xk)}dxk

k>j pj(xj)

e Mammen, Linton, and Nielsen show that if the

m;’s are twice continuously differentiable and

some other conditions are satisfied, then

e The iterative scheme converges to limiting
estimators 71,

1/2
[

e n “[m;—m; (xj )] are asymptotically normally

distributed for any finite d (no curse of
dimensionality).

e The mean and variance of the asymptotic
distribution are oracle



COMMENTS ON BACKFITTING

e Modified backfitting estimator avoids curse of
dimensionality and 1s oracle efficient but 1is
analytically and computationally complicated

e Taking one backfitting step from Hengartner-
Sperlich estimator may produce simpler oracle-
efficient estimator, but this 1s not yet proved.

e Next lecture will present approach that uses series
estimation in first step followed by a backfitting
step

e This method 1s simpler computationally than
marginal integration or modified backfitting

e [t is oracle efficient

e Can be applied to additive quantile regressions
and models with link functions.



EMPIRICAL EXAMPLE

e Use data from Current Population Survey to
estimate wage function

E(logW | EXP,EDUC) =

5

1+ fop(EXP)+ fppye (EDUC)

e EXP and EDUC are years of experience and
education.

e Population is white males with 14 or fewer years
of education who work full time and live in
urban areas in North Central U.S.
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COMMENTS ON ESTIMATION RESULTS

Estimates of f.,, and f.,,- are nonlinear and
differently shaped

Functions f.,, and f,, with different shapes
cannot be produced by a single-index model

A lengthy specification search might be needed to
find a parametric model that produces the shapes
shown 1in the figure

Some of the fluctuations of the estimates of f.,,
and f.,,- may be artifacts of random sampling
errors.

But a more elaborate analysis rejects the hypothesis
that either function is linear.



CONCLUSIONS

e Nonparametric additive model
d .
EY|X=x)=pu+) m;(x))
j=1
e Additive components m; can be estimated so as to:

e Achieve one-dimensional nonparametric rate of
convergence (dimension reduction)\

e Have asymptotical normal limiting distributions

e Achieve oracle efficiency
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