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INTRODUCTION 

• Single-index model achieves dimension reduction 
by assuming that  for some 
unknown F  and β . 

( | ) ( )Y X x F Xβ ′= =E

• Can estimate β  with n 1/ 2−  rate of convergence 
and F  with  rate if it is twice differentiable. 2 / 5−n

• A nonparametric additive model is alternative way 
to achieve dimension reduction. 

• It has form 
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where dim( )X d= ,  is jx j ’th component of , 
and 

x
µ  and the m ’s are unknown. j

• Additive models are non-nested with single-index 
models 

• A single-index model is not additive unless F  is 
the identity function. 

• An additive model is not single-index unless the 
’s are linear. jm



PROPERTIES OF ADDITIVE MODELS 

• Additive components  can be estimated with 
one-dimensional nonparametric rate of 
convergence (  if the components are twice 
differentiable) 

jm

2 / 5−n

• Asymptotically normal estimators are available 

• Each component can be estimated with same 
accuracy that it would have if other components 
were known 

• This is called “oracle property.” 

• Three kinds of estimators are available: 

• Marginal integration yields asymptotically 
normal estimators but is not oracle-efficient. 

• Backfitting yields asymptotically normal, oracle 
efficient estimators. 

• Two-step estimator based on series-
approximation first step is asymptotically normal 
and oracle-efficient. 



MARGINAL INTEGRATION 

• Model:   
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• Need location normalization to identify the ’s. jm

• Achieve this by setting [ ( )]jjm X =E . 

• Get identifying relations 

• ( )Yµ = E  

•  
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where ( 1)X −  is vector consisting of all components 
of X  except 1X , and 1p−  is density of ( 1)X − . 



ESTIMATION 

• Estimate µ  and  by replacing population 
quantities with sample analogs in identifying 
relations 

1m

• This gives estimator of µ :  1
1

ˆ n
ii
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• Let  be nonparametric estimator of 1 ( 1)ˆ ( ,g x x −
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• Example:  Kernel or local linear estimator 

• Estimator of  is 1m

( 1)1 1 1
1

1

ˆ ˆ( ) ( , )
n

i
i

m x n g x X µ−−

=

= −∑ . 

• Under regularity conditions: 
2 / 5 1 1 1 1
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for suitable b  and V  1 1



ASYMPTOTIC DISTRIBUTION 

• If  is local-linear estimator with bandwidth 
 and kernel  in  direction and other 

conditions hold, then 
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where  is density of p X , 

2 ( )KR v K v= ∫ dv , 

2( )K K v dvν = ∫ . 

• In homoskedastic case 
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• Oracle estimator gives V x1 1 2
1 1( ) / (h K Uc p xν σ 1)−= , 

which is smaller. 

• Marginal integration estimator is not oracle 
efficient. 



PROPERTIES (cont.) 

• Need ’s and  to have at least  continuous 
derivatives 

jm p d

• So marginal integration estimator has curse of 
dimensionality 

• This is caused by full-dimensional non-
parametric estimation in first step. 

• Marginal integration estimator is hard to compute. 

• Computing  requires  nonparametric 
regressions for each value of . 

1
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1x

• Marginal integration estimator can be modified to 
overcome the curse of dimensionality. 



MODIFIED MI ESTIMATOR 

• Write model as  
1 (

1 1( ) ( ) ( )m x m x m xµ 1)−
−= + +  

• Let  and 1q 1q− , respectively, be “smooth” 
density functions on  and , respectively. 1d−

• Define 1 1q q q−=  

• Use location normalization 
1 1 1
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• This normalization makes it possible to use 
smoothness of  to reduce bias of estimator 
instead of using smoothness of . 

q
m



ESTIMATOR (cont.) 

• Let  and  be bandwidths, and  and  be 
kernel functions. 

1h 2h K L

• Let  be kernel estimator of density of p̂ X . 

• Define 
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This is form of kernel estimator of ( | )Y X x=E . 

• Define  
1 ( 1)
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• Under location normalization 1 1mη =  

• Estimator of 1η  is 
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PROPERTIES 

• Hengartner and Sperlich (2005) give conditions 
under which 

2 / 5 1 1 1 1
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where  and V1hb η  are the bias and variance 
functions. 

• Conditions require  to be only twice 
differentiable, regardless of dim

m
. ( )X

• Therefore, curse of dimensionality is avoided 

• But modified estimator is not oracle efficient. 

• Computation can be simplified by letting q  be 
Dirac 

1−

δ  function centered at some ( 1)x −  value. 

• This gives 
1 1 ( 1) 1 ( 1) 1
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• Asymptotic normality and rate result still holds 

• Hengartner and Sperlich do not investigate 
extent to which this causes loss of asymptotic 
efficiency 



ACHIEVING ORACLE EFFICIENCY 

• Oracle efficiency means:  Estimator of each 
additive component has asymptotic distribution it 
would have if the other components were known 

• Asymptotically, there is no penalty for having to 
estimate other components. 

• Marginal integration estimators are not oracle 
efficient but can be made so by taking one 
“backfitting” step. 

• Main idea:  Suppose  and 2,..., dm m µ  were known.  

• Define W Y  2
2 ( ) ... ( d

i i i d im X m Xµ= − − − − )

i

• Then model is 
1

1( )i iW m X U= +  

• Can estimate  by, for example, kernel or local-
linear regression of W  on 

1m
1X  

• Estimator is oracle efficient by definition. 



ACHIEVING ORACLE EFFICIENCY (cont.) 

• In applications, replace 2, ,..., dm mµ  with 
preliminary (possibly marginal integration) 
estimates 2 d . 

d

, ,...,m mµ

)• Define W Y  2
2 ( ) ... (i i i d im X m Xµ= − − − −

• Estimate  by kernel or local-linear regression 
of W  on 

1m
1X  

• For case , Linton (1997) gives conditions 
under which resulting estimator of m  is 
asymptotically normal with same mean and 
variance as estimator from regression of W  on 

2d =
1

i
1
iX . 

• Conditions include undersmoothing in estimating 
the ’s ( ). jm 2,...,j d=

• This makes the bias of preliminary estimator 
asymptotically negligible 

• Variance increases but is reduced by the 
averaging entailed in second estimation step. 

• Is unknown whether oracle efficiency for d  can 
be achieved by starting with Hengartner-Sperlich 
estimator 

2>



ACHIEVING ORACLE EFFICIENCY (cont.) 

• Other methods are available for achieving oracle 
efficiency with  2d >

• Two-step estimation can be used in more general 
settings to achieve oracle efficiency. 



BACKFITTING 

• For , define 1,...,j = d
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• Write model as 
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• Let  be preliminary estimates, and set 0 0
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• Backfitting consists of: 

• Estimate  by nonparametric regression of W  
on 

1m
0

1̂
1X .  Let  denote resulting estimate. 1

1m̂

• Set W Y  1 0 1 1 0
2 1
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• Estimate  by nonparametric regression of W  
on 
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BACKFITTING (cont.) 

• Set

 1 0 1 1 1 2 0
3 1 2

3
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• Iterate procedure to convergence, thus obtaining 
estimators of all additive components and µ  

• This version of backfitting is hard to analyze 
theoretically 

• Little known about its convergence or 
distributional properties 

• Modified versions of backfitting are easier to 
analyze 

• Mammen et al. (1999) have found conditions 
under which a suitably modified version is 
asymptotically normal and oracle efficient 



MODIFIED BACKFITING 

• Notation 

•  denotes Nadaraya-Watson kernel 

estimator of . 
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•  and , respectively are kernel estimators of 

density of 
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jX  and joint density of ( , )j kX X  

•  is initial guess at estimator of , possibly 
 or a marginal integration estimator 
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• Location normalization:  ( ) 0j
jm X =E . 



ITERATIVE SCHEME AND ASYMPTOTICS 

• In ’th iteration, estimate of  is r jm

0,
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• Mammen, Linton, and Nielsen show that if the 
’s are twice continuously differentiable and 

some other conditions are satisfied, then 
j

• The iterative scheme converges to limiting 
estimators m  j

•  are asymptotically normally 
distributed for any finite  (no curse of 
dimensionality). 

1/ 2[ ( j
j jn m m x−

d

• The mean and variance of the asymptotic 
distribution are oracle 



COMMENTS ON BACKFITTING 

• Modified backfitting estimator avoids curse of 
dimensionality and is oracle efficient but is 
analytically and computationally complicated 

• Taking one backfitting step from Hengartner-
Sperlich estimator may produce simpler oracle-
efficient estimator, but this is not yet proved. 

• Next lecture will present approach that uses series 
estimation in first step followed by a backfitting 
step 

• This method is simpler computationally than 
marginal integration or modified backfitting 

• It is oracle efficient 

• Can be applied to additive quantile regressions 
and models with link functions. 

 



EMPIRICAL EXAMPLE 

• Use data from Current Population Survey to 
estimate wage function 

(log | , )
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W EXP EDUC
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E
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•  and  are years of experience and 
education. 
EXP EDUC

• Population is white males with 14 or fewer years 
of education who work full time and live in 
urban areas in North Central U.S. 
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COMMENTS ON ESTIMATION RESULTS 

• Estimates of  and  are nonlinear and 
differently shaped 

EXPf EDUCf

• Functions  and  with different shapes 
cannot be produced by a single-index model 

EXPf EDUCf

• A lengthy specification search might be needed to 
find a parametric model that produces the shapes 
shown in the figure 

• Some of the fluctuations of the estimates of  
and  may be artifacts of random sampling 
errors. 

EDUCf
EDUCf

• But a more elaborate analysis rejects the hypothesis 
that either function is linear. 

 



CONCLUSIONS 

• Nonparametric additive model 
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• Additive components jm  can be estimated so as to: 

• Achieve one-dimensional nonparametric rate of 
convergence (dimension reduction)\ 

• Have asymptotical normal limiting distributions 

• Achieve oracle efficiency 
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