
 
NONPARAMETRIC ESTIMATION OF AN 

ADDITIVE MODEL WITH A LINK FUNCTION 
 
 

by 
 
 

Joel L. Horowitz 
Northwestern University 

Evanston, IL 
USA 

 



INTRODUCTION 

• Problem:  Estimate H(x)= E(Y|X = x) under weak 
assumptions about its functional form when X is a 
continuous random variable 

• Fully nonparametric estimation is unattractive 
when X is multidimensional because of the curse of 
dimensionality. 

• Dimension reduction methods reduce effective 
dimension of estimation problem and mitigate or 
eliminate curse of dimensionality 

• They make assumptions about the form of H(x) 
that are stronger than those of a fully 
nonparametric model but weaker than those of a 
parametric model 



DIMENSION REDUCTION METHODS 

• Semiparametric single-index model 

• Additive model with known link function  
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where F  is known, and µ  and ’s are unknown. jm

• Partially linear model with known link function 
(Robinson 1988, Golubev and Härdle 1997, 
Severini and Staniswalis 1994) 
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where G is known but β and fw are not. 

• Additive model with unknown link function  
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where F  and the m ’s are unknown. j



PURPOSE OF THIS PAPER 
 

Paper is concerned with estimating nonparametric 
additive model with known link function. 

• Marginal integration estimator (Linton and Härdle 
1996) has curse-of-dimensionality 

• Smoothness of the ’s must increase as 

dimension of 
jm

X  increases to achieve  rate 
of convergence of nonparametric estimator of the 

’s. 

2 / 5n−

jm

• If F  is identity function, this problem can be 
overcome by use of backfitting 

• Methods for achieving n 2 / 5−  rate of convergence 
with no curse of dimensionality not available 
with non-identity F . 

• This paper develops method for avoiding curse of 
dimensionality in estimating nonparametric 
additive model with known link function. 

• Estimator is pointwise n -consistent and 
asymptotically normal when  and the 

2/5

F jm ’s are 
twice differentiable, regardless of dimension of 

. X



MARGINAL INTEGRATION ESTIMATOR 
(Linton and Härdle 1996) 

Define G  and 1F −= ( ) ( | )H x Y X x= =E . • 

• 

0

Linton and Härdle (1996) write model in form 
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where G  and 1F −= [ ( )]j
jm X =E . 
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Therefore 
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Estimate  up to additive constant by 
replacing  with kernel estimator and 

1
1(m x

H E  with 
sample average. 

• 
d

H

• 

This creates curse-of-dimensionality effect because 
a -dimensional nonparametric regression is 
needed to estimate . 

More smoothness needed as d  increases to insure 
bias and variance of full-dimensional estimator 
are sufficiently small. 



SOLUTION TO PROBLEM 

• 

• 

• 

• 

• 

Avoid curse of dimensionality by replacing kernel 
estimator with estimator that does not require full-
dimensional nonparametric regression. 

Nonparametric series approximation can be used to 
impose additive structure from outset, thereby 
avoiding need for full-dimensional estimation. 

Getting pointwise rates of convergence and 
asymptotic normality with series estimator is 
difficult 

Use two-step procedure to obtain estimator with 
tractable asymptotics: 

Step 1:  Use nonparametric series estimation to 
obtain pilot estimates 1, ,..., dm mµ  

Step 2:  Take one Newton step from pilot 
estimates toward local constant or local linear 
least squares estimator of (say)  1m

• 

• Second-stage estimator has structure of kernel 
estimator, so its asymptotic distribution can be 
obtained easily. 



FURTHER MOTIVATION 

If µ  and  were known, could estimate 
 by (say) local nonlinear least squares: 
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where ,  is kernel. 1 1 1 1( ) [( )h i iK x X K x X h− = − ] K

• Replace unknown µ  and m  with pilot 
estimates to get kernel-like estimator of m x . 

2 ,..., dm
1

)

1( )

• Undersmooth pilot estimates to reduce bias 

• Resulting  is asymptotically equivalent to 
estimator that would be obtained if 

1
1ˆ (m x

µ  and 
 were known. 2 ,..., dm m

• So there is (asymptotically) no penalty for not 
knowing µ  and m  and no curse of 
dimensionality. 

2,..., dm



AVOIDING NONLINEAR OPTIMIZATION 

• Nonparametric series estimation yields estimate m  
of . 

1

1m

• 
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1)h i
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• Avoid nonlinear optimization by taking one 
Newton step from pilot estimate toward solution of 
local least squares problem. 

Resulting estimator is asymptotically equivalent 
to solution of full nonlinear optimization. 

• Define , 2
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SECOND-STAGE ESTIMATOR 

• 

.

Second-stage estimator is 

1 1 1 1
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NONPARAMETRIC SERIES ESTIMATOR 

• Define  1
1( ) ( ) ... ( )d

dm x m x m x= + +

• Let support of X  be [ . 1,1]d−

• Normalize ’s by jm
1
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• Let  denote basis for smooth 
functions on [ 1  that satisfy normalization 
condition and 
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• For any positive integer 0κ >  define 

  1 1
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• Then for 1dκ
κθ +∈ , ( )P xκ κθ′  is series 

approximation to (m x)µ + . 



FIRST-STEP ESTIMATOR 

• Let { , : 1,..., }i iY X i n=  be random sample of  ( , )Y X

• Let n̂κθ  be solution to 
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where  is compact parameter set. κΘ

• Series estimator of ( )m xµ +  is  

ˆ( ) ( ) nm x P xκ κµ θ′+ = , 

where µ  is first component of n̂κθ . 

• First-step estimator of  is product of 

 with appropriate subvector of 

( )j
jm x

1[ ( ),..., ( )]p x p xκ

n̂κ

j j

θ . 
 



ASSUMPTIONS 

• Data are random sample of ( , support of , )Y X X  is 
, and [ 1,1]≡ −X d ( | ) [x F (Y X m x)]µ= = +E . 

• Density of X  is bounded, bounded away from 
zero, and twice differentiable. 

• Set U Y [ ( )]F m Xµ≡ − + .  Then: 

• ( | )Var U X x=  is bounded and bounded away 
from zero.  

•  has finite unconditional moments of all orders U

• The ’s are bounded and twice continuously 
differentiable 

jm

Only two derivatives needed regardless of dimension 
of X. 

• F ′′ satisfies Lipschitz condition 

2 1 2 1| ( ) ( ) | | |sF F Cν ν ν′′ ′′− ≤ −ν  

for some 5/ 7s > . 

• Conditions insuring that covariance matrix of n̂κθ ’s 
is bounded and non-singular. 



MORE ASSUMPTIONS 

• Basis functions satisfy 

1/ 2sup ( ) ( )
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for some 0κ κθ ∈Θ  

These conditions are satisfied by spline and (for 
periodic functions) Fourier bases. 

• Smoothing parameters satisfy: 

• 4 /15C n ν
κκ +=  for some 1/ 30ν <  

•  1/ 5
n hh C n−=

The L2 rate of convergence of series estimator is 
maximized by setting κ ∝ n1/5, so the series estimator 
here is undersmoothed to reduce asymptotic bias.   

• Kernel function  of second-stage estimator is a 
bounded, continuous probability density function 
on [  and is symmetrical about 0. 

K

1,1]−



MAIN RESULTS:  FIRST-STAGE ESTIMATOR 

• Uniform consistency: 
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• Decomposition:  Define  
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 where 3/ 2 1/ 2( /n p n nκ )R O −= +  



MAIN RESULTS:  SECOND-STAGE 
ESTIMATOR 

• Asymptotic representation:  Define 
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This is representation that would be obtained by 
linearizing first-order condition for local least-
squares estimation of m1 with known m2,…, md. 

So asymptotically there is no penalty for not 
knowing m2,…, md. 

Structure of right-hand side is same as with kernel 
estimator. 



RESULTS (cont.) 

• Asymptotic normality 

2 / 5 1 1 1 1
1 1 1 1ˆ[ ( ) ( )] [ ( ), ( )]dn m x m x N x V xβ− →  

This holds when the mj’s are twice continuously 
differentiable, regardless of dimension of X. 

So there is no curse of dimensionality. 

• If , then n m  and 
 are asymptotically 

independently normally distributed. 

1j ≠
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INTUITION FOR SECOND-STAGE RESULT 

• 

.

).

1)

Second-stage estimator is  

1 1 1 1ˆ ( ) ( ) ( , ) / ( , )1 1 1 1m x m x S x m S x mn n′ ′′= −  

• This can be written: 
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• Use Taylor series approximation to write  
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INTUITION (cont.) 

•  1 1/ 2 1 1
1 1 1( )( ) [ ( ) ( )] (1n nT D x nh m x m x o= − )p+

1)+

• So  
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•  consists of  2nT

• Bias term arising from asymptotic bias of m  1

• Sum of mean-zero stochastic terms arising from 
random component of 0n̂κ κθ θ−  

• Because first-stage estimator is undersmoothed 

1/ 2( ) [Bias Term] (n pnh o= 1) 

• Contribution of bias term to T  is 
asymptotically negligible. 

2n



INTUITION (cont.) 

• Stochastic terms have slower than 2 / 5n−  rates of 
convergence but are averaged in T . 2n

• First-stage estimator has no curse of 
dimensionality, so rate of convergence of 
variance of stochastic term does not increase 
with increasing dimension of X . 

• Averaged stochastic term converges faster than 
. 2 / 5n−

• So contribution of stochastic term to T  is 
negligible. 

2n

• Consequently, T  is asymptotically negligible. 2n



BANDWIDTH SELECTION 

• 

1

Asymptotic integrated mean-square error of  is 1m̂
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1 1

1 1( ) ( ) / hx xβ β= 2C ) and V x .   1 1
1 1( ) (hC V x=

• Plug-in estimator of  can be obtained by 
replacing 

1hC

1β  and V  with kernel estimates.   1

• The asymptotically optimal bandwidths for all the 
’s can be estimated simultaneously by penalized 

least squares. 
m j

• This minimizes empirical analog of asymptotic 
squared error: 



MONTE CARLO EXPERIMENTS 

• Compare finite-sample performance of new 
estimator with that of Linton and Härdle (1996) 

• New estimator implemented using local constant 
and local linear smoothing in second stage. 

• Experiments carried out with 2d =  and . 5d =

• L-H estimator is O n 2 / 5( )p
−  if d 2= , not . 5d =

• Sample size is  500n =

• With d  estimate  and  in logit model 2= 1m 2m

•  1 2
1 2( 1| ) [ ( ) (Y X x L m x m x= = = +P )]

)

•  ( ) /(1 )v vL v e e= +

• 1 1
1( ) sin(m x xπ=  

• , where 2
2 ( ) (3m x x= Φ 2 ) Φ  is normal CDF 

• With d  estimate  and  in logit model 5= 1m 2m

51 2
1 2 3

( 1| ) [ ( ) ( ) j
j

Y X x L m x m x x
=

= = = + + ]∑P  

Components of X  are independently U . [ 1,1]−• 



MONTE CARLO EXPERIMENTS (cont.) 

• 

• 

• 

• 

B-splines used for first-stage series estimator 

Second-order kernel used for second-stage 
estimator 

Tuning parameters chosen to minimize empirical 
integrated mean-square errors. 

1000 replications with 2-stage estimator but only 
500 with Linton-Härdle estimator 



RESULTS 
 

                 Empirical IMSE_ 
  Estimator         f1       f2    

____________________________________ 
d = 2 

   FHS            .116    .015  
2-Stage LC        .052    .015  

 
2-Stage LL        .052    .023  

 
d = 5 

   FHS            .145    .019  
2-Stage LC        .060    .018  

 
2-Stage LL        .057    .029  

 

• Local constant and local linear estimators both 
dominate Linton-Härdle for estimating  1f

• For estimating  Local constant and Linton-
Härdle estimators have roughly same IMSE 

2f

Local linear estimator is worse • 



CONCLUSIONS 

• Paper has considered additive model with known 
link function 

1 1( | ) [ ( ) ... ( )j
jY X x F m x m xµ= = + + +E ] 

• Marginal integration estimator of Linton and 
Härdle (1996) has curse of dimensionality 

• Backfitting method of Mammen et al. (1999) 
avoids curse of dimensionality if F  is identity 
function 

• This paper has proposed two-step method for 
avoiding curse of dimensionality with non-identity 
link function. 

First step uses nonparametric series estimator 
that imposes additive structure 

• 

• 

• 

Second step takes a Newton step from series 
estimate toward a local least squares estimator. 

Second-stage estimator has structure of kernel 
estimator and is pointwise asymptotically normal 
with  rate of convergence regardless of 
dimension of . 

2 / 5n−
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