NONPARAMETRIC ESTIMATION OF AN ADDITIVE MODEL WITH A LINK FUNCTION

by

Joel L. Horowitz Northwestern University Evanston, IL USA

INTRODUCTION

- Problem: Estimate H(x) = E(Y|X = x) under weak assumptions about its functional form when *X* is a continuous random variable
- Fully nonparametric estimation is unattractive when *X* is multidimensional because of the curse of dimensionality.
- Dimension reduction methods reduce effective dimension of estimation problem and mitigate or eliminate curse of dimensionality
 - They make assumptions about the form of *H*(*x*) that are stronger than those of a fully nonparametric model but weaker than those of a parametric model

DIMENSION REDUCTION METHODS

- Semiparametric single-index model
- Additive model with known link function

$$H(x) = F\left[\mu + \sum_{j=1}^{d} m_j(x^j)\right],$$

where F is known, and μ and m_i 's are unknown.

• Partially linear model with known link function (Robinson 1988, Golubev and Härdle 1997, Severini and Staniswalis 1994)

$$E(Y | X = x, W = w) = G[\beta' x + f_w(w)],$$

where G is known but β and f_w are not.

• Additive model with unknown link function

$$H(x) = F\left[\sum_{j=1}^{d} m_j(x^j)\right],$$

where F and the m_j 's are unknown.

PURPOSE OF THIS PAPER

Paper is concerned with estimating nonparametric additive model with known link function.

- Marginal integration estimator (Linton and Härdle 1996) has curse-of-dimensionality
 - Smoothness of the m_j 's must increase as dimension of X increases to achieve $n^{-2/5}$ rate of convergence of nonparametric estimator of the m_j 's.
- If *F* is identity function, this problem can be overcome by use of backfitting
 - Methods for achieving $n^{-2/5}$ rate of convergence with no curse of dimensionality not available with non-identity F.
- This paper develops method for avoiding curse of dimensionality in estimating nonparametric additive model with known link function.
 - Estimator is pointwise n^{2/5}-consistent and asymptotically normal when F and the m_j's are twice differentiable, regardless of dimension of X.

MARGINAL INTEGRATION ESTIMATOR (Linton and Härdle 1996)

- Define $G = F^{-1}$ and H(x) = E(Y | X = x).
- Linton and Härdle (1996) write model in form

$$G[H(x^1,...,x^d)] = \mu + m_1(x^1) + ... + m_d(x^d),$$

where $G = F^{-1}$ and $E[m_j(X^j)] = 0$.

• Therefore

$$\mu + m_1(x^1) = \mathbf{E}G[H(x^1, X^2, ..., X^d)].$$

- Estimate $m_1(x^1)$ up to additive constant by replacing H with kernel estimator and E with sample average.
- This creates curse-of-dimensionality effect because a *d*-dimensional nonparametric regression is needed to estimate *H*.
 - More smoothness needed as *d* increases to insure bias and variance of full-dimensional estimator are sufficiently small.

SOLUTION TO PROBLEM

- Avoid curse of dimensionality by replacing kernel estimator with estimator that does not require full-dimensional nonparametric regression.
- Nonparametric series approximation can be used to impose additive structure from outset, thereby avoiding need for full-dimensional estimation.
- Getting pointwise rates of convergence and asymptotic normality with series estimator is difficult
- Use two-step procedure to obtain estimator with tractable asymptotics:
 - Step 1: Use nonparametric series estimation to obtain pilot estimates $\tilde{\mu}, \tilde{m}_1, ..., \tilde{m}_d$
 - Step 2: Take one Newton step from pilot estimates toward local constant or local linear least squares estimator of (say) m_1
 - Second-stage estimator has structure of kernel estimator, so its asymptotic distribution can be obtained easily.

FURTHER MOTIVATION

• If μ and $m_2,...,m_d$ were known, could estimate $m_1(x^1)$ by (say) local nonlinear least squares:

$$\hat{m}_1(x^1) = \arg\min_{m_1} \sum_{i=1}^n \{Y_i - F[\mu + m_1(x^1)]\}$$

$$+ m_2(X_i^2) + ... + m_d(X_i^d)] \}^2 K_h(x^1 - X_i^1)$$

where $K_h(x^1 - X_i^1) = K[(x^1 - X_i^1)/h]$, *K* is kernel.

- Replace unknown μ and $m_2,...,m_d$ with pilot estimates to get kernel-like estimator of $m_1(x^1)$.
 - Undersmooth pilot estimates to reduce bias
 - Resulting $\hat{m}_1(x^1)$ is asymptotically equivalent to estimator that would be obtained if μ and $m_2,...,m_d$ were known.
 - So there is (asymptotically) no penalty for not knowing μ and $m_2,...,m_d$ and no curse of dimensionality.

AVOIDING NONLINEAR OPTIMIZATION

- Nonparametric series estimation yields estimate \tilde{m}_1 of m_1 .
- Avoid nonlinear optimization by taking one Newton step from pilot estimate toward solution of local least squares problem.
 - Resulting estimator is asymptotically equivalent to solution of full nonlinear optimization.

• Define
$$\tilde{m}_{-1}(x_{-1}) = \tilde{m}_2(x^2) + \dots + \tilde{m}_d(x^d)$$
,

$$S_{n1}(x^1, \tilde{m}) =$$

$$\sum_{i=1}^{n} \{Y_i - F[\tilde{\mu} + \tilde{m}_1(x^1) + \tilde{m}_{-1}(\tilde{X}_i)]\}^2 K_h(x^1 - X_i^1)$$

 $S_{n1}'(x^1, \tilde{m}), S_{n1}''(x^1, \tilde{m})$ are first and second derivatives of S_{n1} with respect to \tilde{m}_1

SECOND-STAGE ESTIMATOR

• Second-stage estimator is

$$\hat{m}_1(x^1) = \tilde{m}_1(x^1) - S'_{n1}(x^1, \tilde{m}) / S''_{n1}(x^1, \tilde{m}).$$

NONPARAMETRIC SERIES ESTIMATOR

- Define $m(x) = m_1(x^1) + ... + m_d(x^d)$
- Let support of X be $[-1,1]^d$.

• Normalize
$$m_j$$
's by $\int_{-1}^{1} m_j(v) dv = 0$ $(j = 1, ..., d)$.

• Let $\{p_k : k = 1, 2, ...\}$ denote basis for smooth functions on [-1,1] that satisfy normalization condition and

$$\int_{-1}^{1} p_{k}(v) dv = 0$$

$$\int_{-1}^{1} p_{j}(v) p_{k}(v) dv =\begin{cases} 1 & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$$

$$m_{j}(x^{j}) = \sum_{k=1}^{\infty} \theta_{jk} p_{k}(x^{j}); \quad j = 1, ..., d; \quad x^{j} \in [0, 1]$$

- For any positive integer $\kappa > 0$ define $P_{\kappa}(x) = [1, p_1(x^1), ..., p_{\kappa}(x^1), ..., p_1(x^d), ..., p_{\kappa}(x^d)]'$
- Then for $\theta_{\kappa} \in \mathbb{R}^{\kappa d+1}$, $P_{\kappa}(x)'\theta_{\kappa}$ is series approximation to $\mu + m(x)$.

FIRST-STEP ESTIMATOR

- Let $\{Y_i, X_i : i = 1, ..., n\}$ be random sample of (Y, X)
- Let $\hat{\theta}_{n\kappa}$ be solution to

$$\underset{\theta \in \Theta_{\kappa}}{\text{minimize}}: n^{-1} \sum_{i=1}^{n} \{Y_i - F[P_{\kappa}(X_i)'\theta]\}^2$$

where Θ_{κ} is compact parameter set.

• Series estimator of $\mu + m(x)$ is

 $\tilde{\mu} + \tilde{m}(x) = P_{\kappa}(x)'\hat{\theta}_{n\kappa},$

where $\tilde{\mu}$ is first component of $\hat{\theta}_{n\kappa}$.

• First-step estimator of $m_j(x^j)$ is product of $[p_1(x^j),...,p_{\kappa}(x^j)]$ with appropriate subvector of $\hat{\theta}_{n\kappa}$.

ASSUMPTIONS

- Data are random sample of (Y, X), support of X is $\mathcal{X} \equiv [-1,1]^d$, and $\mathbf{E}(Y \mid X = x) = F[\mu + m(x)]$.
- Density of X is bounded, bounded away from zero, and twice differentiable.
- Set $U \equiv Y F[\mu + m(X)]$. Then:
 - Var(U | X = x) is bounded and bounded away from zero.
 - U has finite unconditional moments of all orders
- The m_j 's are bounded and twice continuously differentiable

Only two derivatives needed regardless of dimension of X.

• *F*["] satisfies Lipschitz condition

$$|F''(v_2) - F''(v_1)| \le C |v_2 - v_1|^s$$

for some s > 5/7.

• Conditions insuring that covariance matrix of $\hat{\theta}_{n\kappa}$'s is bounded and non-singular.

MORE ASSUMPTIONS

• Basis functions satisfy

$$\sup_{x \in \mathcal{X}} \|P_{\kappa}(x)\| = O(\kappa^{1/2})$$
$$\sup_{x \in \mathcal{X}} |\mu + m(x) - P_{\kappa}(x)'\theta_{\kappa 0}| = O(\kappa)$$

for some $\theta_{\kappa 0} \in \Theta_{\kappa}$

These conditions are satisfied by spline and (for periodic functions) Fourier bases.

-2)

- Smoothing parameters satisfy:
 - $\kappa = C_{\kappa} n^{4/15+\nu}$ for some $\nu < 1/30$

•
$$h_n = C_h n^{-1/5}$$

The L_2 rate of convergence of series estimator is maximized by setting $\kappa \propto n^{1/5}$, so the series estimator here is undersmoothed to reduce asymptotic bias.

 Kernel function K of second-stage estimator is a bounded, continuous probability density function on [-1,1] and is symmetrical about 0.

MAIN RESULTS: FIRST-STAGE ESTIMATOR

• Uniform consistency:

$$\sup_{x \in \mathcal{X}} |\tilde{m}(x) - m(x)| = O_p(\kappa / n^{1/2} + \kappa^{-3/2})$$

• Decomposition: Define

$$Q_{\kappa} = \boldsymbol{E}\{F'[\mu + m(X)]^2 P_{\kappa}(X) P_{\kappa}(X)'\}$$

Then

$$\hat{\theta}_{n\kappa} - \theta_{\kappa 0} = n^{-1} Q_{\kappa}^{-1} \sum_{i=1}^{n} F'[\mu + m(X_i)] P_{\kappa}(X_i) U_i$$

$$+ n^{-1} Q_{\kappa}^{-1} \sum_{i=1}^{n} F' [\mu + m(X_i)]^2 P_{\kappa}(X_i) b_{\kappa}(X_i) + R_n,$$

where $||R_n|| = O_p(\kappa^{3/2} / n + n^{-1/2})$

MAIN RESULTS: SECOND-STAGE ESTIMATOR

• Asymptotic representation: Define

$$D(x^{1}) = \mathop{\mathrm{plim}}_{n \to \infty} S''_{n1}(x^{1}, \tilde{m})$$

Then

$$(nh_n)^{1/2}[\hat{m}_1(x^1) - m_1(x^1)] =$$

$$-(nh_n)^{1/2}S'_{n1}(x^1,m)/D(x^1)+o_p(1)$$

This is representation that would be obtained by linearizing first-order condition for local least-squares estimation of m_1 with known m_2, \ldots, m_d .

So asymptotically there is no penalty for not knowing m_2, \ldots, m_d .

Structure of right-hand side is same as with kernel estimator.

RESULTS (cont.)

• Asymptotic normality

$$n^{2/5}[\hat{m}_1(x^1) - m_1(x^1)] \rightarrow^d N[\beta_1(x^1), V_1(x^1)]$$

This holds when the m_j 's are twice continuously differentiable, regardless of dimension of X.

So there is no curse of dimensionality.

• If $j \neq 1$, then $n^{2/5}[\hat{m}_1(x^1) - m_1(x^1)]$ and $n^{2/5}[\hat{m}_j(x^j) - m_j(x^j)]$ are asymptotically independently normally distributed.

INTUITION FOR SECOND-STAGE RESULT

• Second-stage estimator is

$$\hat{m}_1(x^1) = \tilde{m}_1(x^1) - S'_{n1}(x^1, \tilde{m}) / S''_{n1}(x^1, \tilde{m}).$$

• This can be written:

$$(nh_n)^{1/2} [\hat{m}_1(x^1) - m_1(x^1)] =$$

= $(nh_n)^{1/2} [\tilde{m}_1(x^1) - m_1(x^1)]$
 $- (nh_n)^{1/2} S'_{n1}(x^1, \tilde{m}) / D(x^1) + o_p(1).$

• Use Taylor series approximation to write $(nh_n)^{1/2} S'_{n1}(x^1, \tilde{m}) =$

$$(nh_n)^{1/2}S'_{n1}(x^1,m) + T_{n1} + T_{n2} + o_p(1)$$

INTUITION (cont.)

• $T_{n1} = D(x^1)(nh_n)^{1/2}[\tilde{m}_1(x^1) - m_1(x^1)] + o_p(1)$

• So

 $(nh_n)^{1/2}[\hat{m}_1(x^1) - m_1(x^1)] =$

$$-(nh_n)^{1/2}S'_{n1}(x^1,m)/D(x^1)+T_{n2}+o_p(1)$$

- T_{n2} consists of
 - Bias term arising from asymptotic bias of \tilde{m}_1
 - Sum of mean-zero stochastic terms arising from random component of $\hat{\theta}_{n\kappa} \theta_{\kappa 0}$
- Because first-stage estimator is undersmoothed

 $(nh_n)^{1/2}$ [Bias Term] = $o_p(1)$

• Contribution of bias term to T_{n2} is asymptotically negligible.

INTUITION (cont.)

- Stochastic terms have slower than $n^{-2/5}$ rates of convergence but are averaged in T_{n2} .
 - First-stage estimator has no curse of dimensionality, so rate of convergence of variance of stochastic term does not increase with increasing dimension of *X*.
 - Averaged stochastic term converges faster than $n^{-2/5}$.
 - So contribution of stochastic term to T_{n2} is negligible.
- Consequently, T_{n2} is asymptotically negligible.

BANDWIDTH SELECTION

• Asymptotic integrated mean-square error of \hat{m}_1 is

$$AIMSE_1 = n^{4/5} \int_{-1}^1 w(x^1) [\beta_1(x^1)^2 + V_1(x^1)] dx^1,$$

where *w* is a weight function.

• *AIMSE*₁ minimized by setting $h = C_{h1}n^{-1/5}$, where

$$C_{h1} = \left[(1/4) \frac{\int_{-1}^{1} w(x^{1}) \tilde{V}_{1}(x^{1}) dx^{1}}{\int_{-1}^{1} w(x^{1}) \tilde{\beta}_{1}(x^{1})^{2} dx^{1}} \right]^{1/5},$$

$$\tilde{\beta}_1(x^1) = \beta_1(x^1) / C_h^2$$
 and $\tilde{V}_1(x^1) = C_h V_1(x^1)$.

- Plug-in estimator of C_{h1} can be obtained by replacing $\tilde{\beta}_1$ and \tilde{V}_1 with kernel estimates.
- The asymptotically optimal bandwidths for all the *m_j*'s can be estimated simultaneously by penalized least squares.
 - This minimizes empirical analog of asymptotic squared error:

MONTE CARLO EXPERIMENTS

- Compare finite-sample performance of new estimator with that of Linton and Härdle (1996)
- New estimator implemented using local constant and local linear smoothing in second stage.
- Experiments carried out with d = 2 and d = 5.
 - L-H estimator is $O_p(n^{-2/5})$ if d = 2, not d = 5.
- Sample size is n = 500
- With d = 2 estimate m_1 and m_2 in logit model
 - $P(Y=1|X=x) = L[m_1(x^1) + m_2(x^2)]$
 - $L(v) = e^{v} / (1 + e^{v})$
 - $m_1(x^1) = \sin(\pi x^1)$
 - $m_2(x^2) = \Phi(3x^2)$, where Φ is normal CDF
- With d = 5 estimate m_1 and m_2 in logit model

$$P(Y=1 \mid X=x) = L[m_1(x^1) + m_2(x^2) + \sum_{j=3}^{5} x^j]$$

• Components of X are independently U[-1,1].

MONTE CARLO EXPERIMENTS (cont.)

- B-splines used for first-stage series estimator
- Second-order kernel used for second-stage estimator
- Tuning parameters chosen to minimize empirical integrated mean-square errors.
- 1000 replications with 2-stage estimator but only 500 with Linton-Härdle estimator

RESULTS

	Empirical IMSE	
Estimator	f_1	f_2
d = 2		
FHS	.116	.015
2-Stage LC	.052	.015
2-Stage LL	.052	.023
d = 5		
FHS	.145	.019
2-Stage LC	.060	.018
2-Stage LL	.057	.029

- Local constant and local linear estimators both dominate Linton-Härdle for estimating f_1
- For estimating f_2 Local constant and Linton-Härdle estimators have roughly same IMSE
 - Local linear estimator is worse

CONCLUSIONS

• Paper has considered additive model with known link function

$$E(Y | X = x) = F[\mu + m^{1}(x^{1}) + ... + m_{j}(x^{j})]$$

- Marginal integration estimator of Linton and Härdle (1996) has curse of dimensionality
- Backfitting method of Mammen *et al.* (1999) avoids curse of dimensionality if F is identity function
- This paper has proposed two-step method for avoiding curse of dimensionality with non-identity link function.
 - First step uses nonparametric series estimator that imposes additive structure
 - Second step takes a Newton step from series estimate toward a local least squares estimator.
 - Second-stage estimator has structure of kernel estimator and is pointwise asymptotically normal with $n^{-2/5}$ rate of convergence regardless of dimension of *X*.