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INTRODUCTION 

• Problem:  Test parametric model of a conditional 
mean function against nonparametric alternative 

• Model 

( ) ; 1, 2, .Y f X ii i i ..ε= + =  

• Yi = Scalar random variable 

• {Xi} = Sequence of d-dimensional, distinct, 
non-stochastic design points 

• {εi} = Sequence of unobserved, independent 
random variables with means of zero. 

• Null hypothesis H0:  ( ) ( ,f X F Xi )i θ=  for all i and 
some finite-dimensional θ  

• Alternative hypothesis H1:  There is no θ  such that 
( ) ( , )f X F Xii  for all i. θ=



AIM 

• Develop a test that: 

• Is consistent against alternative models whose 
distance from the parametric model converges to 
zero as rapidly as possible as sample size, n, 
increases 

• Has other good power properties 

• Does not require a priori knowledge of 
smoothness of alternative model 



BACKGROUND 

• Many tests are already available. 

• Some compare nonparametric estimator of ( )f ⋅  
with parametric estimator ( , )F n  (e.g., Härdle 
& Mammen 1993 and many others) 

θ⋅

• Other tests do not require nonparametric 
estimation of f (e.g., Andrews 1997) 

• Asymptotic power often investigated through 
sequence of local alternative models: 

1( ) ( , ) ( )n nf x F x g xθ ρ= +  

 for some g, θ1, and ρn → 0 as n → ∞. 

• Many tests that compare a nonparametric 
estimator of f with a parametric estimator have 
non-trivial power only against local alternatives 
for which ρn → 0 more slowly than n-1/2 

• Test of Andrews (1997) has non-trivial power 
against local alternatives for which ρn ∝ n-1/2 

• Latter tests seem to dominate former in terms of 
power, but this appearance is misleading. 



WHY ρn ∝ n-1/2 IS MISLEADING 

• Local alternatives 1( ) ( , ) ( )n nf x F x g xθ ρ= +  are 
well-known but this class is too small. 

• Talk describes with good power against a class 
of alternatives that is not too small 

• The problem:  If ρn ∝ n-1/2, then no test can be 
consistent uniformly over reasonable classes of 
functions g (e.g., functions that are s times 
continuously differentiable)  

• Power of any test of H0 against sequence of local 
alternatives 1/ 2( ) ( , ) ( )1f x F x n g xn nθ −= +

}ng

 is 
probability that test rejects correct H0 for some 
sequence of smooth functions { . 

• Practical consequence:  Any test of H0 for which 
ρn ∝ n-1/2 has low finite-sample power against 
certain classes of smooth alternatives. 

• This is sense in which set of alternatives 
1n  is too small.  ( ) ( , ) ( )nf x F x g xθ ρ= +

• Problem can be overcome through use of minimax 
approach to asymptotic local power 



THE MINIMAX APPROACH 

• Permits set of alternatives to consist of entire 
smoothness class (e.g., Hölder or Sobolev ball). 

• We use Hölder class 

• Minimax approach assumes that f belongs to 
smoothness class B (e.g., Hölder class). 

• B separated from null-hypothesis { ( , ) : }F θ θ⋅ ∈Θ  
by distance rn that converges to 0 as n → ∞. 

• Optimal rate of testing is find fastest rate at 
which rn can approach 0 while permitting 
consistent testing uniformly over B. 

• Test is consistent uniformly over B if  

0lim inf ( is rejected against ) 1
n f B

H f
→∞ ∈

=P . 

• Optimal rate of testing is fastest rate at which r  
can approach 0 while maintaining this relation. 

n

• Optimal rate for smoothness class with s  bounded 
derivatives is n-2s/(4s + d) if s is known a priori and 

( )1 log logn n
+−  otherwise. 

2 /(4 )s s d



OBJECTIVE OF TALK 

• Develop test that has optimal rate of testing 
uniformly over Hölder classes and does not require 
a priori knowledge of s, order of differentiability 
of f. 

• Test called adaptive and rate optimal because it 
adapts to unknown s and achieves optimal rate of 
testing. 

• Test that achieves optimal rate of testing has 
advantage of being sensitive to alternatives 
uniformly over a smoothness class whose distance 
from H0 converges to 0 at fastest possible rate 

• These classes contain sequences of smooth 
alternatives against which existing tests are 
inconsistent. 

• In practice, this means that there are smooth 
alternatives against which these tests have much 
lower finite-sample power than does a test that 
achieves the optimal rate of testing. 



AVOIDING A POTENTIAL DRAWBACK OF 
THE MINIMAX APPROACH 

• A test that achieves optimal rate uniformly over B 
is necessarily oriented toward alternatives in B that 
are most extreme and hardest to detect. 

• These functions have narrow peaks or valleys 
whose widths decrease with increasing n (high-
frequency alternatives) 

• Test that is oriented toward such alternatives 
may have low power against functions that are 
less extreme 

• To guard against this problem, we develop test that 
is consistent against local alternatives ( )f xn =  

1( , ) ( )nF x g xθ ρ+  whenever -1/2 log log nn Cnρ ≥  
for some finite C > 0. 

• Tests of Andrews (1997) and others are 
consistent against such alternatives whenever ρn 
→ 0 more slowly than n-1/2. 

• In terms of consistency, is essentially no penalty 
paid for adaptiveness and rate optimality. 



OUTLINE OF REMAINDER OF TALK 

• Test statistic and Monte Carlo method for finding 
critical values 

• Theorems giving properties of test under H0 and 
various forms of H1 

• Monte Carlo experiments that 

• Illustrate numerical performance of test 

• Compare its finite-sample power with powers of 
some existing tests 



IDEA OF TEST STATISTIC 

• Similar to Härdle-Mammen (1993) statistic 

• Based on distance between kernel nonparametric 
estimator of f and kernel-smoothed parametric 
estimator 

• Compute distance with many different values of 
bandwidth of kernel smoother 

• Reject H0 if distance obtained with any of the 
bandwidths is too large 

• Rate-optimal and adaptive properties of the test 
arise from use of many bandwidths 

• Parametric model: 

• θ0 = True value of θ if H0 is true.  Under H0, 
E(Yi) = F(Xi, θ0) 

• θn = Estimator of θ that is n1/2- consistent if H0 is 
true 

• Under H1, n1/2(θn - θ*) = Op(1) as n → ∞ for 
some θ* 

• Assume that ε has finite, nonzero variance  σ 2 ( )Xi



KERNEL SMOOTHER AND DISTANCE 
MEASURE 

• For kernel K and bandwidth h, define 
 and ( ) ( / )K x K x h=h

• 

1

( )
( , )

( )
h i j

h i j n
h i kk

K X X
w X X

K X X
=

−
=

−∑
 (weights) 

•  , 1
( ) (n

ij h h k i h k jk
a w X X w X

=
= −∑ )X−

j

)

• Nonparametric estimator: 

1
( ) ( )n

h i h i jj
f X w X X Y

=
= −∑  

• Smoothed parametric estimator: 

1
( , ) ( ) ( ,n

h i n h i j j nj
F X w X X f Xθ θ

=
= −∑  

• Distance between the two: 

2
1

( ) [ ( ) ( , )]n
n n h i h i ni

S f X F Xθ θ
=

= −∑  



TEST STATISTIC 

• Centered, Studentized form of Sh(θn): 

( )ˆ ˆ( )T S N Vh h n hθ= − h

Xi

2( )Xn j

)

 

where 

2ˆ ( ),
1

n
N ah ij h n

i
σ= ∑

=
, 

2 2 2ˆ 2 ( ),
1 1

n n
V a Xh ij h n i

i j
σ σ= ∑ ∑

= =
, 

and 2(Xn iσ  = estimator of 2( )Xiσ  that is 
consistent under both H0 and H1. 

• Bandwidths:   
, where 0 < h

{ : ,max min
kH h h a h hn = = ≥

0,1,2,...}k = min < hmax, and 0 < a < 1. 

• Reject H0 if Th is sufficiently large for any h ∈ Hn. 

• Thus, test statistic is  

* maxT Thh Hn
=

∈
 



HOW TO OBTAIN THE CRITICAL VALUE 

• Exact α-level critical value. tα* solves P(T* > tα*) 
= α 

• T* is not asymptotically normal or asymptotically 
pivotal, so critical value cannot be obtained from 
standard tables or tabulated 

• Can be shown, however, that tα* is determined by 
the variances 2( )Xiσ  

• Value of θ0 and other features of distributions of 
the εi’s do not affect critical value 

• An asymptotic critical value, tα, can be obtained as 
1 - α quantile of distribution of T* induced by 
model 

* ( , )Y F Xi i n *iθ ε= + , 

where . 2* ~ [0, ( )]N Xi nε σ i

• tα can be computed by Monte Carlo simulation 



ESTIMATING σ 2(Xi) 

• Need estimator that is consistent even if H0 is false 

• Case of homoskedastic ε’s and one-dimensional X 

• Let X(1) < X(2) < ... < X(n) be ordered sequence of 
design points 

• Let Y(1), Y(2), ... be similarly ordered values of the 
Yi’s 

• Then estimate 2 2( )Xiσ σ=  by 

112 2( )( 1) ( )2( 1) 1

n
Y Yn in i

σ i
−

= −∑ +− =
 

• Generalization to multi-dimensional, hetero-
skedastic cases possible 



REGULARITY CONDITIONS 

• Parametric model satisfies standard smoothness 
conditions 

• θn is n1/2-consistent for θ0 if H0 is true, and n1/2(θn - 
θ) is bounded in probability if H0 is false.   

• Design points Xi are non-stochastic and are scaled 
so that 1Xi ≤ .  For for each h ∈ Hn and some 

finite C1, C2 > 0, , 

where M

( )1 2C nh M X C nhh i≤ ≤d d

h(Xi) = no. of Xj’s such that X X hj i− ≤  

• K is bounded, non-negative, and supported on 
[-1,1]d.  (K is not a higher-order kernel.) 

• The εi’s are independent. ( ) 0iε =E , and satisfy 
certain conditions on moments through order 4  
for some δ > 0.  

δ+

• Bandwidths:  hmin ≥ n-γ for some γ such that 0 < γ 
1/2, and hmax = CH(log log n)-1 



PROPERTIES OF TEST 

Behavior of Test when H0 Is True 
 
• Theorem 1 (Asymptotic validity of estimated 

critical value):  If H0 is true, then 

lim ( * )T t
n

αα> =
→ ∞

P . 

 
 

Consistency against a Fixed Alternative 

• Measure distance between parametric family ℑ and 
f by 

1/ 2
1 2( , ) inf [ ( ) ( , ]

1

n
f n f X F Xi i

i
ρ θ

θ

  −ℑ = −∑ 
∈Θ = 

. 

• Theorem 2:  If there is an n0 such that ( , )f cρ ρℑ >  

for all n > n0 and some cρ > 0, then 

lim ( * ) 1T t
n α> =

→ ∞
P . 

 



PROPERTIES OF TEST (cont.) 

Consistency against “Conventional” Local 
Alternative 

• Local alternative: 1( ) ( , ) ( )n nf x F x g xθ ρ= +  

• Assume that g satisfies conditions excluding 

   
1/ 2

1 2[ ( ) ( , )] (,0
1

n
f X F X on i i n nn i

)θ ρ
  − =∑ 
 = 

 

for some sequence { },0nθ ∈Θ.   

• Rate of convergence of fn to parametric model is 
the same as rate of convergence of ρn to zero. 

• Theorem 3:  Let {fn} be sequence of local 
alternatives with 1/ 2 log logCn nnρ −≥  for some 
C > 0. Then 

lim ( * ) 1T t
n α> =

→ ∞
P . 



UNIFORM CONSISTENCY AGAINST 
SMOOTH ALTERNATIVES 

• Hölder class of models:  

• Let j = (j1, ..., jd) be multi-index. 

• Define | |
1

d
kk

j j
=

= ∑ , 
| | ( )( )
1...1

j f xjD f x jj dx xd

∂
=

∂ ∂
. 

• Norm: sup | ( ) |,
| |[ 1,1]

jf DH s d j sx
= ∑

≤∈ −
f x  

• Smoothness class:  ( , ) { : ,f f C }S H s FH s≡ ≤  

for some unknown s ≥ 2 and CF < ∞ 

• Define for some s ≥ 2 and Ca < ∞ 

{

}
( , ) :,

2 /(4 )1( , ) ( log log )

B f S H sH n

f C n naρ

= ∈

−ℑ ≥ s s + d  

• This is Hölder class whose distance from  

exceeds 
0H

2 /(4 )1− s s + d( log log )naC n  



UNIFORM CONSISTENCY (cont.) 

• Theorem 4:  For all sufficiently large Ca < ∞, 

lim sup ( * ) 1

,

T t
n f BH n

α> =
→ ∞ ∈

P  



AN EXAMPLE 

• Gives parametric model and sequence of 
alternatives against which adaptive, rate-optimal 
test is consistent but other existing tests are not. 

• Parametric model:  Y 0 1Xi i iβ β ε= + +

~ (0,Ni

, where Xi’s 

are symmetrical about 0 and 2)ε σ  for all i 

• Sequence of alternatives:  

4 ( / )Y X Xi i n i n iτ φ τ= + + ε

)

, 

where 2~ (0,Niε σ , φ  is standard normal density, 

and ( )n
1/91 log logn nτ −∝ . 

• Sequence is contained in BH,n with s = 2 

• Distance between fn and parametric model is 

( )4 /91( , ) log logf n nnρ −ℑ ∝  

• Adaptive, rate-optimal test is consistent against this 
sequence.   



MONTE CARLO EXPERIMENTS 

• Null-hypothesis model: 

; 1,2,...,2500 1Y X ii i iβ β ε= + + =  

where each Xi is sampled from N(0,25) truncated at 
5th and 95th percentiles. 

• If H0 is true, then β0 = β1 = 1 

• εi’s sampled from three distributions:  N(0,4), 
90-10 mixture of N(0,1.56) and N(0,25), and 
Type I extreme value distribution scaled to have 
variance of 4. 

• Alternative models:   

1 (5/ ) ( / )Y X Xi i i iτ φ τ= + + + ε  

where εi’s are sampled from one of foregoing 
distributions and τ = 1 or τ = 0.25. 

• Compare power of new test with powers of tests of 
Härdle and Mammen (1993) and Andrews (1997). 

• Expect power of new test higher than powers of 
others for τ = 0.25 and similar to powers of others 
for τ = 1. 



 
Null and Alternative Models



RESULTS OF 1000 REPLICATIONS 

• When H0 is true, all tests have empirical rejection 
probabilities that are close to the nominal rejection 
probability of 0.05. 

• Power of adaptive, rate-optimal test is much higher 
than powers of other tests when H0 is false and τ = 
0.25. 

• Power of adaptive, rate-optimal test is similar to 
that of Härdle-Mammen test but higher than that of 
Andrews’ test when H0 is false and τ = 1. 

• Results consistent with theory 



CONCLUSIONS 

• Test of parametric model of a conditional mean 
function against a nonparametric alternative 

• Adapts to the unknown smoothness of the 
alternative model 

• Is uniformly consistent against alternative 
models whose distance from the parametric 
model converges to 0 at the fastest possible rate 

• Test is consistent (not uniformly) against 
“conventional” local alternatives whose distance 
from null hypothesis decreases at rate that is only 
slightly slower than n-1/2. 

• This provides protection against situations in 
which power of new test is much lower than that 
of existing tests. 
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