2. Generalized Linear Mixed Models

2.1. Introduction

e What is a GLMM?

e Some applications

Example 2.1. Fetal mortality in mouse litters

Source of data: Brooks et. al. (1997), Table
4: # of dead implants in 1328 litters of mice
from untreated experimental animals.

Brooks et. al. (1997) used a Beta-binomial
model

A mixed logistic model: Given random effects
A1y am, Y5, L <12 <m, 1 <j < n; condition-
ally indep. binary,

logit{P(y;; = Lla)} = p + o
Furthermore, o;'s indep. ~ N(0, o2).




Example 2.2. The salamander mating data
McCullagh and Nelder, 1989, Ch. 14.5.

Three experiments: Summer 1986 (1), Fall
1986 (2).

The same group of 40 salamanders were used
or the summer and first fall experiments. A
new set of 40 animals was used in the second
fall experiment.

McCullagh and Nelder (1989) propose a mixed
logistic model with crossed random effects, a
special case of GLMM.

For more applications, see, e. g., Breslow &
Clayton (1993), Lee & Nelder (1996), Malec
et al. (1997), Ghosh et al. (1998).



2.2. Definition of GLMM

a. Given a1q,...,am, responses yi,...,yyN are
conditionally indep.;

b. the conditional density

v;0; — b(0;)
¢/ w;

f(yila) = exp{

where ...

+ ¢; (v, ¢)} ;

C. u; = E(y;la),

g(u;) = zi8 + za,

where 3 is a vector of unknown fixed effects.

d. It is often assumed that a ~ N(0,G), where
G = G(0) and 0 is a vector of variance compo-
nents.



2.3. Likelihood under GLMM

Example 2.3. Given ui,...,um; and vy,...,Um,,
Yij» ¢+ = 1,...,mq, 3 = 1,...,mp cond. in-
dep. binary with p;; = P(y;; = 1llu,v) and
logit(p;;) = u+u; +v;, where p is an unknown
parameter.

Furthermore, assume that the random effects
are indep. with u; ~ N(0,0%), v; ~ N(0,03).

The likelihood under this model can be ex-
pressed as

c— % log(o7) — % 109(03) + py-. + log(- - ),

where ¢ is a constant, and
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2.4. Monte-Carlo EM (MCEM)
e EM algorithm
The “complete data”, w, consists of the ob-

served data, y, and unobserved data, £ (e. g.,
the random effects).



E-step: Compute the conditional expectation

{016} = E{log f(w|0)]y, 6} .

M-step: Maximizes Q{6|0*)} with respect to 6
to obtain the next step estimator g(F+1)

In GLMM, it is the E-step that causes problem.

e McCulloch (1994) used Gibbs sampler to ap-
proximate the E-step.

e McCulloch (1997) proposed three Monte-
Carlo methods:

1. MCEM using Metropolis-Hastings algorithm
for the E-step (e. g., Gelman et al. 2003);

2. A Monte-Carlo Newton-Raphson (MCNR)
method with the help of Metropolis-Hastings
algorithm;



3. A simulated maximum likelihood (SML)
method using importance sampling.

Simulation results showed SML worked poorly
compared to MCEM and MCNR.

e Booth & Hobert (1999) proposed two au-
tomated MCEM methods. Instead of using
Markov chains, the latter methods used i. .
d. random sampling.

1. Importance sampling

The E-step is all about the calculation of
Q{ylv W} = Eflog{f(y, al¥)}y; »V].
flaly; ) o< f(yla; B, 6) f(alf),

where the normalizing constant is f{y|y()}.



Let oF,...,a} beani. i. d. sample generated
from g, the importance sampling distribution.
Then,

1 K
Q{uly} ~ = 3~ wlog{f(y, ail¥)},
k=1

where

_ fafly Wy
Wrl — "
g(ozk)
IS known as the importance weights.

Note: The unknown constant makes no differ-
ence in the M-step, because the maximization
is over ¥ (while the constant depends only on

¢(l))_

Question: What g7

Booth and Hobert proposed to use a multivari-
ate t-distribution whose mean and Var. match
the Laplace approximations of the mean and

Var. of f(aly; v).



2. Rejection sampling

Write the conditional density as f = cf1fo,
where ¢ is the normalizing constant.

(i) First draw o from f> and, independently, u
from the Uniform|0O, 1] distribution.

(i) If v < f1(a)/7, where 7 = sup,, f1(a), ac-
cept a. Otherwise, return to (i).

e Advantages of i. i. d. sampling over Markov
chains:

1. The assessment of the Monte-Carlo errors
is straightforward. The latter is critical to the
automated method (see below).

2. It is easier to establish central limit theorem
(for normal approximation).

3. Faster: In a simulated example, the re-
jection and importance sampling methods are
about 2.5 times and 30 times faster than the
Metropolis-Hastings sampling method (McCul-
loch 1997).



2.5. Maximization by parts

Song et al. (2005) proposed a method which
they called maximization by parts (MBP).

e Idea: Express the log-likelihood function as
1(0) = lw(8) + 1e(0).

(i) The initial estimator, 81, is a solution to

(ii) Then, use the equation [,(8) = —I.(81) to
update in order to get 5.

(iii) Repeat (i) and (ii) until convergence.

e If BMP converges, the limit, 8, satisfies the
likelihood equation [(8) = 0.
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A good choice of I is such that [, is smaller
than [, in certain sense (Song et al. 2005).

Another condition for choosing [, is that
l,(0) =0

IS an unbiased estimating equation.

Song et al. suggested that the hierarchical log-

likelihood of Lee and Nelder (1996) could be

used as [, (0) in the case of GLMM. However,

the latter does not satisfy the above condition
of unbiased estimating equation.

e How much does BMP help?
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MBP has computational advantage in situa-
tions where [ is much more difficult to deal
with (numerically or analytically) than [. Ex-
ample: The Gaussian copula model (e. g.,
Song 2000).

However, in GLMM, [ is typically as difficult to
evaluate as [. Still, there are many more I's
than I's.

Example 2.4. Suppose that, given ¢;, 1 <1<
m, y;; are cond. indep. with

logit{P(y;; = 1|u,v)} = Bo + Bizi; + u; + vy,
and w;'s indep. ~ N(0,c2).

For simplicity, assume that o is known. Then,
there are three different (one-dimensional) in-
tegrals in [, and six different ones in .
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In general, if there are p unknown parameters,
there may be as many as p + 1 different inte-

grals in I, and as many as (1/2)(p + 1)(p + 2)
different integrals in [. If p is large, it is quite a

saving in computation, provided that any single
one of the integrals can be evaluated.

2.6. Bayesian inference

In addition to the GLMM assumptions, a prior
for 8 and G = Var(«) is assumed.

e Posterior for (8,G)

J f(yl|B, ) f(a|G)w(8, G)da
J FWlB,a) f(a|G)n (B, G)dadBdG

f(B,Gly) =

e Posterior for o

J f (B, o) f(a|G)m (B, G)dBdG
J F(WlB,a) f(a|G)w (B, G)dadBdG

flaly) =
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e Computation: Gibbs sampler (e. g., Karim
and Zeger 1992), etc.

e Advantage: Posterior rather than point esti-
mates.

e Disadvantage: (i) computational intensive;
(ii) imporper posterior (e. g., Hobert & Casella
1996).

2.7. Approximate inference
e Laplace approximation to integrals

Wish to approximate

[ exp{-a(@)}ds,

where ¢(-) is “well-behaved” in that it achieves
its minimum at z = z with ¢/(z) = 0 and
q"(z) > 0.
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By Taylor expansion,

1
a(@) = q(@ + Jd" @ (@ - )7+ ---
T hus, we have

[ expi{—a(@)}de ~ || exp{—a(@)}.
q" (%)

e Using a multivariate version of the Laplace
approximation, Breslow & Clayton (1993) de-
veloped a penalized quasi-likelihood method,
or PQL. Similar methods were also proposed,
e. g., by Schall (1991), Wolfinger & O’'Connell
(1993), McGilchrist (1994), and Lin & Breslow
(1996).

e Lee & Nelder’s (1996) hierarchical likelihood
method is similar to PQL in spirit, but allows
non-Gaussian distributions for the random ef-
fects.
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e Advantage: (i) The Laplace-approximation-
based methods are computationally attractive.
(ii) The methods also provide estimates of the
random effects.

e Disadvantage: Unfortunately, the methods
are known to have some unsatisfactory prop-
erties. In particular, the resulting estimators
are inconsistent under standard asymptotic as-
sumptions (e. g., Jiang 1998). Furthermore,
Lin and Breslow (1996) that PQL works well
when the variances of the random effects are
close to zero; otherwise, the bias can be sub-
stantial. Also see Kuk (1995).

2.8. Estimating equations
e Generalized estimating equations (GEE)
The method is well known in the analysis of

longitudinal data (e. g., Liang and Zeger 1986,
Prentice 1988).
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However, the GEE does not apply to models
with crossed random effects, such that in the
salamander-mating example.

e Jiang (1998) proposed estimating equations
that apply to GLMMs in general. The method
leads to consistent estimators of the fixed ef-
fects and variance components. However, the
estimators are inefficient.

e Jiang and Zhang (2001) proposed a two-step
procedure to obtain more efficient estimators.
Let S be a vector of base statistics. The 1st-
step estimator of 8, 4, is a solution to

B{S —u(6)} =0,

where B is a known matrix, and u(0) = E»(S).

e What B?
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The optimal B is known to be B* = U'v—1
where U = 9u /06’ and V = Vary(y).

Unfortunately, the best B depends on 6.

e The 2nd-step estimator, 8, is a solution to
B*{S —u(f)} =0,
where B* = B*(0).

e How does it work?

(i) The method only requires specification of
the first two conditional moments of the data
given the random effects, so it applies to a
class of models wider than GLMMSs.

(ii) Both 1st- and 2nd- estimators are consis-
tent; 2nd-step estimators are efficient among
a class of estimators.

18



(iii) Furthermore, Jiang and Zhang (2003) re-
ported results from two simulated examples;
in each case the 2nd-step estimator had about
40% reduction of the MSE compared to the
1st-step estimator.

2.9. Prediction of random effects

e Joint maximization of fixed and random ef-
fects provides estimates of random effects.

e Another look: Maximum a posterior (Jiang
et al. 2001).

max L («a, ) = maxmax L (a, 8).
a,B B«

f(y,alB,0) = f(ylB,0)f(aly, B,06).

Note that the first factor on the right side does
not involve «, while the second factor is the
posterior of a (under a flat prior).
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e Some computational issues

The joint estimates are typically obtained by
solving
ol oly

“Jd =0, =2 =0
o8 da

However, in practice, the number of random
effects may be quite large (e. g., McCullagh
and Nelder 1989; Malec et al. 1997).

e A nonlinear Gauss-Seidel algorithm (Jiang
2000) - An Example:

Iogit{P(yij = 1lju,v)} =p+u; + Vj,

i=1,...,m, j=1,...,n, where u; ~ N(0,52),
v; ~ N(0,72). The equations for joint maxi-
mization is equivalent to
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U | o~ xp(ptuitv)
o2 + 2 14+exp(p+ui+vj) di

J=1
1 < <m, and

V. m exp(u + u; + v;)

5+ 3 ot

T =1 1+ exp(u + u; + vj)
1 <j < n, where gy, = 3%y and y.; =
> i—1 Yij-

— Y.

e Empirical best prediction (EBP; Jiang and
Lahiri 2001, Jiang 2003).

It is a two-step procedure. Let ¢ denote a
mixed effect.

Step I: Derive an expression for the best pre-
dictor ¢ = E(Cly) = ¥(y,0).

Step II: replace 6 by a consistent estimator, 8,
to obtain the EBP { = ¢(y,0).
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e EBP with design-consistency

A feature of EBP is that it is model-based.
If the assumed model fails, the predictor may
perform poorly. Jiang and Lahiri (2005) devel-
oped a model-assisted EBP, which is design-
consistent.

2.10. Future research and open problems

e Asymptotic behavior of the MLE for GLMM
with crossed random effects (e. g., the sala-
mander problem).

e Testing problems

e. 9., Lin (1997), Lin & Carrol (1999), Song
& Jiang (2000).

e Model diagnostics and model section
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