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The Problem
� A given function r(x;w) has the following structure. There exist functions h and g such that

r(x;w) = h[g(x); w];

where
� g is linearly homogeneous, i.e., g(cx) = cg(x) for c 2 R
� h is strictly monotonic in g; i.e., @h=@g > 0.

� Homotheticity:

r(x) = h[g(x)]

� Linear homogeneity vs any other nonzero known degree (or any known monotonic transformation
of g) is WLOG.

� Goal: consistent and asymptotically normal estimator of h and g based on some estimator br(x;w)
of r(x; z) when h; g are unknown but continuous/smooth.
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Literature Review
� Homothetic and homothetically separable functions are common in models of consumer prefer-
ences and �rm production.

� r(x;w) could be a utility, cost function or production function, either directly estimated or recovered
from consumer or factor demand equations.

� Examples: Blackorby, Primont, and Russell (1978), Chiang (1984), Zellner and Ryu (1998), Matzkin
(1994). Zellner and Revankar (1969)

Y e�Y = AK�(1��)L��

� Linear index models like standard censored, truncated, or discrete response models are homothetic
functions, with g(x) = x>�. Replacing x>� with an arbitrary linearly homogeneous function g(x) is a
natural generalization for contexts like price indices or constant returns to scale technologies.
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Other Homogeneity related estimators
� Matzkin (1992) consistent estimator for

y = I [g(x) + " � 0];

g(x) homogeneous, " ?? x. Newey and Matzkin (1993) similar to ours, no w, more steps, incom-
plete.

� Matzkin (2003)

y = m(x; ")

with " ?? x and e.g., m homogeneous in x; ":

� Nonparametric homogeneous functions: Matzkin (1992), Tripathi and Kim (2001).

� Yatchew and Bos (1997) consider estimating some homothetic demand models by nonparametric
least squares.
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Other Separability related estimators
� Weak separability: r(x;w) = h[g(x); w] without g homogeneous. Gorman (1959), Goldman and
Uzawa (1964), Blackorby, Primont, and Russell (1978). Pinkse (2001) estimates g up to monotonic
transformation.

� Strong or additive separability:

r(x;w) = g(x) + t(w):

Härdle, Kim, and Tripathi (2001), Friedman and Stutzle (1981), Breiman and Friedman (1985),
Andrews (1991), Tjøstheim and Auestad (1994), Linton and Nielsen (1995), Stone (1986).

� Generalized additive separability:

r(x;w) = H (g(x) + t(w))

for some known or unknown H: Hastie and Tibshirani (1990), Linton and Härdle (1996), Horowitz
(2001).
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Identi�cation and Estimation
� Recall that we have an estimate of r; where

r(x;w) = h(g(x); w)

� Identi�cation issue, must restrict either h or g further.
� One possibility is

g(x0) = 1

which was adopted in previous version of paper.

� Instead we assume that for some weighting function !(x)Z
g(x)!(x)dx = 1:

This normalization has advantages in terms of the distribution theory etc.

� The main issue is estimation of g; once we have g; one can estimate h by generated nonparametric
regression.
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Matching Idea
� For a given x;w, �nd uxx0w such that

r (x;w) = r(uxx0wx
0; w);

a match.

� Then by monotonicity of h we obtain

g(x) = uxx0wg(x
0) =) uxx0w =

g(x)

g(x0)
:

� Under our current normalization we have

g(x0) =
1R

uxx0w!(x)dx
:

� Also,

g(x) =

R
uxx0w!(x

0)dx0R R
uxx0w!(x0)!(x)dx0dx

:
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A More General Approach
Polar Coordinates

� Write x in polar coordinates as �; �, where � is length and � is direction, so � contains the same
information as x=jjxjj.

� De�ne the functions R and G that are just the functions r and g expressed in polar coordinates

R(�; �; w) = r(x;w) and G(�) = g(x=jjxjj);

� Any function G automatically corresponds to a homogeneous function g, de�ned by

g(x) = �G(�) =) R(�; �; w) = h(�G(�); w)

� To identify G0(�) we shall assume that

EG0(�) =

Z
G0(�)f�(�)d� = 1;

where f�(�) is the marginal density of �:
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� De�ne U0(�; �0) as the value that solves

m1(U ; �; �
0) = 0;

where

m1(U ; �; �
0) =

Z
[R(�; �; w)�R(U�; �0; w)]�(d�; dw j �; �0)

for each �; �0 for a given non-negative measure �(d�; dw j �; �0) that has support contained in 	�;wj�;�0:
The two leading cases here would be:
� �(d�; dw j �; �0) = �(�; w j �; �0)d�dw for some conditional density function �(�; w j �; �0) with
non-trivial support;

� �(d�; dw j �; �0) represents a point mass at points �0(�; �0); w0(�; �0):

� We concentrate on case (a) in our theoretical analysis, because this type of averaging can yield
improved rates of convergence, see inter alia Linton and Nielsen (1995). On the other hand, case
(b) can have some computational advantages.

� For simplicity we take �(d�; dw j �; �0) not to depend on �; �0 and in particular,

�(�; w) =

�
f�;w(�; w) if (�; w) 2 A

0 else
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for some �xed set A � \�;�02	��	��	�;wj�;�0; so the set A does not vary with �; �
0: By collapsing A to a

single point we would obtain case (b) above.

� We compute the sample moment function

bm1(U ; �; �
0) =

1

n

nX
i=1

[ bR(�i; �;Wi)� bR(U�i; �0;Wi)]1((�i;Wi) 2 A);

De�ne the estimator bU(�; �0) for each �; �0 to be any value such that
jbm1(bU(�; �0); �; �0)j � infujbm1(u; �; �

0)j + op(n�1=2):
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� Under our normalization, it follows that

G0(�) =

R
U0(�; �

0)$(d�0)R
U0(�; �

0)$(d�0)f�(�)d�
;

where $(d�0) is an arbitrary measure with support in 	�: Speci�cally, $(d�0)d�0 could be:
� the point mass at some point �0; or

� $(d�0) = $(�0)d�0 with $ a density function on some non-trivial interval.

� In our theoretical work we focus on the latter case, but the former case has some computational
advantages.

� We then estimate G0(�) by

bG(�) = 1
n

Pn
i=1
bU(�; �i)$f(�i)

1
n2

Pn
i=1

Pn
j=1
bU(�i; �j)$f(�j)

;

where $f(�) is a weighting function such that

E[g(�)$f(�)] =

Z
g(�)$(�)d�

for any measurable function g:

� The choice of $f=$ is arbitrary, but it is related to the set A chosen earlier:
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Estimate of h
� Let 
 = �G0(�); c = (
; w); b
 = � bG(�); b
i = �i bG(�i); and let bc = (b
; w) and bCi = (b
i;Wi): De�ne the
sample moment function

bm3(h; c) =
1

nbdW+1�

nX
i=1

Kb�

 
c� bCi
b�

!
 
� bRi � h

�
;

where Kb�(:) = K(:=b�)=bdW+1� is a dW + 1-dimensional kernel and b� is some bandwidth sequence.
Here,  is a smooth function with  (0) = 0 and  0(0) 6= 0: If Yi is observed and Ri = E[Yij�i; �;Wi];

then can replace bRi by Yi:

� De�ne the estimator of h(c) to be any sequence bh(c) of approximate zeros i.e.,
jbm3(bh(c); c)j � infh2Hjbm3(h; c)j + op(n�1=2)

� Monotonicity of bh can be imposed by applying the pool-adjacent-violators algorithm to the estimated
function bh(:):

� We also de�ne an estimator of @h(c)=@
 by differentiating bh(c) with respect to 
 when this is per-
missible (i.e., when  is differentiable) and denoting this by @bh(c)=@
: Alternatively, one can use a
local linear method replacing  ( bRi� h) by  ( bRi� h� h>
 (
i� 
)� h>w(Wi�w)) and taking bh
 as the
estimate of @h(c)=@
:
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Simultaneous Estimation of h and G
� Our strategy for improving the ef�ciency of the estimators we de�ned above is based on using a
more general de�nition of the functions h0(:) and G0(:): They can be de�ned as minimizers of the
functional

E [R(�; �;W )� h(�G(�);W )]2 =

Z
[R(�; �; w)� h(�G(�); w)]2 fZ(�; �; w)d�d�dw

subject to the restriction that Z
G(�)f�(�)d� = 1;

where fZ(�; �; w) is the joint density of the random variables (�; �;W ):

� To �nd a characterization of the solutions we follow Weinstock (1952, Chapter 4) in our treatment.
De�ne the objective functional

L(h;G; �) =
Z
[R(�; �; w)� h (�G(�); w)]2 f�;�;w(�; �; w)d�d�dw + �

�Z
G(�)f�(�)d� � 1

�
for each h;G; �: Letting G(:) = G0(:) + �� (:) and h(:) = h0(:) + ��(:) we �nd the following �rst order
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conditions:

0 =
@L(h0 + ��;G0 + �� ; �)

@�

???y
�=0;�=0

= �
Z
[R(�; �; w)� h0 (�G0(�); w)] � (�G0(�); w) f�;�;w(�; �; w)d�d�dw

0 =
@L(h0 + ��;G0 + �� )

@�

???y
�=0;�=0

= �
Z
[R(�; �; w)� h0 (�G0(�); w)]

@h0
@


(�G0(�); w) �� (�)f�;�;w(�; �; w)d�d�dw + �

Z
� (�)f�(�)d�;

which should hold for all test functions �; � :

� By setting the directions to be the Dirac deltas [� (�) = 1(� = t) and � (�G0(�); w) = 1 (�G0(�) = s; w = u)]
and using the law of iterated expectation we get the necessary condition

Lh(h0; G0)(s; u) = �E [fR(�; �;W )� h0(�G0(�);W )gj�G0(�) = s;W = u] f�G0(�);w(s; u) = 0

for the �rst equation, where f�G0(�);w(s; u) is the density function of the random variable �G0(�);W .

� For the second equation, we obtain the necessary condition that

E

�
fR(�; �;W )� h0 (�G0(�);W )g

@h0
@


(�G0(�);W ) �j� = t

�
f�(t) = �f�(t)
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for all t:

� Multiplying by G0(t) and integrating over t and using the law of iterated expectations we obtain

� = E

�
[R(�; �;W )� h0 (�G0(�);W )]

@h0
@


(�G0(�);W ) �G0(�)

�
:

Then substituting back and dividing through by f�(t) we obtain the equation: for all t;

E

�
[R(�; �;W )� h0 (�G0(�);W )]

@h0
@


(�G0(�);W ) �j� = t

�
�E

�
[R(�; �;W )� h0 (�G0(�);W )]

@h0
@


(�G0(�);W ) �G0(�)

�
= 0:
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� Suppose that one has consistent estimators of G0; h0; and @h0=@
; denoted by bG; bh; and @bh=@g
respectively:We suggest the following estimation method.

� De�ne the sample moment function

bm4(g; �) =
1

nbd�0

nX
i=1

K

�
� � �i
b0

�"b� i(g)� 1

n

nX
i=1

b� i( bG(�i)) bG(�i)
#

b� i(g) = h bR(�i; �i;Wi)� bh (�ig;Wi)
i @bh
@


�
�
i

bG(�i);Wi

�
�i;

where K is kernel and b0 is a bandwidth:

� The bandwidth b0 does not play a big role in the sequel and we shall assume as above that it is
small. Then de�ne the estimator eG(�) for each � to be any value such that

jbm4( eG(�); �)j � inf
g2G
jbm4(g; �)j + op(n�1=2);

where the set G can be chosen to be a small neighborhood of bG(�).
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� It may be more convenient to avoid this optimization altogether and use a `two-step' estimator

eG2�step(�) = bG(�)� �@ bm4

@g
( bG(�); �)� bm4( bG(�); �); where

@ bm4

@g
( bG(�); �) = 1

nbd�0

nX
i=1

K

�
� � �i
b0

�"
@bh
@


�
�i bG(�i);Wi

�#2
�2i :

Following Fan and Chen (1997) we expect eG2�step(�) to be asymptotically equivalent to eG(�):
� The estimated function eG(�) does not satisfy exactly the empirical restriction n�1Pn

i=1
eG(�i) = 1 so

we further replace eG(�) by eG(�)=n�1Pn
i=1
eG(�i):

� Then compute eh(:) as the nonparametric regression of bRi on �i eG(�i):We can compute an estimator
of @h(:)=@
 either by differentiating eh(:) with respect to 
 or by using local polynomials and taking
the corresponding slope coef�cient.
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Distribution Theory

I1(�; �
0) = G0(�

0)

Z
@h

@

(�G0(�); w)��(�; w)d�dw:

V1(�; �
0) = #V

Z
�2(�; �; w)

fZ(�; �; w)
�2(�; w)d�dw+#V

1

U0(�; �
0)

Z
�2(U0(�; �

0)�; �0; w)

fZ(U0(�; �
0)�; �0; w)

�2(�; w)d�dw:

�U(�; �
0) = I�11 (�; �

0)

Z �
�R(�; �; w)� �R(U0(�; �

0)�; �0; w)
�
�(�; w)d�dw:

THEOREM 2. Suppose that assumptions A and B hold, and let 
1(�; �0) = I�21 (�; �
0)V1(�; �

0). Then, as
n!1

p
nbd�

�bU(�; �0)� U0(�; �
0)� bp�U(�; �

0)
�
=) N(0;
1(�; �

0)):

� The asymptotic bias and variance both contain two terms due to the dependence of bU(�; �0) on bR
at two points. The quantity I1(�; �0) is sort of an information, and is guaranteed to be positive when
the support of �(�; w) contains only non-negative �.
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� Let

I2(�) =

Z
$(�0)

G0(�
0)
d�0

V2(�) = #V

Z
�2(�; w)�2(�; �; w)

fZ(�; �; w)
d�dw

�Z
$(�0)

I1(�; �
0)
d�0
�2

�G(�) = I�12 (�)

�Z
�U(�; �

0)$(�0)d�0 �G0(�)

Z
�U(�; �

0)$(�0)f�(�)d�
0d�

�
:

THEOREM 3. Suppose that assumptions A and B hold, and let 
2(�) = I�22 (�)V2(�). Then, as n!1
p
nbd�

� bG(�)�G(�)� bp�G(�)
�
=) N(0;
2(�)):

� Note that bG(�) converges toG0(�) at the same rate as bU(�; �0) converges to U0(�; �0). Both estimators
behave like d�-dimensional smoothers. Although the asymptotic variance of bU(�; �0) contains two
terms, the asymptotic variance of bG(�) contains only one term because the integration wipes out
the second term.
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� Since
R
($(�0)=I1(�; �

0))d�0 = I2(�)=
R

@h
@
 (�G0(�); w)��(�; w)d�dw; the variance constant I

�2
2 (�)V2(�)

simpli�es to


2(�) =
#V
R �2(�;w)�2(�;�;w)

fZ(�;�;w)
d�dw�R

@h
@
 (�G0(�); w)��(�; w)d�dw

�2 ;
which does not depend on the weighting function $: The asymptotic variance 
2(�) re�ects the
way the integration was done through the choice of � and A: In the special case of homoskedas-
ticity �2(�; �; w) = �2 and independence fZ(�; �; w) = f�;w(�; w)f�(�); the numerator of 
2(�) is
#V �

2(
R
A f�;w(�; w)d�dw)=f�(�):

� The asymptotic bias is affected by the weighting function $ and is basically a weighted average of
biases of the estimator bR along two different rays �; �0 : if �R(z) = 0 for all z; then �G(�) = 0 for all �:
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� Suppose that the bandwidth sequence b�; b satis�es

b� = ��n
�1=(2p+dW+1) and b = �n�1=(2p+d�)

for some ��; � with 0 < �� <1:

� Then de�ne

I3(c) =  0 (0) fC(c);

V3G(c) = ��d�
�
@h

@

(c)�

�2

2(�)

V3h(c) = ��(dW+1)� eV 
0 (0) fC(c)E

�
�2(Z)jC = c

�

3(c) = V3G(c)1(dW + 1 � d�) + I

�2
3 (c)V3h(c)1(dW + 1 � d�):

�3G(c) = 
 0 (0)
@h

@

(
; w)

Z
�G(�)

G0(�)
f
;�;W (
; �; w)d�

�3h(c) = I�13 (c)
1

p!

Z
k (t) tpdt

dW+1X
j=1

@p

@upj
[ (h(c + u)� h(c)) fC(c + u)]u=0 :
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THEOREM 4. Suppose that assumptions A, B, and C hold. Then, as n!1;

nminfp=(2p+dW+1);p=(2p+d�)g
�bh(bc)� h(c)� bp�3G(c)� bp��3h(c)

�
=) N(0;
3(c)):

� The variance contains two terms
� The term V3h(c) can be recognized as the covariate dependent part of the asymptotic variance
that would result were G0 known, i.e., if bCi = Ci.

� The term V3G(c) arises from the fact that we estimate at the point bc = � bG(�) rather than c = �G(�):

See Ahn (1995, Theorem 2) for comparison.

� Note that if Yi is available and used in place of bRi, then the asymptotic variance is the same.

� The performance of bh(bc) should be compared with that of the unrestricted estimator bR(�; �; w); which
it dominates in terms of magnitude of MSE.
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Simultaneous Estimators of h and G
Let 
4(�) = I�24 (�)V4(�), where

I4(�) =

Z �
@h

@

(�G0(�); w)

�2
�2f�;w;�(�; w; �)d�dw;

V4(�) = #V

Z
�2(�; �; w)

�
@h

@

(�G0(�); w)

�2
�2f�;w;�(�; w; �)d�dw

V5G(c) =

�
@h

@

(c)�

�2

4(�)

THEOREM 5. Suppose that assumptions A, B, C, and D hold. Then, there exists a bounded continuous
function �4(�) such that as n!1

p
nbd�

� eG(�)�G0(�)� bpI�14 (�)�4(�)
�
=) N(0;
4(�)):

Let 
5(c) = V5G(c)1(dW +1 � d�)+V5h(c)1(dW +1 � d�) with V5h(c) = V3h(c). Then, there exist bounded
continuous functions �5G(c); �5h(c) such that as n!1; with ��n = minf

p
nbd�;

p
nbdW+1� g;

��n

�eh(ec)� h(c)� bp�5G(c)� bp��5h(c)
�
=) N(0;
5(c)):
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� Under homoskedasticity, i.e., �2(�; �; w) = �2; we have


4(�) =
#V �

2

f�(�)

1R h
@h
@
 (�G0(�); w)

i2
�2f�;wj�(�; wj�)d�dw


2(�) =
#V �

2

f�(�)

R
A

f 2�;w(�;w)

f�;wj�(�;wj�)d�dw�R
A
@h
@
 (�G0(�); w)�f�;w(�; w)d�dw

�2 :
In this case, by the Cauchy-Schwarz inequality 
4(�) � 
2(�) and so eG(�) is more ef�cient thanbG(�).

� Regarding the bias term, this contains many terms. By undersmoothing the �rst stages one can
obtain a simple bias.

� The limiting distribution of eh(ec) differs from that of bh(bc) only because the estimation points ec and bc are
different; for any common evaluation point c = bc or c = ec; eh(c) and bh(c) have the same asymptotic
variance.
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� De�ne the infeasible criterion function

em4(g; �) =

Z h bR(�; �; w)� h0 (�g; w)
i @h0
@


(�G0(�); w) �f�;wj�(�; wj�)d�dw

for any g; and let G(�) be the estimator that is any approximate zero of em4(g; �): This is equivalent
to the least squares estimator one would want to compute given knowledge of h0: The distribution
theory for this estimator is readily obtained: to �rst order, the distribution of eG(�) is equivalent to the
distribution of G(�): This is a sort of oracle ef�ciency property of our estimator.

� Furthermore, the theory of Stone (1980,1986) yields an optimal rate for estimation of G0(�) given
knowledge of h0(:); this rate is achieved by G(�) and hence by our estimator.

� In the presence of heteroskedasticity, i.e., �2(�; �; w) = �2 for all �; �; w; one should alter the criterion
from least squares to weighted least squares and the resulting estimator will involve an additional
weighting factor. However, the ef�cacy of this approach in practice may be limited and depends on
the form of the heteroskedasticity.
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Simulations
� We take supports

	� = [0; 2] and 	� = f� : 0 � � � � radiansg;

and we take (�; �)mutually independent and uniform on their supports, so that f�(�) = 1(� 2 [0; 2])=2
and f�(�) = 1(� 2 [0; �])=�. We take

G(�) = 1 and h(
) = exp(
):

In this case, U0(�; �0) = G(�)=G(�0) = 1: Then take A = [0:5; 1:5] � \�2	�	�j�:

� The nonparametric functions used in each step of the estimation are constructed using ordinary
kernel regressions with a Gaussian kernel.

� For bG(�) supposing we take $(�0) = f�(�
0); the variance constant is


2(�) = jjKjj22�2
R
A f�(�)d�

f�(�)
�R

A
@h
@
 (�G0(�))�f�(�)d�

�2 = jjKjj22�2 �

2
�R 1:5

0:5 exp(�)�d�
�2 = jjKjj22�2 � 0: 16719

� For eG(�) we have

4(�) = jjKjj22

�2

f�(�)

1R
�2 exp(2�G0(�))f�(�)d�

= jjKjj22�2 � 9: 2403� 10�2:
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� We report results for three different sample sizes and three different error variances, for a total of
nine designs. Each design is estimated using three different bandwidths b1, b2, and b3, where b2 is
given by Silverman's rule (1:06n�1=5 times the square root of the average of the regressor variances),
b1 = 0:5�b2, and b3 = 1:5�b2. These kernel and bandwidth choices are not likely to be optimal for our
setting, but are chosen because they are commonly used in applications and are easy to calculate.

� For each estimated function G and h we calculate four criteria summarizing goodness of �t. These
are integrated mean squared error IMSE, integrated mean absolute error IMAE, pointwise mean
squared error PMSE, and pointwise mean absolute error PMAE. Results are based on a hundred
simulations of each design and bandwidth. These are reported in Tables 1 and 2.
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Table 1
�2x

�2x+�
2
"

0.75 0.5 0.25
n 100 200 400 100 200 400 100 200 400

IMSE h1 0.2355 0.1632 0.1186 0.3671 0.2958 0.2344 0.4547 0.4158 0.3678
h2 0.1130 0.0805 0.0621 0.2119 0.1539 0.1178 0.3409 0.2860 0.2337
h3 0.0797 0.0601 0.0475 0.1410 0.1044 0.0828 0.2514 0.1971 0.1592

IMAE h1 0.1852 0.1287 0.0928 0.2942 0.2382 0.1884 0.3682 0.3350 0.2977
h2 0.0895 0.0637 0.0493 0.1708 0.1223 0.0934 0.2796 0.2326 0.1892
h3 0.0644 0.0486 0.0381 0.1140 0.0843 0.0665 0.2082 0.1612 0.1287

PMSE h1 0.3921 0.2388 0.1669 0.5210 0.4885 0.3525 0.6240 0.9085 0.6021
h2 0.1098 0.0745 0.0576 0.2542 0.1842 0.1330 0.5193 0.4423 0.3310
h3 0.0636 0.0506 0.0415 0.1266 0.0933 0.0731 0.2599 0.2214 0.1809

PMAE h1 0.1947 0.1357 0.0967 0.2952 0.2661 0.2073 0.3607 0.3929 0.3451
h2 0.0736 0.0553 0.0447 0.1527 0.1139 0.0872 0.2718 0.2370 0.1955
h3 0.0489 0.0397 0.0318 0.0879 0.0681 0.0549 0.1695 0.1372 0.1120

Notes: The results for bG
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Table 2
�2x

�2x+�
2
"

0.75 0.5 0.25
n 100 200 400 100 200 400 100 200 400

IMSE h1 0.7208 0.5817 0.4689 0.9271 0.8386 0.7401 1.0703 1.0258 0.9641
h2 0.4770 0.3765 0.3072 0.7149 0.5878 0.4930 0.9543 0.8553 0.7593
h3 0.3902 0.3149 0.2589 0.5716 0.4675 0.3934 0.8247 0.7027 0.6117

IMAE h1 0.4996 0.3900 0.3052 0.6705 0.5915 0.5095 0.7944 0.7474 0.6916
h2 0.3248 0.2494 0.1987 0.5090 0.4057 0.3305 0.7046 0.6197 0.5357
h3 0.2753 0.2179 0.1754 0.4085 0.3253 0.2666 0.6100 0.5060 0.4280

PMSE h1 0.6969 0.5521 0.4299 0.8395 0.7860 0.7358 0.9281 0.9613 0.9391
h2 0.4154 0.3045 0.2259 0.6245 0.5523 0.4647 0.8147 0.7541 0.7383
h3 0.3426 0.2588 0.2031 0.4972 0.4103 0.3353 0.6724 0.6051 0.5520

PMAE h1 0.4917 0.3843 0.2870 0.6158 0.5805 0.5261 0.7099 0.7398 0.7045
h2 0.2938 0.2139 0.1666 0.4635 0.3934 0.3274 0.6228 0.5686 0.5394
h3 0.2718 0.2045 0.1612 0.3833 0.3072 0.2487 0.5301 0.4639 0.4136

Notes: The results forbh
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� In Figures 2 and 3 we show the Q-Q plots of these normalized (to have mean zero and variance
one) estimators at a central point � and 
:
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Figure 2. Q-Q plots for bG
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Figure 3. Q-Q plots forbh
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Application to Nonparametric Production Function Estimation
� Let y be the log output of a �rm and x be a vector of inputs, and suppose that

E(yjx) = r(x) = h[g(x)]

with linearly homogeneous g.

� A property of production that is empirically important is returns to scale, de�ned as

S(g) =
@h(g)

@ ln g

� Other important properties are measures of substitutability of inputs, such as the technical rate of
substitution and the elasticity of substitution. When x consists of just two elements, for example,
capital K and labor L, then a simple measure of substitutability is

�(K=L) =
@ ln g (K=L; 1)

@ ln(K=L)

Note in interpreting this measure that g (K=L; 1) = g (K;L) =L.

� The substitutability measure �(K=L) equals a constant � when g(x) = K�L1��, that is, when the
production function r(x) is a monotonic transformation of a Cobb Douglas, which is a common
speci�cation for homothetic production.
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� Observations of chemical manufacturing �rms in mainland China in two time periods, 1995 and
2001. For each �rm, we observe
� the net value of real �xed assets K

� the number of employees L

� Y de�ned as the log of value-added real output.

� Output and capital are measured in thousands of Yuan converted to the base year 2000 using a
general price de�ator for the Chinese chemical industry. A total sample size of 1638 �rms in 2001
and 1560 �rms in 1995.
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� We consider both nonparametric and parametric estimates of the production function r(K;L). The
parametric model we employ is a homothetic Translog production function, in which log output

Y = h[g (K;L)] + �

g (K;L) =

�
K

L

��
L

h (g) = �0 + �1 ln (g) + �2 ln (g)
2

� Fitting this model by nonlinear least squares in each of the years of data yields the parameter
estimates reported in Table 3 (standard errors are in parentheses).

TABLE 3: Parametric Translog Estimates
� �0 �1 �2

2001 Translog 0.696 9.815 0.783 0.036
(0.043) (0.031) (0.028) (0.012)

1995 Translog 0.478 9.585 0.961 0.045
(0.046) (0.024) (0.041) (0.017)
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� Figures 2 and 3 show homothetic Translog and homothetic nonparametric estimates bg(K=L; 1) andbh(g) in 2001.
� Figure 3 also shows �ts from a simple nonhomothetic kernel regression of Y on K;L, that is, the
initial unconstrained estimator of the function r.

� For simplicity, at each nonparametric estimation step we used ordinary kernel regressions with a
normal kernel and bandwidth given by Silverman's rule.
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� The nonparametric �ts of r and those of h shown in Figure are quite similar, indicating that the
imposition of homotheticity is reasonable for this data set.

� The nonparametric estimates of the functions g and h are roughly similar to the parametric Translog
model estimates, but show quite a bit more curvature, departing most markedly from the parametric
model for g at low capital to labor ratios and from the model for h(g) at low values of g.

� These differences are greatly magni�ed when one calculates the returns to scale S(g) and the
substitution measure �(K=L). For the Translog model,

S(g) = �1 + 2�2 ln (g) and �(K=L) = �:

For the nonparametric model we use the approximationbS(bgi) t [bh(bgi+1)� bh(bgi�1)]=(bgi+1 � bgi�1)
after sorting the data by bgi for each �rm i, and similarly for b�(K=L).

� Unlike the popular homothetic Translog model, which assumes � constant, the nonparametric es-
timates have � sharply increasing at low capital labor ratios and leveling off only at high levels.
This result indicates likely inadequacies of the parametric model. The assumption of a constant �
may be more reasonable for advanced economies like the United States, which tend to have higher
capital labor.

� The models also differ in returns to scale S(g). Both models imply similar returns to scale on
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average, but the parametric model has S(g) mildly increasing, based on a small but statistically sig-
ni�cant positive estimate of b�2. In contrast, the nonparametric estimates are roughly U shaped, with
a majority of the data in the decreasing part. Given the substantial variability of the nonparametricbS, it is dif�cult to draw conclusions about the dependence of S on g.



Nonparametric Estimation of Homothetic and Homothetically Separable Functions 42

� The estimates based on 1995 data are broadly similar to 2001. The major difference between the
two years is that average returns to scale appear to have declined over time, from approximately
constant returns with average S near one in 1995, to decreasing returns with S near 0.8 in 2001.

� This �nding could be an artifact of substantial ownership reform during this period. Many larger �rms
in the Chinese chemical industry may still be state-owned in 2001, while many smaller enterprises
were privatized after 1995 and so could have substantially restructured, thereby enhancing their
productivity. Combining these into a single cross section might then create the appearance of
decreasing returns on average.

� This could explain the overall difference in mean S between the two years, but would explain the
observed patterns in S(g) within each year, though as noted above these departures of S(g) from a
constant are at best weakly estimated.

� Changes over time may more generally be due to changes in technology, demand, and other as-
pects of China's increasing economic liberalization and growth over this time period.
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Some Extensions

Endogenous Regressors
� Assume

y = H [g(x); w; "];

and elements of X;W are endogenous, correlated with ". Let

U = (X;W )� E(X;W j Z):

Then " j X;W;Z v " j U;Z. De�ne

�(X;W;U) = E(Y j X;W;U):

Assume that " j U;Z v " j U . Then

�(x;w; u) = h[g(x); w; u]:

� Let bU be residuals from nonparametrically regressing X;W on Z. Let b� be a nonparametric regres-
sion of Y on X;W; bU . Then apply the homotheticity estimator to b� to get bg.

� Assumption " j U;Z v " j U is like control functions of Blundell,Powell (2000,1) nonparametric
triangular system of Newey, Powell,Vella (1999), Imbens and Newey (2001), Chesher (2001).
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Another Model
� Now consider

r(v; z; w) = h[m(z) + v; w]

m need not be homogeneous. This is the same as above taking m(z) = ln(G(�)); v = ln(�) and
h = exp(h) from the polar notation of our old model.

� Example: partly linear index models, reservation price and willingness to pay models such as y =
I [�m(x) + " � v] where v is the price.

� Also censored regression. Suppose that we observe Y;X where

Y � = g(X)� "

Y = maxfY �; 0g:

Then

Pr(Y � yjX = x) = F" (y � g(x))

for all y � 0 and all x:




