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unknown distribution, which may be conditioned on covariates, using a sample of binomial ob-
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1 Introduction

A statistical problem that arises in several fields is that of estimating the features of an unknown

distribution, which may be conditioned on covariates, using a sample of binomial observations on

whether draws from this distribution exceed threshold levels set by experimental design. Consider

estimating features of the distribution of some household economic variable W such as wealth, or

the willingness to pay (WTP) for a good or resource such as a change in environmental quality.

To minimize response bias, each subject i is asked if their Wi exceeds a test value Vi chosen by

experimental design.1 An observation consists of the test value or bid Vi that is posed to subject

i, covariates Xi (such as the subject’s age, income level, geographic location, or political party

affiliation) and a binary indicator Yi which equals one in the event that Wi exceeds Vi, and zero

otherwise, so Yi = I(Wi > Vi), where I(·) is the indicator function. Objects of interest might include
the moments of the distribution of wealth among individuals with certain observable characteristics

such as demographics and education level, or the mean, variance and (for median voter models)

median willingness-to-pay for a resource among individuals with characteristics like income level,

party affiliation, and geographic location, that make them likely voters. Other statistical problems

that have the same structure include some forms of bioassay2 and destructive testing.3

Many parametric and semiparametric estimators of the distribution of W exist. See, e.g., Kan-

ninen (1993) and Crooker and Herriges (2000) for comparisons of various, mostly parametric, WTP

1In many studies, follow up queries are used to gain more information aboutW , however, we will not consider the use

of follow up data, because follow up responses may be shadowed by the framing effect of the first bid. This shadowing

effect is common in unfolding bracket survey questions on economic variables, and on stated WTP for economic goods.

McFadden (1994) provides references and experimental evidence that responses to follow up test values can be biased.

There are additional issues of the impact of framing of questions on survey responses, particularly anchoring to test

values, including the initial test value; see Green et al. (1998) and Hurd et al. (1998). The data generation process may

then be a convolution of the target distribution and a distribution of psychometric errors. This paper will ignore these

issues and treat the data generation process as if it is the target distribution. The difficult problem of deconvoluting

a target distribution in the presence of psychometric errors is left for future research.
2In bioassay the goal is estimation of features of the distribution of survival time W until the onset of an abnor-

mality in laboratory animals exposed to an environmental hazard. The animals are sacrificed at times determined

by experimental design, and tested for the abnormality. An observation consists of a vector of covariates X such as

attributes of the animal and the exposure, a time V at which the animal is sacrificed for testing, and an indicator Y

for whether the test reveals the presence of the abnormality at time V .
3An example of destructive testing would be estimation of features of the distribution of speeds W at which car

safety device fails. At speeds selected by experimental design, drive cars into a barrier and determine whether a

dummy occupant is injured. An observation consists of covariates X (attributes of the car, device, and dummy) a

speed V at which the car is tested, and an indicator Y for injury to the test dummy.
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estimators. WTP estimators that are not fully parameterized include Chen and Randall (1997),

Creel and Loomis (1997), and An (2000), and for bioassay, Ramgopal, Laud, and Smith (1993), and

Ho and Sen (2000). We propose new nonparametric and semiparametric estimators for conditional

(on covariates) moments of the unknown W distribution, and we provide estimators of conditional

quantiles of the unknown distribution.

A common estimation method is to completely parameterizeW , e.g., to assumeW equalsX>θ0−ε

with ε ∼ N(α0, σ
2). The model then takes the form of a standard probit Y = I[X>θ0 − V > ε] and

can be estimated using maximum likelihood. However, estimation of the features of the distribution

of W differs from ordinary binomial response model estimation in a variety of ways, especially when

the model is not fully parameterized. One difference is that the primary goals of our estimators are

moments or quantiles of W , rather than the response or choice probabilities of Y . So, for example,

in the above parameterized model E(W | X = x) = X>θ0−α0, and therefore any binomial response

model estimator that fails to estimate the location term α0, such as Klein and Spady (1993), is

inadequate for estimation of moments of W . Another important difference is the presence of a

covariate V that is determined by experimental design. We exploit this feature of the data in the

construction of our estimators.

Experimental design may depend on sample size. Our estimators explicitly allow for this de-

pendence, which turns out to be crucial for nonparametric identification. Given Y = I(W > V ),

the distribution function of Y equals E(Y | V = v,X = x), which in turn equals the conditional

distribution of −W , evaluated at V , conditioned on X = x. It follows that without additional mod-

eling assumptions, the distribution of W can only be identifed on the support of V , and therefore

moments of W are not identified when the support of V is limited. We show in an appendix that,

given a fixed discrete design for V , assuming that W = m(X)− ε with X and ε independent is still

not sufficient for identification, though identification does become possible in this case if m(X) is

finitely parameterized.

Virtually all existing contingent valuation data sets draw bids from discrete distributions. How-

ever, large surveys typically have bid distributions with more mass points than small surveys.4 To

obtain nonparametric identification, we therefore assume that if the bid or test value V distribution

is discrete, then the number of mass points of this distribution grows with the sample size, eventually

becoming dense in the support ofW .5 We also show how this dependence of survey design on sample

4See, e.g., Crooker and Herriges (2000) for a study of WTP bid designs, with explicit consideration of varying

numbers of mass points.
5We also provide an alternative identifying assumption based on a semiparametric specification of W . Other

possible identifying assumptions might include homogeneity as in Matzkin’s (1992) threshold crossing model, or An’s

(2000) model which assumes W is an unknown monotonic transformation of X>θ0 + ε with the distribution of ε

known. See also Manski and Tamer (2002) and Das (2002) for related results, since V can be interpreted as providing

3



size affects the resulting limiting distributions. In Monte Carlos and in an empirical application with

discrete bid distributions, we find that the estimators we propose perform reasonably, as long as the

number of mass points is not too small.

We consider estimation for a few different information sets. In the most general case, the distrib-

ution of W |X is completely unspecified apart from smoothness, and is nonparametrically estimated.

We may write this case as W = m(X, ε) for an unobserved ε. This includes as a special case, and is

strictly weaker than, the location model W = m(X)− ε, where the function m and the distribution

of ε are unknown. The second case we analyze is the semiparametric model W = Λ[m(X, θ0) − ε]

for known functions m and Λ, where the parameters θ0 and the distribution of ε ⊥ X are unknown.

In this semiparametric model, identification requires that the support of m(X, θ0)−Λ−1(V ) become
dense in the support of ε, so in this semiparametric case identification is possible with a fixed, discrete

design for V , given the presence of a continuously distributed element of X.

In either of these two cases (nonparametric or semiparametric W ), the asymptotic design dis-

tribution of the test value V may either be known or unknown to the researcher, which yields a

total of four different estimation scenarios. We provide estimators, and associated limiting normal

distributions, for each of these four situations, since each is relevant for some applications. We also

provide Monte Carlo analyses of the estimators, and an empirical application estimating conditional

mean WTP to protect wetland habitats in California’s San Joaquin Valley.

2 Estimators

2.1 The Data Generation Process and Estimands

Let G(w | x) = Pr(W > w | X = x), so G is the unknown complementary cumulative distribution

function of a latent, continuously distributed unobserved random scalar W , conditioned on a vector

of observed covariates X. Let g(w | x) denote the conditional probability density function of W , so

g = −dG/dw.

A test value v (a realization of V ) is set by an experimental design or natural experiment. Define

Y to equal one in the event that W exceeds V , and zero otherwise, so Y = I(W > V ) where I(·)
is the indicator function. The observed data consist of a sample of realizations of covariates X, test

values V , and outcomes Y . The framework is similar to random censored regressions (with censoring

point V ), except that for random censoring we would observe W for observations having W > V ,

whereas in the present context we only observe Y = I(W > V ).

Given a function r(w, x), the goal is estimation of the conditional moment µr(x) = E[r(W,X) |
(unbounded) interval observations of W .
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X = x] for any chosen x in the support of X. Of particular interest are the moments based on

r(W,X) =W k for integers k. In addition to moments we also consider estimation of quantiles.

If the conditional distribution of W given X = x is finitely parameterized, then those parameters

can generally be efficiently estimated by maximum likelihood (corresponding to ordinary binary

choice model estimation, e.g., logit or probit models), thereby yielding efficient estimates for moments

and quantiles defined in terms of those parameters. We assume this distribution is not finitely

parameterized.

Assumption A.1. The covariate vector X has support X ⊆ Rd. The latent scalar W has an

unknown, twice continuously differentiable, strictly monotonic, conditional CDF 1 − G(w | x) with
probability density function g(w | x) and a compact support [ρ0(x), ρ1(x)]. The variables W and V

are conditionally independent, given X. Let Y = I(W > V ). Let G−1 be the inverse of the function

G with respect to its first element.

Assumption A.2. The function r(w, x), chosen by the researcher, is regular, meaning that

it is continuous in (w, x) for all w and x on their supports, and for each x is twice continuously

differentiable inw. Define r0(w, x) = ∂r(w, x)/∂w. Let κ(x) be a function or constant in [ρ0(x), ρ1(x)].

The moment µr(x) exists, defined by µr(x) = E[r(W,X) | X = x].

It follows immediately from Assumption A.1, in particular the conditional independence of W

and V , that

G(v | x) = E(Y | V = v,X = x). (1)

and if G(v | x) can be estimated for all v ∈supp(W ), then conditional moments µr(x) could be

estimated using

µr(x) =

Z
supp(W )

r(v, x)
d[1−G(v | x)]

dv
dv.

The disadvantage of this expression is that it involves the derivative of a high dimensional function

G(v|x). We apply an integration by parts to this expression to obtain the basis for more direct
estimators of µr(x).

If G(w | x) is not at least partly parameterized, then equation (1) implies that for identification
of the distribution of W , the support of V should contain the support of W . As noted in the

introduction, and by Theorem 5 in the Appendix, the distribution of W is in general not identified

when the support of V has a finite number of elements. To identify features of the distribution of

W with minimal restrictions on G, our nonparametric estimators assume an experimental design in

which the number of mass points may grow to infinity with the sample size, as follows.

Let Hn(v, x | n) denote the realization of the observed sample of size n, which includes both

nature’s selection of X and the experimental design that selects V given X. Realizations could be
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random draws from a CDF H(v, x | n), but the data, particularly bids, could also be derived from
some purposive sampling protocol. The requirement we place on the data generating process is the

following.

Assumption A.3 LetHn(v, x | n) denote the empirical CDF of V,X, for sample size n. supv |Hn(v, x |
n)−H(v, x)|→ 0 a.s., whereH(v, x) is a CDF having the property that the corresponding conditional

distribution of V given X = x, denoted H(v | x), has a strictly positive continuous probability den-
sity function h(v | x) with compact support [δ0(x), δ1(x)] such that δ0(x) ≤ ρ0(x) and δ1(x) ≥ ρ1(x).

Assumption A.3 is used to obtain nonparametric identification. For obtaining limiting distribu-

tions it will also be assumed that nτ [Hn(v, x | n)−H(v, x)] converges weakly to a Gaussian process

for some τ , with τ = 1/2 for root n asymptotics. Two examples illustrate this data generating

process assumption:

1. Suppose for each sample observation i = 1, . . . , n, Xi, Vi is drawn randomly from the CDF

H(v, x). Then the required sup norm convergence follows by the Glivenko-Cantelli theorem, and the

convergence to a Gaussian process with τ = 1/2 can be shown by, e.g., the Shorack and Wellner

(1986 p. 108ff) treatment of triangular arrays of empirical processes.

2. Suppose at sample size n, a fixed design with Jn possible values of V is selected. Suppose

this design has the property that the maximum distance between a point in the support of W and

a design point is of order 1/Jn, and that nτ−1Jn → ∞. Suppose Xi is drawn randomly from a

distribution, and Vi is drawn randomly from a density h(v | Xi, n) whose support is the fixed design.

Suppose further that h(v | Xi, n) is obtained by approximating a positive limiting density h(v | x)
on the finite support specified by the design. For example, one might define h(v | Xi, n) so that its

conditional CDF and the conditional CDF of h(v | x) coincide at each design point. Then the weak
convergence condition n1/2 [Hn(v, x | n)−H(v, x)]→ 0 is satisfied. This case covers [or would cover

when the design sequence is spelled out satisfying the condition on Jn and the convergence properties

of h(v | Xi, n)] all current studies, at least up to the quality of the asymptotic approximation of the

design.

In our simulation studies, we will examine the size of finite sample bias that results when our

estimators are applied both with discrete V and continuous V .

For estimation we suppose that a sample (Xi, Vi, Yi) for i = 1, . . . , n is observed, generated in

accordance with Assumption A.3, where Vi is a realization of V , Yi is a realization of Y , and Xi is a

realization of X. Using this data, we will provide five different estimators for µr(x), denoted bµjr(x)

for j = 1, 2, 3, 4, 5.

The estimator bµ1r(x) is for nonparametric estimation when the limiting experimental design
6



density h(v | x) is known, and bµ2r(x) is for nonparametric estimation when h(v | x) is unknown.
Similarly, bµ3r(x) and bµ4r(x) cover the cases of semiparametric estimators where W is parameterized

up to an unknown error term, with h(v | x) known and unknown, respectively. An additional

semiparametric estimator bµ5r(x) is provided that is simpler than bµ3r or bµ4r, but may only be used
for certain choices of r.

2.2 Nonparametric Moments

Theorem 1. Let Assumptions A.1 and A.2 hold. Let h(v | x) be a strictly positive conditional
probability density function, and H(v | x) be the associated CDF having compact support [δ0(x), δ1(x)]
such that δ0(x) ≤ ρ0(x) and δ1(x) ≥ ρ1(x). Define

sr(x, v, y) = r[κ(x), x] +
r0(v, x)[y − 1(v < κ(x))]

h(v | x)

tr(x, v) =
r0(v, x)[G(v | x)− 1(v < κ(x))]

h(v | x) .

Then

µr(x) = r[κ(x), x] +

Z ρ1(x)

ρ0(x)

tr(x, v)H(dv | x). (2)

Also, if V is drawn from a conditional CDF H(v | x, n) at sample size n, then

µr(x) = E [sr(X, V, Y ) | X = x] +

Z ρ1(x)

ρ0(x)

tr(x, v)[H(dv | x)−H(dv | x, n)] (3)

and, if Assumption A.3 also holds, as n→∞,

µr(x)− E [sr(X, V, Y ) | X = x]→ 0. (4)

Proof of Theorem 1. Starting from the definition of µr(x),

µr(x) =

Z ρ1(x)

ρ0(x)

r(v, x)g(v | x)dv

=

Z κ(x)

ρ0(x)

r(v, x)
d[1−G(v | x)]

dv
dv +

Z ρ1(x)

κ(x)

r(v, x)
−dG(v | x)

dv
dv

and applying integration by parts to each of the above integrals yields

µr(x) = r[κ(x), x] +

Z ρ1(x)

ρ0(x)

r0(v, x)[G(v | x)− 1(v < κ(x))]dv

= r[κ(x), x] +

Z ρ1(x)

ρ0(x)

r0(v, x)[G(v | x)− 1(v < κ(x))]

h(v | x) H(dv | x),
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which is equation (2). Adding and subtracting
R ρ1(x)

ρ0(x)
tr(x, v)H(dv | x, n) gives

µr(x) = r[κ(x), x] +

Z ρ1(x)

ρ0(x)

r0(v, x)[G(v | x)− 1(v < κ(x))]

h(v | x) H(dv | x, n)

+

Z ρ1(x)

ρ0(x)

tr(x, v)[H(dv | x)−H(dv | x, n)],

which yields equation (3) after applying the law of iterated expectations. Equation (4) then follows

from the convergence in Assumption A.3 and the bounded continuity of tr.

We can use equation (3) to compute an estimator of µr(x) by the analogy principle substituting in

estimators of the unknown quantities. Let bµ1r(x) denote this estimator, details supplied below. The
estimator bµ1r(x) is numerically simple (and in particular does not require kernel or other smoothers
if X is discrete), but requires the researcher to know, or be able to estimate, the limiting design

density h(v | X).6 An estimator that does not entail knowing or estimating the limiting density

h can be constructed as follows. First observe that equation (2) in Theorem 1 does not require

Assumption A.3, so the CDF H(v | x) and associated density h(v | x) need not describe the limiting
data generating process for V , but may simply be chosen for convenience or efficiency. In particular,

letting H(v | x) be a uniform distribution reduces equation (2) to

µr(x) = r[κ(x), x] +

Z ρ1(x)

ρ0(x)

r0(v, x)[G(v | x)− 1(v ≥ κ(x))]dv. (5)

Let a0 and a1 be known or estimated constants such that a0 ≤ ρ0(x) and a1 ≥ ρ1(x). Then, by

equations (5) and (1), a consistent estimator of µr(x) is given by

bµ2r(x) = r[κ(x), x] +

Z a1

a0

r0(v, x)[ bE[Y | V = v,X = x]− 1(v < κ)]dv, (6)

where bE[Y | V = v,X = x] is an estimate of E[Y | V = v,X = x]. One could construct additional

analogous estimators based on (2) instead of (5), using other choices of H, but for simplicity, we

apply Theorem 1 only in the form of equations (3) and (5).

Consistency and potential effects of finite sample design on limit distributions for bµ2r(x) are
analogous to the above discussion of bµ1r(x). In applications, the choice between using bµ1r(x) orbµ2r(x) would be based at least in part on the information set of the researcher regarding the limiting
design density. We provide more details later on the construction and limiting distributions of these

estimators.
6If h is unknown, then based on bµ1r an estimator of µr(x) could be constructed by first estimating h. Specifically,

one could replace h(v | x) with an estimate bh(v | x) (using, e.g., kernel density estimation) in the definition of
sr(x, v, y). Call the result bsr(x, v, y). The estimator of µr(x) would then be bµ∗1r(x) = bE[bsr(X,V, Y ) | X = x]
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In the special case of the nonparametric location model W = Λ[m(X) − ε] with ε ⊥ X, and

Λ known and invertible, these µr(x) estimators can be used to estimate an unknown m(x), since

m(x) = µr(x)−E(ε) with r(w, x) = Λ−1(w).7

2.3 Semiparametric Moments

Corollary 1 below will be used in place of Theorem 1 to obtain faster convergence rates using a

semiparametric model for W .

Assumption A.4. The latent W satisfies W = Λ[m(X, θ0) − ε], where m and Λ are known

functions, Λ is invertible and differentiable with derivative denoted Λ0, θ0 ∈ Θ is a vector of pa-

rameters, and ε is a disturbance that is distributed independently of V,X, with unknown, twice

continuously differentiable CDF Fε(ε) and compact support [a0, a1] that contains zero. Define

U = m(X, θ0) − Λ−1(V ). Let Ψn(U | n) denote the empirical CDF of U at sample size n.

supv |Ψn(U | n) − Ψ(U)| → 0 a.s., where Ψ(U) is a CDF that has an associated PDF ψ(U) that is

continuous and strictly positive on the interval [a0, a1]. Define s∗r(x, u, y) and t∗r(x, u) by

s∗r(x, u, y) = r[Λ(m(x, θ0)), x] +
r0[Λ(m(x, θ0)− u), x]Λ0(m(x, θ0)− u)[y − 1(u > 0)]

ψ(u)
.

t∗r(x, u) =
r0[Λ(m(x, θ0)− u), x]Λ0(m(x, θ0)− u)[Fε(u)− 1(u > 0)]

ψ(u)
.

If Λ is the identity function, then W equals a parameterized function of x plus an additive

independent error. If Λ is the exponential function, then it is ln(W ) that is modeled with an additive

error.

Corollary 1. Let Assumptions A.1, A.2, and A.4 hold. Then

E(Y | U = u) = Fε(u)

µr(x) = r[Λ(m(x, θ0)), x] +

Z a1

a0

t∗r(x, u)Ψ(du),

µr(x)−E [s∗r(x,U, Y )] =
Z a1

a0

t∗r(x, u)[Ψ(du)−Ψ(du | n)]→ 0

and, if Assumption A.3 also holds,

Ψn(u | n) = E(1−H[Λ(m(X, θ0)− u) | X, n])

ψn(u) = E [h[Λ(m(X, θ0)− u) | X]Λ0(m(X, θ0)− u)]→ ψ(u).

7In this special case of a location model, many other functions r provide additional information about m. For

example, taking r(w,x) = [Λ−1(w)]2, makes µr(x) = m2(x)− 2m(x)E(ε) + σ2
ε for some constant σ

2
ε.
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Proof of Corollary 1. Recall that Y = I(W > V ) = I(ε < U), so E(Y | U = u) = Fε(u).

Starting from the definition of µr(x),

µr(x) =

Z a1

a0

r[Λ(m(x, θ0)− ε), x]Fε(dε)

=

Z 0

a0

r[Λ(m(x, θ0)− u), x]
dFε(u)

du
du+

Z a1

0

r[Λ(m(x, θ0)− u), x]
d[Fε(u)− 1]

du
du

and applying integration by parts to each of the above integrals yields

µr(x) = r[Λ(m(x, θ0)), x] +

Z a1

a0

r0[Λ(m(x, θ0)− u), x]Λ0(m(x, θ0)− u)[Fε(u)− I(u > 0)]du

= r[Λ(m(x, θ0)), x] +

Z a1

a0

t∗r(x, u)Ψ(du)

= r[Λ(m(x, θ0)), x] +

Z a1

a0

t∗r(x, u)Ψn(du | n) +
Z a1

a0

t∗r(x, u)[Ψ(du)−Ψn(du | n)]

Next, apply the law of iterated expectations to obtain

E [s∗r(X,U, Y )] = E

µ
r0[Λ(m(x, θ0)− u), x]Λ0(m(x, θ0)− u)[Fε(u)− 1(u > 0)]

ψ(u)

¶
=

Z a1

a0

t∗r(x, u)Ψn(du | n),

which gives the expressions for µr(x), and
R a1

a0
t∗r(x, u)[Ψ(du) − Ψn(du | n)] →p 0 by the uniform

convergence of Ψn.

Note that Ψn(u | n) is the empirical probability that U ≤ u, which is the same event as V ≥
Λ(m(X, θ0) − u). Conditioning on X = x this probability would be 1 − Hn[Λ(m(x, θ0) − u) |
x, n], and averaging over X gives Ψn(u | n) = E(1 − Hn[Λ(m(X, θ0) − u) | X, n]). This implies

Ψ(u) = limn→∞E(1 − H[Λ(m(X, θ0) − u) | X]), where the only role of the limit is to evaluate
the expectation at the limiting distribution of X. Taking the derivative with respect to u gives

ψ(u) = limn→∞E(h[Λ(m(X, θ0)− u | X)Λ0(m(X, θ0)− u)]). Consistency of ψn(u) then follows from

the uniform convergence of the distribution of X to its limiting distribution in Assumption A.3.

Now consider rate root n estimation of arbitrary conditional moments based on Corollary 1. It

will be convenient to first consider the case where θ0 is known, implying that the conditional mean

ofW is known up to an arbitrary location (since ε is not required to have mean zero). A special case

of known θ0 is when x is empty, i.e., estimation of unconditional moments of W , since in that case

we can without loss of generality take m to equal zero.

2.3.1 Estimation With Known θ

Suppose that θ0 is known. Considering first the case where the limiting design density h(v|x) is also
known, for a given u define the sample average bψ(u) by
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bψ(u) = 1

n

nX
i=1

h[Λ(m(Xi, θ0)− u) | Xi]Λ
0(m(Xi, θ0)− u).

Then, based on Corollary 1, we have consistency of the estimator

bµ∗3r(x) = r[Λ(m(x, θ0)), x] +
1

n

nX
i=1

r0[Λ(m(x, θ0)− Ui), x]Λ
0(m(x, θ0)− Ui)[Yi − 1(Ui > 0)]bψ(Ui)

.

This estimator is computationally extremely simple, since it entails only sample averages. Special

cases of this estimator were proposed by McFadden (1994) and by Lewbel (1997).

Let eψ(u) be an estimator of ψ(u) that does not depend on knowledge of h. For example eψ(u)
could be a (one dimensional) kernel density estimator of the density of U , based on the data bUi and

evaluated at u. We then have the estimator

bµ∗4r(x) = r[Λ(m(x, θ0)), x] +
1

n

nX
i=1

r0[Λ(m(x, θ0)− Ui), x]Λ
0(m(x, θ0)− Ui)[Yi − 1(Ui > 0)]eψ(Ui)

,

which may be used when h is unknown.

2.3.2 Estimation with Unknown θ

First, consider estimation of θ. By Assumption A.4,

E[Λ−1(W ) | X = x] = α0 +m(x, θ0)

for some arbitrary location constant α0. This constant is unknown since no location constraint is

imposed upon ε. Let sw(X, V, Y ) denote sr(X, V, Y ) with r(w, x) = Λ−1(w). It then follows from

Theorem 1 that

lim
n→∞

E [sw(X,V, Y ) | X = x] = lim
n→∞

E(Λ−1(W ) | X = x).

Note that the limit as n→∞ means that the expectations are taken at the limiting distributions of

the data. In other words the asymptotic conditional expectation of the known or estimable quantity

sw is equal to α0 +m(x, θ0). Under some identification conditions this can be used for estimation of

(α0, θ0). Specifically, we could estimate θ0 by minimizing the least squares criterion

(bθ, bα) = argmin
θ,α

1

n

nX
i=1

[sw(Xi, Vi, Yi)− α−m(Xi, θ)]
2. (7)

If m is linear in parameters, then a closed form expression results for both parameter estimates. If h

is not known, one could replace h(V | X) in the expression of sw(X, V, Y ) with an estimate bh(V | X).
The resulting estimator would then take the form of a two step estimator with a nonparametric first

11



step (the estimation of h). This estimator of θ and α is equivalent to the estimator for general

binary choice models proposed by Lewbel (2000), though Lewbel provides other extensions, such as

to estimation with endogenous regressors.

With Assumption A.4, the latent error ε is independent of X, and therefore the binary choice

estimator of Klein and Spady (1993) may provide a semiparametrically efficient estimator of θ.8

Let bθ denote a root n consistent, asymptotically normal estimator for θ0. Replacing θ0 with

any θ ∈ Θ we may rewrite the estimators of the previous section as bµ∗λr(x; θ) for λ = 3, or 4. In

doing so, note that θ appears both directly in the equations for bµ∗λr, and also in the definition of Ui =

m(Xi, θ)−Λ−1(Vi).We later derive the root n consistent, asymptotically normal limiting distribution

for each estimator bµλr(x) = bµ∗λr(x;bθ), where we suppress the dependence on bθ for simplicity. The
estimators are not differentiable in Ui, which complicates the derivation of their limiting distribution,

e.g., even with a fixed design, Theorem 6.1 of Newey and McFadden (1994) would not be directly

applicable due to this nondifferentiability.

2.3.3 A Special Case

In this section we suppose that

r(w, x) = [Λ−1(w)]k.

This, when Λ is the identity function, would be the typical choice of function r in applications. Let

swk(X,V, Y ) denote sr(X,V, Y ) with r(w, x) = [Λ−1(w)]k. For any k we then have

E[(Λ−1(W ))k | X = x] = E
h
(m(X, θ0)− ε)k | X = x

i
=

kX
�=0

m(x, θ0)
�(−1)k−�

µ
k

(

¶
E(εk−�)

by the binomial expansion. Therefore,

E[[Λ−1(W )]k | X = x] =
kX

�=0

m(x, θ0)
�αk�,

where αk�, ( = 0, . . . , k are unknown parameters depending on the moments of the error distribution

and on the binomial coefficients. It also follows from Theorem 1 that

lim
n→∞

E [swk(X, V, Y ) | X = x] = lim
n→∞

E(Λ−1(W )k | X = x).

We may estimate the nuisance parameters αk� by solving the least squares problem

(bαk0, . . . , bαkk) = arg min
αk0,...,αkk

1

n

nX
i=1

Ã
swk(Xi, Vi, Yi)−

kX
�=0

m(Xi,bθ)�αk�

!2
,

8The Klein and Spady estimator does not identify a location constant α, but that is not required for this step,

since no location constraint is imposed upon ε. Also, for the present application, the limiting distribution theory for

Klein and Spady would need to be extended to allow for data generating processes that vary with the sample size.

12



where bθ is any root-n consistent estimator such as defined in (7). Then let
bµ5wk(x) =

kX
�=0

m(x,bθ)�bαk�.

to estimate µwk(x).9 For identification we require that the matrix (Mjl)
k
j,l=0 be of full rank, where

Mjl = E
£
m(Xi, θ0)

j+l
¤
.

This estimator should work well when k is small, but otherwise a large number of auxiliary

parameters αk� have to be estimated and this may result in the estimate of µr(x) having a large

variance. It is also sensitive to the existence of moments.

2.4 Quantiles

Let wq(x) denote the q’th conditional quantile of W given X = x. It follows immediately from

Assumption A.1, in particular equation (1), that

wq(x) = G−1(1− q | x), (8)

where G(v | x) = E(Y | V = v,X = x), so we may invert a nonparametric estimator of this

expectation to obtain an estimate of wq(x), for any q such that 1 − q ∈supp(V ), and so will be
identified for all quantiles given Assumption A.3. The rate of convergence of bwq(x) = bG−1(1− q | x)
will be slow, because of the high dimension of bG.
For semiparametric quantile estimation, if Assumptions A.1 and A.4 hold then

q = Pr[Λ[m(X, θ0)− ε] ≤ wq(X) | X = x)]

= 1− Fε[m(X, θ0)− Λ−1(wq(x))]

so

wq(x) = Λ[m(X, θ0)− F−1
ε (1− q)]

and from Corollary 1, Fε is obtained by Fε(u) = E(Y | U = u). Therefore, let bUi = m(Xi,bθ)−Λ−1(Vi)

and estimate the conditional quantile wq(x) by

cFε(u) = bE(Y | bU = u)ewq(x) = Λ[m(x,bθ)−cFε

−1
(1− q)],

9This method could also be extended to more general classs of r functions. Suppose r(w, x) =
P∞

j=1 ψj(x)w
j for

some known coefficients {ψj(x)}∞j=1. This is true for a large class of r functions of interest like the exponential and

logarithm. Then in practice, we approximate r(w, x) by
Pτ

j=1 ψj(x)w
j , where τ = τ(n) is some truncation parameter,

and then apply our method for estimating µwk(x).
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where the function cFε is obtained by nonparametrically regressing Y on bU , and is then numerically
inverted to get cFε

−1
. This estimator ewq(x) will converge at a faster rate than the nonparametric

quantile estimator bwq(x), because estimation of the quantiles wq(x) given θ only requires estimation

of the one dimensional regression Fε(u) = E(Y | U = u), instead of the high dimensional G(v | x).

3 Estimation Details and Distribution Theory

In this section we provide more detail about the computation of the estimators bµ1r(x), . . . , bµ5r(x)
and their distribution theory.

3.1 Nonparametric Estimators

There are many different nonparametric methods for estimating regression functions. For purely

continuous variables with density bounded away from zero throughout their support the local linear

kernel method is attractive. This method has been extensively analyzed and has some positive

properties like being design adaptive, and best linear minimax under standard conditions; see Fan

and Gijbels (1996) for further discussion.10 One issue we are particularly concerned about is how to

handle discrete variables. Specifically, some elements of X could be discrete, either ordered discrete

or unordered discrete, while V can be ordered discrete. When there is a single discrete variable

that takes only a small number of values, the pure frequency estimator is the natural and indeed

optimal estimator to take in the absence of additional structure. In fact, one obtains parametric

rates of convergence in the pure discrete case [and in the mixed discrete/continuous case the rate

of consistency is unaffected by how many such discrete covariates there are], see Delgado and Mora

(1995) for discussion. When there are many discrete covariates, it may be desirable to use some

‘discrete smoothing’, as discussed in Li and Racine (2002), see also Wang and Van Ryzin (1981).

Coppejans (2003) considers a case most similar to our own - he allows the distribution of the discrete

data to change with sample size. One major difference is that his data have arrived from a very

specific grouping scheme that introduces an extra bias problem.

We shall not outline all the possibilities for estimation here with regard to the covariatesX, rather

we assume that X is continuously distributed with density bounded away from zero. However,

the estimators we define can be applied in all of the above situations [although they may not be

10If there is a continuous density but with some points in the support of zero density, the rate of convergence may be

slower but Hengartner and Linton (1996) have shown that the local linear estimator can still achieve the optimal rate

in this case. There are other non-standard cases: Lu (2002) considers the case where the covariate process has fractal

dimension [e.g., in the multivariate case where the covariates lie on a nonlinear manifold of lower local dimension].
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optimal], and the estimators are still asymptotically normal with the rate determined by the number

of continuous variables.

We will pay more attention to the potential discreteness in V, since this is key to our estimation

problem. For clarity we will superscript V by n, so V n is the population random variable for each n

and V n
i is a draw from it, and use V to denote a ‘limiting’ version of V n. We shall suppose that V n

is asymptotically continuous in the sense that for each n, V n
i is drawn from a distribution H(v|Xi, n)

that has finite support, increasing with n.11 In this case, the pure frequency estimator of h(v|x) is
asymptotically normal at rate

p
n/J.

As already discussed in Theorem 1 there is a bias in the estimates of µr(x) of order J−1 in

this discrete case. Therefore, for this term not to matter in the limiting distribution we require

that δnJ
−1 → 0, where δn is the rate of convergence of the estimator in question [δn =

√
n in

the parametric case but δn =
√
nbd for some bandwidth b in the nonparametric cases]. In the

nonparametric case, the spacing of the discrete covariates is closer than the bandwidth of a standard

kernel estimator, that is, we know that b2J → ∞ so that J−1 is much smaller than the smoothing

window of a kernel estimator. Therefore, the pure frequency estimator is dominated by a smoothing

estimator, and we shall just construct smoothing-based estimators.

The estimator bµ1r(x) involves smoothing the data sr(Z
n
i ) against Xi, where Zn

i = (V n
i , Xi, Yi).

Let (bϑ0, bϑx) minimize the following localized least squares criterion

nX
i=1

Kb (x−Xi) [sr(Z
n
i )− ϑ0 − ϑ0x(Xi − x)]

2
,

whereKb (t) =
Qd

j=1 kb(tj) with kb(u) = k(u/b)/b, where k is a univariate kernel function and b = b(n)

is a bandwidth. Then let bµ1r(x) = bϑ0. (9)

This estimator is linear in the dependent variable and has an explicit form. When there are some

discrete components to X, it maybe advantageous to modify the kernel window to reflect this along

the lines discussed in Li and Racine (2002) for example.

In computing the estimator bµ2r(x) we require an estimator of G(v | x), which is given by the
local linear smooth of Yi on Xi, V

n
i . Specifically, for any v ∈ Vn let (bϑ0, bϑv, bϑx) minimize the following

localized least squares criterion

nX
i=1

kb (v − V n
i )Kb (x−Xi)

£
Yi − ϑ0 − ϑv(V

n
i − v)− ϑ>x (Xi − x)

¤2
,

11The case where Vi is drawn from a continuous distribution H(v|Xi) for all n is really a special case of our set-up.
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and let bG(v | x) = bϑ0. Then define
bµ2r(x) = r(κ(x), x) +

Z ρ1(x)

ρ0(x)

r0(v, x)[ bG(v | x)− 1(v < κ(x))]dv, (10)

where the univariate integral is interpreted in the Stieltjes sense. Specifically, if V has a discrete

distribution as described above,Z ρ1(x)

ρ0(x)

r0(v, x)[ bG(v | x)− 1(v < κ(x))]dv

=
1

J

JX
j=1

r0(vnj, x)[ bG(vnj | x)− 1(vnj < κ(x))]1(ρ0(x) ≤ vnj ≤ ρ1(x)).

When V is continuously distributed we would compute (10) by an approximation scheme that replaces

the integral by a finite sum.

The estimator (10) is in the class of marginal integration/partial mean estimators sometimes

used for estimating additive nonparametric regression models, see Linton and Nielsen (1995), Newey

(1994), and Tjø stheim and Auestad (1994), except that the integrand is not just a regression function

and the integrating measure λ, where (asymptotically) dλ(v) = r0(v, x)1(ρ0(x) ≤ v ≤ ρ1(x))dv, is not

necessarily a probability measure, i.e., it may not be positive or integrate to one.The distribution

theory for the class of marginal integration estimators has already been worked out for a number of

specific smoothing methods, see the above references.

We make the following assumptions.

Assumption B.1. k is a symmetric probability density with bounded support, and is Lipschitz

continuous on its support, i.e., |k(t) − k(s)| ≤ c|t − s| for some finite constant c. Define µ2(k) =R
t2k(t)dt.

Assumption B.2. The random variables (V n, X) are asymptotically continuously distributed,

i.e., there exists a Lebesgue density hV,X(v, x) along with conditionals h(v|x) and marginal hX(x)

such that for some finite constant ch

sup
v,x
|H(v|x, n)−H(v|x)| ≤ ch

J
, (11)

where h(v|x) is the density of H(v|x). Furthermore, infρ0(x)≤v≤ρ1(x) hV,X(v, x) > 0. For all n larger

than some n0, var(Yi | V n
i = v,Xi = x) <∞, and the limiting conditional variance σ2(v, x) = var(Yi |

Vi = v,Xi = x) = G(v | x)[1−G(v | x)]. Furthermore, G(v | x) and hV,X(v, x) are twice continuously

differentiable for all v with ρ0(x) ≤ v ≤ ρ1(x). The set [ρ0(x), ρ1(x)] × {x} is strictly contained in
the support of (V,X) for large enough n.
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These are standard regularity conditions for nonparametric estimation. Let ∇,∇2 denote the

first and second derivative operators. Define

β1(x) =
µ2(k)

2
tr(∇2µr(x)) ; β2(x) =

µ2(k)

2

Z
tr(∇2G(v | x))dλ(v),

ω1(x) = kKk2 var[sr(Z) | X = x]

hX(x)
; ω2(x) = kKk2

Z ρ1(x)

ρ0(x)

σ2(v, x)

µ
r0(v, x)

hV,X(v, x)

¶2
hV,X(v, x)dv.

Theorem 2. Suppose that assumptions A1-A3, B1 and B2 hold and that the bandwidth sequence

b = b(n) satisfies b→ 0, nbd+2/ log n→∞, and Jb2 →∞. Then, for j = 1, 2,

bµjr(x)− µr(x)− b2βj(x)p
ωj(x)/nbd

=⇒ N(0, 1).

Consistent standard errors can be obtained by plugging in consistent estimators of the unknown

quantities in ωj(x).

3.1.1 Efficiency Comparison

When the limiting design distribution h(V | X) is known, either bµ1r or bµ2r may be applied. These
two estimators are not in general rankable in terms of mean squared error, but can be compared in

some special cases.

Suppose that r(w, x) = w. In this case

ω1(x) ∝ var
µ
[Y − 1(V < κ(x))]

h(V | X) |X = x

¶
and ω2(x) ∝

Z ρ1(x)

ρ0(x)

µ
G(v | x)[1−G(v | x)]

h(v | x)
¶
dv.

If furthermore, V |X is uniform on [0, 1],

ω1(x) ∝
Z 1

0

G(v | x)dv[1−
Z 1

0

G(v | x)dv]+κ(x)(1−κ(x))+2
"Z κ(x)

0

G(v | x)dv − κ(x)

Z 1

0

G(v | x)dv
#

ω2(x) ∝
Z 1

0

G(v | x)[1−G(v | x)]dv.

Generally, ω1(x) depends on κ(x) except in the special case that W is uniform on [0, 1]. If W |X
is uniform on [0, 1], the asymptotic variance of bµ2r(x) is proportional to 1/6, while the asymptotic
variance of bµ1r(x) is proportional to 1/4, with proportionality factor having to do with the bandwidth,
kernel, and covariate density. In this case, bµ2r(x) is more efficient in variance terms.12
12The estimators bµ1r(x) for different κ are correlated, but not perfectly so, so that there is scope for improving
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Regarding the bias of the two estimators in the case that r(w, x) = w:

tr(∇2
xµr(x)) =

dX
j=1

Z
v
∂2g(v | x)

∂x2j
dv =

dX
j=1

Z
tr(∇2

xG(v | x))dv

Z
tr(∇2G(v | x))dλ(v) =

Z "
dX

j=1

∂2G(v | x)
∂x2j

+
∂2G(v | x)

∂v2

#
dv,

where g(v | x) is the conditional density of W |X. Under certain conditions these two biases are the

same applying integration by parts. In order for
R
[∂2G(v | x)/∂v2]dv = − R [∂g(v | x)/∂v]dv = 0 it

is sufficient that the conditional density and its derivative be zero on the boundary.

We have shown than in an important special case bµ2r(x) has smaller mean squared error thanbµ1r(x). However, either estimator could be more efficient in other situations. There are other compar-
isons between the estimators that are also relevant. For example, the estimator bµ1r(x) requires prior
knowledge of h(v | x), and entails more smoothness than bµ2r(x), as can be seen from the bias expres-
sions given above. On the other hand bµ1r(x) also uses a lower dimensional smoothing operation thanbµ2r(x), which may be important in small samples.13 An advantage of the estimator bµ1r(x) is that
it takes the form of a standard nonparametric regression estimator, so known regression bandwidth

selection methods can be automatically applied, whereas a comparable theory relevant for bµ2r(x) is
not so well developed. Similar comments apply to standard error construction based on standard

asymptotic or bootstrap principles.

3.2 Semiparametric Estimators

In this section we assume the conditions of A4 prevail. In this case, discreteness of Vi is less of an

issue - even if Vi is discrete, if there are continuous variables in Xi, then Ui = m(Xi, θ0) − Λ−1(Vi)

efficiency of bµ1r(x). The covariance function of bµ1r(x;κ1), bµ1r(x;κ2) is proportional to

C(κ1, κ2) =
1

4
+ κ1 ∧ κ2 − κ1κ2 −

·
κ1

2
−
Z κ1

0

G(v)dv

¸
−
·
κ2

2
−
Z κ2

0

G(v)dv

¸
,

which is equal to
1

4
+ κ1 ∧ κ2 − κ1κ2 − κ1

2
+

κ2
1

2
− κ2

2
+

κ2
2

2

in the uniform case. The correlation function is maximized at κ1 = κ2 whereupon it is one, but is minimized at the

point where κ1 = κ2 ± 1/2 and the minimizing value is 0.5. Furthermore, we can establish a functional central limit
theorem in κ. Now consider the class of estimators

R bµ1r(x;κ)ω(κ)dκ for some weighting function ω(.). One can show

that with the optimal combination we achieve the same variance factor, 1/6 in the uniform case, as the estimatorbµ2r(x).
13The evidence on the finite sample performance of marginal integration estimators is mixed, see Sperlich, Linton,

and Härdle (1999).
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can be continuously distributed. For simplicity we therefore assume a fixed design for our limiting

distribution calculations. Similar asymptotics will result when the assumption that Vi is continuously

distributed is replaced by an assumption like equation (11).

Let bθ be some consistent estimator of θ0. Define:
bµ3r(x) = r[Λ(m(x,bθ)), x] + 1

n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]bψ(bUi)

bµ4r(x) = r[Λ(m(x,bθ)), x] + 1

n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]eψ(bUi)

,

where bUi = m(Xi,bθ)− Λ−1(Vi) and

bψ(bUi) =
1

n

nX
j=1

h[Λ(m(Xj,bθ)− bUi)|Xj]Λ
0(m(Xj,bθ)− bUi) ; eψ(bUi) =

1

nb

nX
j=1

k

Ã bUi − bUj

b

!
.

Define also the estimators bµ∗3r(x) and bµ∗4r(x) as the special cases of bµ3r(x) and bµ4r(x) in which θ is

known, in which case bUi is replaced by Ui.

We next state the asymptotic properties of the conditional moment estimators based on Corollary

1. We need some conditions on the estimator and on the regression functions and densities.

Assumption C.1. Suppose that

√
n(bθ − θ0) =

1√
n

nX
i=1

ς(Zi, θ0) + op(1)

for some function ς such that E[ς(Zi, θ0)] = 0 and Ω = E[ς(Zi, θ0)ς(Zi, θ0)
>] <∞. Suppose also that

θ0 is an interior point of the parameter space.

Assumption C.2. The function m is twice continuously differentiable in θ and

sup
kθ−θ0k≤δn

°°°°∂m∂θ (x, θ)
°°°° ≤ d1(x) ; sup

kθ−θ0k≤δn

°°°° ∂2m

∂θ∂θ>
(x, θ)

°°°° ≤ d2(x)

with Edr
1(Xi) <∞ and Edr

2(Xi) <∞ for some r > 2.

Assumption C.3. The density function h is continuous and is strictly positive on its support and

is twice continuously differentiable. The transformation Λ is three times continuously differentiable.

Assumption C.4. The kernel k is twice continuously differentiable on its support, and therefore

supt |k00(t)| <∞. The bandwidth b satisfies b→ 0 and nb6 →∞.

These regularity conditions are fairly standard.
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For each θ ∈ Θ and x ∈ X , define the stochastic processes:

f0(Zi, θ) =
r0[Λ(m(x, θ)− Ui(θ)), x]Λ

0(m(x, θ)− Ui(θ))[Yi − 1(Ui(θ) > 0)]

ψ(Ui)

f1(Zi, θ) = r[Λ(m(x, θ)), x] +
r0[Λ(m(x, θ)− Ui(θ)), x]Λ

0(m(x, θ)− Ui(θ))[Yi − 1(Ui(θ) > 0)]

ψ(Ui)

where Ui(θ) = m(Xi, θ)− Λ−1(Vi). Then

ΓF =

µ
∂

∂θ
E [f1(Zi, θ)]

¶y
θ=θ0

=

µ
∂

∂θ
E [f0(Zi, θ)]

¶y
θ=θ0

+ r0[Λ(m(x, θ0)), x]Λ0(m(x, θ0))
∂m(x, θ0)

∂θ

ΨF = E

·
f0(Zi, θ0)

ψ0(Ui)

ψ(Ui)
eγi

¸
+E

·
f0(Zi, θ0)

ψ(Ui)
eζijeγj

¸

eγi =
∂m

∂θ>
(Xi, θ0)−E

·
∂m

∂θ>
(Xi, θ0)

¸
and ζ ij = [h

0(Λ|Xj)(Λ
0)2 + h(Λ|Xj)Λ

00] (m(Xj, θ0)− Ui), where eζij = ζij − Eiζij.

The above quantities may depend on x but we have suppressed this notationally. Note also that

Ef1(Zi, θ0) = µr(x).

Theorem 3. Suppose that Assumptions A1-A4 and C1-C3 hold. Then, as n→∞,
√
n[bµ3r(x)− µr(x)]

ση(x)
=⇒ N(0, 1), (12)

where 0 < σ2η(x) = var(ηj) <∞ with ηj = η1j + η2j + η3j, where:

η1j = f0(Zj, θ0)− Ef0(Zj, θ0)

η2j = (ΓF −ΨF ) ς(Zj; θ0)

η3j = −E
·
f0(Zi, θ0)

h[Λ(m(Xj, θ0)− Ui)|Xj]Λ
0(m(Xj, θ0)− Ui)− ψ(Ui)

ψ(Ui)
| Xj

¸
.

The three terms η1j, η2j, and η3j are all mean zero and have finite variance. They are generally

mutually correlated. When θ0 is known, the term η2j = 0 and this term is missing from the asymptotic

expansion. The term η3j is due to the estimation of ψ.

We next give the distribution theory for the semiparametric estimator bµ4r(x). Let
Ψ∗F = E

·
ψ0(Ui)

ψ(Ui)

©
f0(Zi, θ0)− f0(Ui)

ª
γ∗i

¸
− E

·
f 0(Ui)

m0
θ(Ui)

ψ(Ui)

¸

γ∗i =
∂m

∂θ>
(Xi, θ0)−mθ(Ui),
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where mθ(Ui) = E[∂m(Xi, θ0)/∂θ | Ui] and f0(Ui) = E[f0(Zi, θ0)|Ui].

Theorem 4. Suppose that assumptions A1-A4, B1, B2 and C1-C4 hold. Then
√
n[bµ4r(x)− µr(x)]

σ∗η(x)
=⇒ N(0, 1),

where 0 < σ∗2η (x) = var(η
∗
j) <∞, with: η∗j = η∗1j + η∗2j + η∗3j, where η∗1j = η1j, while

η∗2j = (ΓF −Ψ∗F ) ς(Zj; θ0)

η∗3j = −[f0(Uj)−Ef 0(Uj)].

The three terms η∗1j, η
∗
2j, and η∗3j are all mean zero and have finite variance. They are generally

correlated. When θ0 is known, the term η∗2j = 0 and this term is missing from the asymptotic

expansion. The term η∗3j is due to the estimation of ψ.

Standard errors can be constructed by substituting population quantities by estimated ones along

the lines discussed in Newey and McFadden (1994). Alternatively, one can use the bootstrap as we

do in our application below.

Regarding efficiency, it is not possible to provide a ranking of the two estimators bµ3r(x) andbµ4r(x) uniformly throughout the ‘parameter space’. This result partly depends on the choice of bθ. It
may be possible to develop an efficiency bound for estimation of the function µr(.) by following the

calculations of Bickel, Klaassen, Ritov and Wellner (1993, Chapter 5). Since there are no additional

restrictions on µr, the plug-in estimator with efficient bθ should be efficient. See, e.g., Brown and
Newey (1998)

3.2.1 Quantile estimators

The distribution theory for our quantile estimators is immediate. The estimator bwq(x) = bG−1(1− q |
x) has the standard distribution theory for conditional quantile estimation. See, e.g., Chaudhuri

(1991). The distribution theory for ewq(x) = m(x,bθ) −cFε

−1
(1 − q) is the same as the distribution

theory for ewq(x) = m(x, θ0)−fFε

−1
(1− q), where

fFε(u) = bE(Y | U = u),

which is again a standard one-dimensional conditional quantile estimator. This is because bθ converges
at rate root-n, so the estimation error in bθ is asymptotically irrelevant given the slower convergence
rate of quantiles.
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4 Numerical Results

4.1 Monte Carlo

We report the results of a small simulation experiment based on a design of Crooker and Herriges

(2000). Let

Wi = β1 + β2Xi + σεi,

where Xi is uniformly distributed on [−30, 30] and εi is standard normal. We take β1 = 100 and

β2 = 2, which guarantees that the mean WTP is equal to 100. We vary the value of σ ∈ {5, 10, 50}
and sample size n ∈ {100, 300, 500}. For our first set of experiments the bid values are chosen equally
randomly from {25, 50, 75, 125, 175}, and κ = 100. This design was chosen because it permits direct

comparison with the parametric and SNP estimators of WTP considered by Crooker and Herriges

(2000).

The moments we estimate are std(W | X = x) =
p

E[W 2 | X = x]− E2[W | X = x] and E[W |
X = x]. We compute estimators bµλ(.) for λ = 1, 3, 4, 5. We do not compute bµ2(.) here, because it
is very time consuming, and the small sample performance of this class of estimators (integrals of

nonparametric conditional expectations) has been extensively documented in Sperlich, Linton, and

Härdle (1999) and elsewhere. In the computation of bµ1(.) and bµ4(.) we used a Gaussian kernel and
Silverman’s rule of thumb bandwidth. This kernel and bandwidth is not likely to be optimal for this

problem, but they are convenient and hence fairly widely used choices in practice.

In Table 1 and 2 we report four different performance measures: pointwise root mean squared error

(PRMSE), pointwise mean absolute error (PMAE), integrated root mean squared error (IRMSE),

and integrated mean absolute error (IMAE). Crooker and Herriges (2000) only report pointwise

results. Like Crooker and Herriges, our pointwise results are calculated at the central point x = 0.

Thus, their Table 2a (n = 100) and Appendix Table 1a (n = 300) are directly comparable with a

subset of our results. Our conclusions are:

(A1) The performance of our estimators generally improves with sample size according to all

measures: the pointwise measures improve at approximately our theoretical asymptotic rate, while

the integrated measures improve much more slowly. Note that, unlike our limiting distribution theory,

in this set of experiments the number of mass points of the bid distribution does not increase with

the sample size.

(A2) The nonparametric estimators bµ1(.) and bµ4(.) perform very well, in some cases better than

the semiparametric estimators bµ3(.) and bµ5(.). From Table 1, the rankings of the estimators from

best to worst by pointwise performance criteria are bµ1, bµ5, bµ4, bµ3 in small samples and bµ1, bµ4, bµ5,bµ3 in large samples. By integrated performance criteria, the rankings from best to worst are bµ5, bµ4,
22



bµ1, bµ3 in small samples and bµ4, bµ5, bµ1, bµ3 in large samples.
(A3) The only consistent ranking across designs is that bµ3 always performs the worst.
(A4) Estimators bµ1(.), bµ4(.), and bµ5(.) seem to perform better than the Crooker and Herriges

SNP estimator, especially in the large σ case.

(A5) The estimates of std(W | X = x) are subject to much more variability and bias than the

estimates of E[W | X = x], particularly in the large σ case.

While our estimators seem to work reasonably well in this discrete bid case, we would expect

to obtain better results when the bid distribution is actually continuous. We repeated the above

experiments with bid distribution uniform on [25, 175] and report the results in Tables 3 and 4. Our

conclusions are:

(B1) The performance in the continuous design is somewhat better than in the discrete design,

e.g., 70% of the numbers are larger in Table 1 than in Table 3. For some designs the pointwise

results in Table 1 are better, but the integrated results are always better in Table 3. Note that for

the pointwise results the chosen point of evaluation x = 0 corresponds to E[W | X = 0] = 100 and

in Table 1 there is a point mass in the distribution of the bids at this point.

(B2) The results for standard deviation estimation are in most cases best in Table 4.

(B3) The ranking of the estimators is the same in Table 3 as Table 1. Once again bµ3 always
performs the worst, but the rankings of the other estimators vary depending on the criterion and

sample size.

4.2 Application

We examine a dataset used in An (2000), which is from a contingent valuation study conducted by

Hanemann et al. (1991) to elicit the WTP for protecting wetland habitats and wildlife in California’s

San Joaquin Valley. Each respondent was assigned a bid value. They were then also given a second

bid that was either higher or lower than the first, depending on their acceptance or rejection of the

first bid. The total number of bid values is 14. The dataset consists of bid responses and some

personal characteristics of the respondents. The covariates are age and number of years resident in

California, education and income bracket, and binary indicators of sex, race, and membership in an

environmental organization. The sample size, after excluding nonrespondents, incomplete responses,

etc., is n = 530.

Because there are seven covariates and only a limited number of bid values, we first consider

semiparametric specifications for W , in particular:

W = X>
i θ − ε and log(W ) = X>

i θ − ε.
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Figure 1:

som is linear and Λ is the identity or the exponential function, respectively. With these specifications

we estimate the quantity

µw(x) = E(W | X = x)

using our semiparametric estimators bµj(x), j = 3, 4, 5. To check for possible framing effects, we

estimate this conditional mean WTP separately using first bid data and second bid data.

Figure 1 shows a kernel based estimate of the density of the data points bµ5(Xi), i = 1, ..., n

using the linear specification with first bid data. This may be interpreted as the distribution of

estimated WTP across the sample. Similar results are obtained using bµ3 and bµ4 and (in shape but
not location) using second bid data. There is obviously quite a bit of dispersion around the mean,

but the distribution looks quite symmetric.

In Table 5 we report the sample average of the estimates of E(W | X = Xi), denoted bµj, as well

as E(W | X = X), denoted bµj(X), along with bootstrap standard errors. The bootstrap data were

drawn with replacement from {Yi, Vi,Xi}ni=1. The computation of bµj is done exactly as described in

the simulation section.
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Linear Log Linear

bid1 bid2 bid1 bid2bµ3 68.3417
(95.6285)

274.0677
(172.0449)

62.0320
(4.4683)

306.0211
(411.4603)bµ3(X) 68.3417

(95.6285)
274.0677
(172.0449)

61.5918
(4.2751)

302.4752
(328.7766)bµ4 61.3042

(90.5139)
213.0857
(120.3624)

64.6992
(5.0823)

369.2809
(394.6291)bµ4(X) 61.3042

(90.5139)
213.0857
(120.3624)

63.7869
(4.4995)

472.5140
(328.2098)bµ5 . 73.7925

(8.4186)
143.4519
(13.6322)

99.1164
(4.1348)

141.5369
(9.0742)bµ5(X) 73.7925

(8.4186)
143.4519
(13.6322)

98.7726
(6.6526)

134.0196
(21.4996)

Table 5: Estimates of WTP

Table 6 provides parameter estimates along with their bootstrap standard errors, and asterisks

indicating significant departure from zero at the 5% level.

Linear Log Linear

bid1 bid2 bid1 bid2

YEARCA 0.6869
(0.4724)

1.6964
(0.8023)

0.0021
(0.0022)

0.0131
(0.0062∗)

SEX 10.3763
(12.3460)

33.3371
(22.4836)

−0.0460
(0.0632)

0.2579
(0.1740)

ln(AGE) −42.0977
(19.2617∗)

−62.0518
(33.1249)

−0.2040
(0.1088)

−0.4801
(0.2563)

EDUC −0.9696
(2.9860)

3.9614
(5.2206)

0.0119
(0.0154)

0.0307
(0.0404)

WHITE 5.0222
(14.3550)

27.9634
(28.0857)

0.1338
(0.0797)

0.2164
(0.2173)

ENVORG 3.4128
(14.6966)

12.2217
(30.1263)

−0.1085
(0.0792)

0.0946
(0.2331)

ln(INCOME) 7.0079
(9.3697)

49.0606
(19.0478∗)

0.0972
(0.0500∗)

0.3796
(0.1474∗)

Table 6

The most striking feature of Tables 5 and 6 is that the second bid data yield far larger coefficients,

with corresponding larger estimates of WTP. This may be an indicator of framing, shadowing, or

anchoring effects, in which hearing the first bid and replying to it affects responses to later bids. See,

e.g., McFadden (1994), Green et al. (1998) and Hurd et al. (1998). These results may also be due

to small sample problems associated with the survey design, in particular, the distribution of second

bids differs markedly from the distribution of first bids, including some far larger bid values. An

25



(2000), using a very different modeling methodology, tests and accepts the hypothesis of no framing

effects in these data, though he does report some large differences in coefficient estimates based on

data using both bids versus just first bid data.

Looking across estimators and specifications, few of the regressors are statistically significant.

Income is generally most significant, having a positive effect. Table 5 shows a moderate range of

mean WTP estimates from the first bid, while the second bid WTP estimates are far more dispersed

and have much larger standard errors. Using different estimators and combining both first and

second bid data sets, An (2000) reports WTP at the mean ranging from 155 to 227 (plus one outlier

estimate of 1341), which may be compared to our estimates of 62 to 99 for first bid data and 141 to

369 using only second bids.

Finally, we conducted a purely nonparametric analysis with each of the four continuous covariates,

one at a time. In Table 7 we report the estimated value of µw(Xj) along with bootstrap standard

errors for each separate covariate. The implementation is as described in the simulation section. The

estimated values of µw(Xj) are quite precise and are in the ballpark reported earlier.

bµ1(Xj)

Xj bid1 bid2

YEARCA 75.5147
(10.75004)

167.9237
(17.7617)

AGE 91.5519
(9.6176)

171.3500
(22.1864)

EDUC 94.6993
(11.4778)

142.3537
(34.2841)

ln(INCOME) 75.5148
(10.7500)

167.9237
(17.7617)

Table 7

In Figures 2 and 3 we provide the marginal smooths themselves along with a pointwise 95%

confidence interval. In contrast to the semiparametric model which assumes a linear or loglinear

relationship, these figures from the nonparametric estimator show some nonlinear effects.

5 Concluding Remarks

We have provided semiparametric and nonparametric estimators of conditional moments and quan-

tiles of the latent W . The estimators appear to perform well with both simulated and actual data.

We have for convenience assumed throughout that the limiting support of V is bounded. Most of

the results here should extend readily to the infinite support case, although some of the estimators
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Figure 2: Marginal Local Linear regression Smooths using Bid1 data along with pointwise 95%

confidence interval
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Figure 3: Marginal Local Linear regression Smooths using Bid2 data along with pointwise 95%

confidence interval
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may then require asymptotic trimming to deal with issues arising from division by a density estimate

when the true density is not bounded away from zero.

The results here show the importance, for both identification and estimation, of experimental

designs in which the distribution of bids or test values V possesses at least a fair number of mass

points, and ideally is continuous. This should be taken as a recommendation to future designers

of contingent valuation experiments. The precision of the estimators also depends in part on the

distribution of test values. When designing experiments, one may wish to choose the limiting density

h to maximize efficiency based on the variance estimators.

6 Appendix

6.1 Identification With Discrete Bids

The consistency of our estimators shows that moments µr(x) = E[r(W,X) | X = x] are nonpara-

metrically identified, given our assumption that as n → ∞, the distribution of V becomes dense

in the support of W . As discussed in the introduction, nonparametric identification fails when the

limiting support of V is a finite number of mass points, because the conditional distribution of

Y = I(W > V ) given X = x, V = v only identifies the distribution of W |X = x at each support

point v in the support of V , while E[r(W,X) | X = x] depends on the distribution of W |X = x at

almost every support point w having a nonzero value of r(w, x).

To further motivate our choice of nonparametric identifying assumptions, we show now that if

the limiting support of V is a finite number of mass points, then nonparametric identification still

fails even given an additive independent error model for W , that is, W = m(X) − ε with ε ⊥ X .

For simplicity in the proof it is assumed that X is a scalar, m is increasing in X, and V only takes

on two values, but the basic logic can be extended to more general cases.

Theorem 5. Assume supp(X) is some open or closed interval on the real line, supp(V ) = {−δ, 0}
for some δ > 0, andW = m(X)−ε with ε having an unknown, strictly monotonic CDF Fε(ε) and m

strictly monotonically increasing in X. Assume V,X, ε are mutually independent. Let Y = I(W >

V ). The functions m(x) and Fε(ε) are not identified given the distribution of Y conditional on V,X.

Proof of Theorem 5. Since Y is binary, the distribution of Y given X and V is G(v | x) =
E[Y | X = x, V = v] = Fε[m(x) − v]. Let ζ0 = inf[supp(X)], m0 = m(ζ0), and ζj = m−1(m0 + jδ)

for integers j. Let em(x) be any strictly monotonic function on x ∈ [ζ0, ζ1] such that em(ζ0) = m0

and em(ζ1) = m0 + δ. Define eFε(ε) on ε ∈ [m0, m0 + δ] by eFε(ε) = G[0 | em−1(ε)]. Next, define
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eFε(ε) on ε ∈ (m0 + δ,m0 + 2δ] by eFε(ε) = G[δ | em−1(ε − δ)], and define em(x) on x ∈ (ζ1, ζ2] byem(x) = eF−1
ε [G(0 | x)]. Now define eFε(ε) on ε ∈ (m0+2δ,m0+3δ] by eFε(ε) = G[δ | em−1(ε− δ)], and

define em(x) on x ∈ (ζ2, ζ3] by em(x) = eF−1
ε [G(0 | x)]. Continue on in this way until the support of x

is exhausted By construction, the functions em and eFε satisfy G(v | x) = eFε[em(x)− v] for all x and

v on their support, and hence are observationally equivalent to m(x) and Fε(ε). .

Notes.

In this theorem, nothing can be identified about the functionm(x) (except possibly its endpoints)

over the interval x ∈ [ζ0, ζ1], since the observable data are consistent with m(x) equalling any regular

function over that interval, and the value of m(x) in any other interval is identified only as a function

of its unknown values in [ζ0, ζ1].

The same proof could have been started by letting eFε(ε) be any regular function with the correct

endpoints on ε ∈ [m0, m0+ δ], then recovering the corresponding em on that interval, and proceeding

as before. Therefore, the function eFε is also completely unknown (except possibly at endpoints) over

an initial interval, and it’s values elsewhere are only recoverable as functions of its values in that

interval.

The nonidentification here is not just an issue of location or scale. The proof assumes m(x) may

be known at two points, m(ζ0) and m(ζ1), which is equivalent to knowing (or choosing) a location

and scale form(x). Similarly, the proof may be started by assuming eFε(ε) is known at the two points

and ε = m0 and ε = m0+ δ, which is equivalent to knowing (or choosing) a location and scale for eF .
These functions are therefore not identified up to location and scale.

Here E[W | X = x] = m(x) − E(ε), so the nonidentification of m(x) up to any location shows

nonidentification of mean WTP. Other moments are likewise not identified.

This theorem can be applied to show nonidentification of other closely related models. In partic-

ular, it implies nonidentification of the nonparametric ordered choice model Y = jI(αj < m(x)−ε ≤
aj+1) for a set of integers j and threshold constants αj (two of which can be normalized to zero and

one to pin down the location of ε and the scaling of both ε and m) It also shows nonidentification

of the model considered by Das (2002), in which W = m(x) − ε and one only observes which of a

few different fixed intervals each observation W lies in. With a partial parameterization, this model

is what An (2000) and others call a double bounded dichotomous choice.

It follows from the consistency of our estimator bµ4r(x) (with, e.g., θ estimated using Klein and
Spady 1993) that this model can be identified with a fixed discrete design V if m(x) above is para-

meterized as m(x, θ) with a known function m and finite parameter vector θ. In this semiparametric

specification, continuity of X takes the place of continuity of V .

The implications of Theorem 5 for bid design differ markedly from results on optimal bid design in
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parametric or semiparametric models. Summarizing Kanninen (1993), Crooker and Herriges (2000)

say, in refering to parametric or semiparametric models “estimates of the mean WTP are best with

relatively few bid levels.”

Some existing estimators implicitly assume identification, such as the sieve estimators proposed

by Chen and Randall (1997) and Das (2002), which they apply to data in which v can only take on

a finite number of values. Theorem 5 shows that such models are generally not identified.14

6.2 Distribution Theory for Nonparametric Estimators

Proof of Theorem 2. The properties of bµ1r(x) are more or less standard, because V n
i is part

of the variable being smoothed. The only difference is the triangular array nature of the sampling

scheme, but given the conditions we made on the way this distribution changes with n, the limiting

distribution H(v|x) can replace H(v|x, n) with error of smaller order than the leading term.
We now turn to bµ2r(x). First, we introduce some notation to define the local linear estimatorbG(v | x). Define eXi = (V

n
i ,Xi) and ex = (v, x), and write bG(v | x) = bG(ex) and G(v | x) = G(ex) for

short. Then bG(ex)−G(ex) = e>1M
−1
n (ex) [Ψn1(ex) +Ψn2(ex)] , (13)

where

Mn(ex) =
1

n

nX
i=1

eKb(ex− eXi)

"
1

(ex− eXi)

#"
1

(ex− eXi)

#>
,

Ψn1(ex) =
1

n

nX
i=1

eKb(ex− eXi)

"
1

(ex− eXi)

#
εi

Ψn2(ex) =
1

n

nX
i=1

eKb(ex− eXi)

"
1

(ex− eXi)

#
ri(ex),

where ri(ex) = G( eXi) − G(ex) − (ex − eXi)
>∇G(ex). The argument is very similar to Fan, Mammen,

and Härdle (1998, Theorem 1), and we just sketch out the extension to our quasi-discrete case. The

first part of the argument is to derive a uniform approximation to the denominator in (13). Letting

14Their estimators essentially smooth between the different available test values v to obtain results with uncertain

limiting values. Our nonparametric estimators also smooth between test values in an analogous way, but consistency

is obtained by having the available bids become dense in the support of W . Crooker and Herriges’ (2000) monte

carlo design, which we also use, employs this feature of an increasingly fine grid of test values. An (2000) provides a

semiparametric model that identifies and estimates the W distribution only at the available bid levels, and explicitly

interpolates these estimates to obtain a generally inconsistent estimate of W at the mean.

31



B = diag(1, b−(d+1), . . . , b−(d+1)), we have

BMn(ex)B (14)

=
1

n

nX
i=1

eKb(ex− eXi)

"
1

(ex− eXi)/b

#"
1

(ex− eXi)/b

#>

= E eKb(ex− eXi)

"
1

(ex− eXi)/b

#"
1

(ex− eXi)/b

#>
+Op(an),

where an =
p
log n/nbd+1 uniformly over v in the support of H(V |x, n). The justification for this

comes from Masry (1996a). Although he assumed continuous density, it is clear from the proofs that

the argument goes through in our case provided the supremum over the compact set is replaced by

the maximum over the sample realizations. We calculate the upper diagonal expectation in (14) by

first conditioning on X,

E eKb(ex− eXi)

=

Z
kb(v − v0)Kb (x− x0) dH(v0, x0|n)

=

Z
kb(v − v0)Kb (x− x0) dH(v0, x0) +

Z
kb(v − v0)Kb (x− x0) [dH(v0, x0|n)− dH(v0, x0)] .

Then using integration by parts¯̄̄̄Z
kb(v − v0)Kb (x− x0) [dH(v0, x0|n)− dH(v0, x0)]

¯̄̄̄

=

¯̄̄̄Z
kb(v − v0)Kb (x− x0) [dH(v0|x0, n)− dH(v0|x0)] dH(x0)

¯̄̄̄

=

¯̄̄̄
1

b2

Z
k0
µ
v − v0

b

¶
[H(v0|x0, n)−H(v0|x0)]Kb (x− x0) dH(x0)dv0

¯̄̄̄

≤ sup
v0,x0

|H(v0|x0, n)−H(v0|x0)| 1
b2

Z
|k0
µ
v − v0

b

¶
| |Kb (x− x0)| dH(x0)dv0

≤ 1

b
sup
v0,x0

|H(v0|x0, n)−H(v0|x0)| = O(J−1b−1),

by the integrability and smoothness on k. Similar arguments apply to the other terms in (14).

Therefore,

BMn(ex)B =

"
h(ex) 0

0 h(ex)µ2( eK)
#
+ Op(cn),
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where cn = an + b+ J−1b−1, and the error is uniform over v in the support of H(V |x, n). Then

e>1M
−1
n (ex)Ψn1(ex) = 1

h(ex) 1n
nX

i=1

eKb(ex− eXi)εi + rem(ex),
where rem(ex) is a remainder term that is op(n−1/2b−(d+1)/2). This argument is repeated for the bias

terms, and defining

β(ex) = µ2(k)

2
tr(∇2G(ex)),

we obtain bG(ex)−G(ex) = 1

h(ex) 1n
nX

i=1

eKb(ex− eXi)εi + b2β(v, x) + rem(ex),
where rem(ex) is a remainder term that is op(n−1/2b−(d+1)/2) + op(b

2). We next substitute the leading

terms into bµ2r(x), and recall that
bµ2r(x)− µr(x) =

Z ρ1(x)

ρ0(x)

r0(v, x)[ bG(v | x)−G(v | x)]dv +Op(J
−1b−1).

The standard integration argument along the lines of Fan, Mammen, and Härdle (1998) shows that

the term rem(ex) can be ignored, and we obtain
bµ2r(x)− µr(x) =

1

n

nX
i=1

Kb(x−Xi)
r0(V n

i , x)

hV,X(V n
i , x)

εi + b2β(x) + op(n
−1/2b−d/2),

where β(x) =
R
β(v, x)dλ(v). It follows that the asymptotic variance of bµ2r(x) is
1

nbd
E

"
1

bd
K2

µ
x−Xi

b

¶µ
r0(V n

i , x)

hV,X(V n
i , x)

¶2
σ2(V n

i , Xi)

#

=
1

nbd

"Z
1

bd
K2

µ
x−X

b

¶µ
r0(V, x)

hV,X(V, x)

¶2
σ2(V,X)h(V,X)dV dX +O(J−1b−1)

#

' 1

nbd
kKk2

Z
σ2(v, x)

µ
r0(v, x)

hV,X(v, x)

¶2
hV,X(v, x)dv,

by a change of variables and dominated convergence. Furthermore, the central limit theorem holds

by the arguments used in Gozalo and Linton (1999, Lemma CLT).

6.3 Distribution Theory for Semiparametric Quantities

Let Ei denote expectation conditional on Zi. In the proofs of Theorems 3 and 4 we make use of

Lemmas 1 and 2 given below. Define

ρj(u, θ) = h[Λ(m(Xj, θ)− u)|Xj]Λ
0(m(Xj, θ)− u)
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and ψθ(u) = Eρj(u, θ) with ψ(u) = ψθ0
(u). Then, interchanging differentiation and integration we

have

ψ0(u) = E
∂ρj(u, θ0)

∂u
= −E ¡£h0(Λ|Xj)(Λ

0)2 + h(Λ|Xj)Λ
00¤ (m(Xj, θ0)− u)

¢
. (15)

Proof of Theorem 3. Recall that

bµ3r(x) = r[Λ(m(x,bθ)), x] + 1

n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]bψ(bUi)

,

where bUi = m(Xi,bθ)− Λ−1(Vi) and

bψ(bUi) =
1

n

nX
j=1

h[Λ(m(Xj,bθ)− bUi)|Xj]Λ
0(m(Xj,bθ)− bUi)) =

1

n

nX
j=1

ρj(bUi,bθ).
By a geometric series expansion of 1/bψ(bUi) about 1/ψ(Ui) we can write

bµ3r(x) =
1

n

nX
i=1

f1(Zi,bθ)− 1

n

nX
i=1

f2(Zi, θ0)[bψ(bUi)− ψ(Ui)] (16)

−1
n

nX
i=1

[f2(Zi,bθ)− f2(Zi, θ0)][bψ(bUi)− ψ(Ui)] (17)

+
1

n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]

ψ2(Ui)bψ(bUi)
[bψ(bUi)− ψ(Ui)]

2, (18)

where

f2(Zi, θ) =
r0[Λ(m(x, θ)− Ui(θ)), x]Λ

0(m(x, θ)− Ui(θ)))[Yi − 1(Ui(θ) > 0)]

ψ2(Ui)
.

The leading terms are derived from (16), while (17) and (18) contain remainder terms.

Leading Terms. Lemma 1 implies that

1√
n

nX
i=1

[f1(Zi,bθ)−Ef1(Zi, θ0)] =
1√
n

nX
i=1

{ΓF ς(Zi, θ0) + [f1(Zi, θ0)−Ef1(Zi, θ0)]}+ op(1), (19)

where Ef1(Zi, θ0) = µr(x), and f1(Zi, θ0)−Ef1(Zi, θ0)] = f0(Zi, θ0)−Ef0(Zi, θ0)] due to the cancel-

lation of the common term r[Λ(m(x, θ0)), x]. The stochastic equicontinuity condition of Lemma 1 is

verified in a separate appendix, see below. Then, by Lemma 2 and the fact that E|f2(Zi, θ0)| <∞,
we have ¯̄̄̄

¯ 1n
nX

i=1

f2(Zi, θ0)[bψ(bUi)− ψ(Ui)− 1

n

nX
j=1

L(Zi, Zj)]

¯̄̄̄
¯

≤ 1

n

nX
i=1

|f2(Zi, θ0)| × max
1≤i≤n

¯̄̄̄
¯[bψ(bUi)− ψ(Ui)− 1

n

nX
j=1

L(Zi, Zj)]

¯̄̄̄
¯

= op(n
−1/2),
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where L(Zi, Zj) = ξj(Ui) + Γ(Zi)ς(Zj; θ0), and

ξj(u) = ρj(u, θ0)− Eρj(u, θ0)

Γ(Zi) = Ei

·
ζ ij

∂m(Xj, θ0)

∂θ

¸
−Ei[ζij]

∂m(Xi, θ0)

∂θ
, where ζij = −

∂ρj(Ui, θ0)

∂u
.

Note that Ei[ξj(Ui)] = 0 but Ej[ξj(Ui)] 6= 0. Next, letting ϕn(z1, z2) = n−2f2(z1, θ0)L(z1, z2) we have

1

n2

nX
i=1

nX
j=1

f2(Zi, θ0)L(Zi, Zj) =
nX

i=1

nX
j=1

ϕn(Zi, Zj),

which can be approximated by a second order U-statistic as follows. Letting pn(z1, z2) = n(n −
1)[ϕn(z1, z2) + ϕn(z2, z1)]/2 we have

Qn =
nX

i=1

nX
j=1

ϕn(Zi, Zj) =

µ
n

2

¶−1 n−1X
i=1

nX
j=i+1

pn(Zi, Zj) + op(n
−1/2),

since
Pn

i=1 ϕn(Zi, Zi) = op(n
−1/2). Now pn is a symmetric kernel, i.e., pn(z1, z2) = pn(z2, z1) and we

can apply Lemma 3.1 of Powell, Stock, and Stoker (1989). Letting

bQn =
2

n

nX
j=1

ωn(Zj), where ωn(Zi) = Ei [pn(Zi, Zj)] ,

we have √
n(Qn − bQn) = op(1).

It remains to find ωn(Zi). We have

2ωn(Zi) = E [f2(Zj, θ0)Γ(Zj)] ς(Zi; θ0) +Ei [f2(Zj, θ0)ξi(Uj)]

because Ei[L(Zi, Zj)] = 0. Furthermore,

Ej

£
f2(Zi, θ0)ξj(Ui)

¤
= Ej

£
f2(Zi, θ0)[ρj(Ui, θ0)− Eiρj(Ui, θ0)]

¤
= Ej

·
f0(Zi, θ0)

[ρj(Ui, θ0)− ψ(Ui)]

ψ(Ui)

¸
.

E [f2(Zi, θ0)Γ(Zi)] = E

·
f2(Zi, θ0)

½
Ei

·
ζij

∂m(Xj, θ0)

∂θ

¸
− Ei[ζij]

∂m(Xi, θ0)

∂θ

¾¸

= E

·
f0(Zi, θ0)

ψ(Ui)
ζij

½
∂m(Xj, θ0)

∂θ
− ∂m(Xi, θ0)

∂θ

¾¸
.
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Writing ζij = Eiζij + ζ ij − Eiζij, where Eiζij = −ψ0(Ui), we have

E

·
f0(Zi, θ0)

ψ(Ui)
ζ ij

½
∂m(Xj, θ0)

∂θ
− ∂m(Xi, θ0)

∂θ

¾¸

= E

·
f0(Zi, θ0)

ψ0(Ui)

ψ(Ui)

½
∂m(Xi, θ0)

∂θ
− E

µ
∂m(Xi, θ0)

∂θ

¶¾¸
+E

·
f0(Zi, θ0)

ψ(Ui)

©
ζij − Eiζij

ª½∂m(Xj, θ0)

∂θ
− E

µ
∂m(Xj, θ0)

∂θ

¶¾¸
.

Therefore,

bQn = E

·
f0(Zi, θ0)

ψ0(Ui)

ψ(Ui)
eγi +

f0(Zi, θ0)

ψ(Ui)
eζijeγj

¸
1

n

nX
j=1

ς(Zj; θ0) (20)

+
1

n

nX
j=1

Ej

·
f0(Zi, θ0)

[ρj(Ui, θ0)− ψ(Ui)]

ψ(Ui)

¸
.

We have shown that
1

n

nX
i=1

f2(Zi, θ0)[bψ(bUi)− ψ(Ui)] = bQn + op(n
−1/2),

where bQn is given in (20). This concludes the analysis of the leading terms.

Remainders. By the Cauchy-Schwarz inequality¯̄̄̄
¯ 1n

nX
i=1

[f2(Zi,bθ)− f2(Zi, θ0)][bψ(bUi)− ψ(Ui)]

¯̄̄̄
¯

≤
Ã
1

n

nX
i=1

[f2(Zi,bθ)− f2(Zi, θ0)]
2

!1/2Ã
1

n

nX
i=1

[bψ(bUi)− ψ(Ui)]
2

!1/2

= Op(n
−1)

from another application of Lemmas 1 and 2.

Therefore,¯̄̄̄
¯1n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]

ψ2(Ui)bψ(bUi)
[bψ(bUi)− ψ(Ui)]

2

¯̄̄̄
¯

≤ supu∈U [bψ(u)− ψ(u)]2 + op(n
−1/2)

infu∈U ψ3(u) + op(1)

1

n

nX
i=1

|r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)| · (|Yi|+ 1)

= op(n
−1/2).
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This result used the fact that min1≤i≤n
bψ(bUi) ≥ infu∈U ψ(u) + op(1), which is proved in Lemma 2.

Also infu∈U ψ(u) > 0.

In conclusion,
√
n[bµ3r(x)− µr(x; θ0)] =

1√
n

nX
i=1

ηi + op(1),

as required. The asymptotic distribution of
√
n[bµ3r(x)−µr(x)] follows from the central limit theorem

for independent random variables with finite variance.

Proof of Theorem 4. By a geometric series expansion we can write

bµ∗4r(x;bθ) =
1

n

nX
i=1

f1(Zi,bθ)− 1

n

nX
i=1

f2(Zi, θ0)[eψ(bUi)− ψ(Ui)] (21)

−1
n

nX
i=1

[f2(Zi,bθ)− f2(Zi, θ0)]× [eψ(bUi)− ψ(Ui)] (22)

+
1

n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]

ψ2(Ui)eψ(bUi)
[eψ(bUi)− ψ(Ui)]

2.(23)

The leading terms in this expansion are derived from (21), while (22) and (23) contain remainder

terms.

Leading Terms. We make use of Lemma 3 given below. The term n−1
Pn

i=1 f1(Zi,bθ) has already
been analyzed above. By Lemma 3 we have with probability tending to one for some function d(.)

with finite r moments¯̄̄̄
¯ 1n

nX
i=1

f2(Zi, θ0)

"eψ(bUi)− ψ(Ui)− 1

n

nX
j=1

L∗(Zi, Zj)

#¯̄̄̄
¯ ≤ 1

nb3

Ã
1

n

nX
i=1

|f2(Zi, θ0)|d(Xi)

!

= Op(n
−1b−3). (24)

where L∗(Zi, Zj) = b−1k((Ui − Uj)/b)− ψ(Ui) + Γ
∗(Zi) · ς(Zj, θ0) and

Γ∗(Zi) = ψ(Ui)

½
ψ0(Ui)

ψ(Ui)

·
∂m

∂θ>
(Xi, θ0)− E

·
∂m

∂θ>
(Xi, θ0) | Ui

¸¸
−m0

θ(Ui)

¾
.

Under our bandwidth conditions, the right hand side of (24) is op(n−1/2).

Next,
1

n

nX
i=1

f2(Zi, θ0)
1

n

nX
j=1

L∗(Zi, Zj) =
nX

i=1

nX
j=1

ϕn(Zi, Zj)
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where

ϕn(Zi, Zj) =
1

n2
f2(Zi, θ0)

·
1

b
k

µ
Ui − Uj

b

¶
− ψ(Ui) + Γ

∗(Zi) · ς(Zj, θ0)

¸
.

Note that

Eiϕn(Zi, Zj) =
1

n2
f2(Zi, θ0)

·Z
1

b
k

µ
Ui − u

b

¶
ψ(u)du− ψ(Ui)

¸
=

1

n2
f2(Zi, θ0)

·Z
k(t)ψ(t+ Uib)dt− ψ(Ui)

¸
= Op(n

−2b2)

uniformly in i. Define

f 2(Ui) = E[f2(Zi, θ0)|Ui].

Then by iterated expectation

n2Ejϕn(Zi, Zj) = E

·
f 2(Ui)

1

b
k

µ
Ui − Uj

b

¶¸
− E

£
f 2(Ui)ψ(Ui)

¤
+E [f2(Zi, θ0)Γ

∗(Zi)] · ς(Zj, θ0),

where, using integration by parts, a change of variable, and dominated convergence,

E

·
f 2(Ui)

1

b
k

µ
Ui − Uj

b

¶¸
=

Z
f 2(u)

1

b
k

µ
u− Uj

b

¶
ψ(u)du

= f 2(Uj)ψ(Uj) +Op(b
2)

uniformly in i. Note that f2(Uj)ψ(Uj) = f 0(Uj) = E[f0(Zj, θ0)|Uj]. Furthermore,

E [f2(Zi, θ0)Γ
∗(Zi)] = E

·
f0(Zi, θ0)

½
ψ0(Ui)γ

∗
i

ψ(Ui)
− m0

θ(Ui)

ψ(Ui)

¾¸

= E

·
ψ0(Ui)

ψ(Ui)

©
f0(Zi, θ0)− f0(Ui)

ª
γ∗i

¸
− E

·
f 0(Ui)

m0
θ(Ui)

ψ(Ui)

¸
by substituting in for f2 and decomposing f0(Zi, θ0) = f 0(Ui) + f0(Zi, θ0)− f 0(Ui). Using the same

U-statististic argument as in the proof of Theorem 3 we obtain

1

n2

nX
i=1

f2(Zi, θ0)
nX

j=1

L∗(Zi, Zj) =
1

n

nX
j=1

ωn(Zj) + op(n
−1/2),

where

ωn(Zj) = f 0(Uj)−E[f0(Uj)] +E [f2(Zi, θ0)Γ
∗(Zi)] ς(Zj).

Remainder Terms. First,
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¯̄̄̄
¯ 1n

nX
i=1

[f2(Zi,bθ)− f2(Zi, θ0)][eψ(bUi)− ψ(Ui)]

¯̄̄̄
¯

≤
Ã
1

n

nX
i=1

[f2(Zi,bθ)− f2(Zi, θ0)]
2

!1/2Ã
1

n

nX
i=1

[eψ(bUi)− ψ(Ui)]
2

!1/2
= op(n

−1/2).

Second ¯̄̄̄
¯1n

nX
i=1

r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)[Yi − 1(bUi > 0)]

ψ2(Ui)eψ(bUi)
[eψ(bUi)− ψ(Ui)]

2

¯̄̄̄
¯

≤ supu∈U [eψ(u)− ψ(u)]2 + op(n
−1/2)

infu∈U ψ3(u) + op(1)

1

n

nX
i=1

|r0[Λ(m(x,bθ)− bUi), x]Λ
0(m(x,bθ)− bUi)| · (|Yi|+ 1)

= op(n
−1/2).

This result used the fact that min1≤i≤n
eψ(bUi) ≥ infu∈U ψ(u)+ op(1), which is proved in Lemma 3.

6.4 Subsidiary Results

Define

Fn(θ) =
1

n

nX
i=1

f(Zi, θ)

for some function f, and let F (θ) = EFn(θ) and ΓF = ∂F (θ0)/∂θ.

Lemma 1. Assume:

(i) For some vector ς
√
n(bθ − θ0) =

1√
n

nX
i=1

ς(Zi, θ0) + op(1)

where E[ς(Zi, θ0)] = 0 and Ω = E[ς(Zi, θ0)ς(Zi, θ0)
>] <∞.

(ii) There exists a finite matrix ΓF of full (column) rank such that

lim
kθ−θ0k→0

kF (θ)− ΓF (θ − θ0)k
kθ − θ0k = 0.

(iii) For every sequence of positive numbers {δn} such that δn → 0,

sup
kθ−θ0k≤δn

°°√n[Fn(θ)− F (θ)]−√n[Fn(θ0)− F (θ0)]
°° = op(1).
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Then √
n[Fn(bθ)− F (θ0)]=⇒ N(0, V ),

where

V = var[ΓF ς(Zi, θ0) + f(Zi, θ0)]

= ΓFΩΓF
> + var[f(Zi, θ0)] + 2ΓFEς(Zi, θ0)f(Zi, θ0).

See below for a discussion on the verification of (iii).

Proof. Since bθ is root-n consistent, there exists a sequence δn → 0 such that

Pr[||√n(bθ − θ0)|| > δn]→ 0

as n →∞. We can therefore suppose that ||√n(bθ − θ0)|| ≤ δn with probability tending to one. We

have
√
n[Fn(bθ)− F (θ0)] =

√
n[F (bθ)− F (θ0)] +

√
n[Fn(bθ)− F (bθ)]

= ΓF

√
n(bθ − θ0) +

√
n[Fn(θ0)− F (θ0)] + o(k[√n(bθ − θ0)k)

+
√
n{[Fn(bθ)− F (bθ)]− [Fn(θo)− F (θ0)]}

= ΓF

√
n(bθ − θ0) +

√
n[Fn(θ0)− F (θ0)] + op(1)[by (ii) and (iii)]

=
1√
n

nX
i=1

{ΓF ς(Zi, θ0) + [f(Zi, θ0)− Ef(Zi, θ0)]}+ op(1),

and the result now follows from standard CLT for independent random variables.

Lemma 2. Suppose that assumptions C1-C3 hold. Then, as n→∞

max
1≤i≤n

¯̄̄̄
¯bψ(bUi)− ψ(Ui)− 1

n

nX
j=1

L(Zi, Zj)

¯̄̄̄
¯ = op(n

−1/2) (25)

max
1≤i≤n

¯̄̄̄
¯ 1n

nX
j=1

L(Zi, Zj)

¯̄̄̄
¯ = Op(n

−1/2) (26)

min
1≤i≤n

bψ(bUi) ≥ inf
u∈U

ψ(u) + op(1) (27)

where L(Zi, Zj) = ξj(Ui) + Γ(Zi)ς(Zj; θ0), and

Γ(Zi) = Ei

·
ζij

∂m(Xj, θ0)

∂θ

¸
− Ei[ζij]

∂m(Xi, θ0)

∂θ
.
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ξj(Ui) = h(Λ|Xj)Λ
0(m(Xj, θ0)− Ui)− Ei [h(Λ|Xj)Λ

0(m(Xj, θ0)− Ui)]

ζij = E
¡£
h0(Λ|Xj)(Λ

0)2 + h(Λ|Xj)Λ
00¤ (m(Xj, θ0)− Ui)

¢
.

Proof. Regarding (26), the pointwise rate follows by standard central limit theorem for each

Zi = z: we have EL(z, Zj) = 0 for each z and supz varL(z, Zj) < ∞. Then because the function

L(z, Zj) is bounded Lipschitz, the uniformity over z follows.

Result (27) follows by an application of the triangle inequality:

min
1≤i≤n

ψ(Ui) ≤ min
1≤i≤n

bψ(bUi) + max
1≤i≤n

|bψ(bUi)− ψ(Ui)|,

and the fact that max1≤i≤n |bψ(bUi)− ψ(Ui)| = op(1) as a consequence of (25) and (26).

Before showing (25) we show that

max
1≤i≤n

bUi ≤ max
1≤i≤n

Ui + op(1) (28)

min
1≤i≤n

bUi ≥ min
1≤i≤n

Ui + op(1), (29)

from which it follows that we can ignore the possibility that bUi lies outside of the support of Ui, i.e.,

for any event A

Pr [A] ≤ Pr
h
A and {bU1, . . . , bUn} ⊂ U

i
+ Pr

hbUj /∈ U for some j
i

≤ Pr
h
A and {bU1, . . . , bUn} ⊂ U

i
+ o(1) = o(1). (30)

Proof of (28). We have bUi = Ui +
∂m

∂θ
(Xi, θ)(bθ − θ0)

by the mean value theorem, where θ are intermediate values between bθ and θ0. Since bθ is root-
n consistent, there exists a sequence δn → 0 such that Pr[||bθ − θ0|| ≥ δn] → 0. Therefore, with

probability tending to one

|∂m
∂θ
(Xi, θ)| ≤ sup

||θ−θ0||≤δn

|∂m
∂θ
(Xi, θ)| ≤ d1(Xi).

Furthermore, applying the Bonferroni and Markov inequalities

Pr

·
max
1≤i≤n

d1(Xi) > ε
√
n

¸
≤ nPr

£
d1(Xi) > ε

√
n
¤

≤ n
Edr

1(Xi)

(ε
√
n)

r = o(1)

for any ε > 0 when r > 2. This yields (28); (29) follows similarly.
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We next prove (25). Define the stochastic process in θ

bψ(Ui(θ)) =
1

n

nX
j=1

ρj(Ui(θ), θ).

Then by Taylor expansion

bψ(bUi)− bψ(Ui) =
1

n

nX
j=1

∂ρj(Ui(θ0), θ0)

∂θ>
(bθ − θ0) +Rni, (31)

where the derivative inside the summation is a total derivative defined below, while

Rni =
1

2n

nX
j=1

(bθ − θ0)
>∂

2ρj(Ui(θ), θ)

∂θ∂θ>
(bθ − θ0),

where θ are intermediate values between bθ and θ0, while:

∂ρj(Ui(θ), θ)

∂θ
=

£
h0(Λ|Xj)(Λ

0)2 + h(Λ|Xj)Λ
00¤ (m(Xj, θ)− Ui(θ))

·
∂m(Xj, θ)

∂θ
− ∂m(Xi, θ)

∂θ

¸
∂2ρj(Ui(θ), θ)

∂θ∂θ>
=

£
h00(Λ|Xj)(Λ

0)3 + 3h0(Λ|Xj)Λ
0Λ00 + h(Λ|Xj)Λ

000¤ (m(Xj, θ)− Ui(θ))

×
·
∂m(Xj, θ)

∂θ
− ∂m(Xi, θ)

∂θ

¸ ·
∂m(Xj, θ)

∂θ
− ∂m(Xi, θ)

∂θ

¸>
+
£
h0(Λ|Xj)(Λ

0)2 + h(Λ|Xj)Λ
00¤ (m(Xj, θ)− Ui(θ))

·
∂2m(Xj, θ)

∂θ∂θ>
− ∂2m(Xi, θ)

∂θ∂θ>

¸
.

Applying (30) we have in (31) that with probability tending to one

|Rni| ≤ ||bθ − θ0||2 × 1

n

nX
j=1

sup
||θ−θ0||≤δn

°°°°∂2ρj(Ui(θ), θ)

∂θ∂θ>

°°°°
≤ Op(n

−1)× 1

n

nX
j=1

D(Xi, Xj)

for some measurable function D with finite mean. Therefore, max1≤i≤n |Rni| = op(n
−1/2). We then

show that

max
1≤i≤n

¯̄̄̄
¯ 1n

nX
j=1

∂ρj(Ui(θ0), θ0)

∂θ>
− Ei

·
∂ρj(Ui(θ0), θ0)

∂θ>

¸¯̄̄̄
¯ = op(1).

The pointwise limit follows by the law of large numbers, and the uniformity is obtained by another

application of the Bonferroni and Markov inequalities. Therefore, uniformly in i

bψ(bUi)− bψ(Ui) = Ei

·
∂ρj(Ui(θ0), θ0)

∂θ>

¸
(bθ − θ0) + op(n

−1/2).
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We have

Ei

·
∂ρj(Ui(θ0), θ0)

∂θ>

¸
= Ei

·
ζij

∂m(Xj, θ0)

∂θ

¸
− Ei[ζij]

∂m(Xi, θ0)

∂θ
.

This is because by the chain rule

∂ρj(Ui(θ0), θ0)

∂θ
=

∂ρj(u, θ)

∂θ

y
θ=θ0,u=Ui(θ0)

+
∂ρj(u, θ0)

∂u

y
θ=θ0,u=Ui(θ0)

∂Ui(θ)

∂θ

y
θ=θ0

= − ∂ρj(u, θ0)

∂u

y
θ=θ0,u=Ui(θ0)

·
∂m(Xj, θ0)

∂θ
− ∂m(Xi, θ0)

∂θ

¸
,

where ∂ρj(u, θ0)/∂u was defined in (15).

Lemma 3. Suppose that assumptions C1-C4 hold. Then with probability tending to one for some

function d with finite r moments:

max
1≤i≤n

¯̄̄̄
¯eψ(bUi)− ψ(Ui)− 1

n

nX
j=1

L∗(Zi, Zj)

¯̄̄̄
¯ ≤ k

nb3
d(Xi) (32)

max
1≤i≤n

¯̄̄̄
¯ 1n

nX
j=1

L∗(Zi, Zj)

¯̄̄̄
¯ = Op

(µ
log n

nb

¶1/2)
+Op(b

2) (33)

min
1≤i≤n

eψ(bUi) ≥ inf
u∈U

ψ(u) + op(1) (34)

where

L∗(Zi, Zj) =
1

b
k

µ
Ui − Uj

b

¶
− ψ(Ui) + Γ

∗(Zi) · ς(Zj, θ0)

Γ∗(Zi) = ψ0(Ui)

·
∂m

∂θ>
(Xi, θ0)−E

·
∂m

∂θ>
(Xi, θ0) | Ui

¸¸
− ψ(Ui)m

0
θ(Ui).

Proof. Define

ψ(Ui) =
1

nb

nX
j=1

k

µ
Ui − Uj

b

¶
.

Making a second order Taylor series expansion we have

eψ(bUi)− ψ(Ui) = Tni +Rni, (35)

where

Tni = ψ(Ui)− ψ(Ui) +
1

nb2

nX
j=1

k0
µ
Ui − Uj

b

¶·
∂m

∂θ>
(Xi, θ0)− ∂m

∂θ>
(Xj, θ0)

¸
(bθ − θ0)
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Rni =
1

2nb3

nX
j=1

k00
µ
U∗

i − U∗
j

b

¶·
∂m

∂θ
(Xi, θ0)− ∂m

∂θ
(Xj, θ0)

¸
(bθ − θ0)(bθ − θ0)

>

×
·
∂m

∂θ
(Xi, θ0)− ∂m

∂θ
(Xj, θ0)

¸>
+
1

nb2

nX
j=1

k0
µ
Ui − Uj

b

¶
(bθ − θ0)

>
·

∂2m

∂θ∂θ>
(Xi, θ

∗)− ∂2m

∂θ∂θ>
(Xj, θ

∗)
¸
(bθ − θ0),

where θ∗ are intermediate values between bθ and θ0, and U∗
i = Ui(θ

∗).

We first show that the remainder terms are of smaller order. We have with probability tending

to one

|Rni| ≤ b−3 sup
u
|k00(u)| · ||bθ − θ0||2 ·

Ã°°°°∂m∂θ (Xi, θ0)

°°°°2 + 1

n

nX
j=1

°°°°∂m∂θ (Xj, θ0)

°°°°2
!

+b−1||bθ − θ0||2 · 1
nb

nX
j=1

¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄
(d1(Xi) + d2(Xj))

by the Cauchy-Schwarz inequality. Since the function |k0(u)| is Lipschitz continuous, we can apply
the uniform convergence results of Masry (1996a):

max
1≤i≤n

¯̄̄̄
¯ 1nb

nX
j=1

¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄
−Ei

·¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄¸¯̄̄̄
¯ = Op

(µ
log n

nb

¶1/2)

max
1≤i≤n

¯̄̄̄
¯ 1nb

nX
j=1

¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄
d2(Xj)− Ei

¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄
d2(Xj)

¯̄̄̄
¯ = Op

(µ
log n

nb

¶1/2)
.

Furthermore,

Ei

·
1

b

¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄¸
=

Z
|k0(t)|ψ(Ui + tb)dt

Ei

·¯̄̄̄
k0
µ
Ui − Uj

b

¶¯̄̄̄
d2(Xj)

¸
=

Z
|k0(t)| d2(Ui + tb)ψ(Ui + tb)dt

are uniformly bounded, where d2(Ui) = E[d2(Xi)|Ui]. Therefore, for suitable constants and dominat-

ing functions

|Rni| ≤ k1
nb3
(d3(Xi) + k2) +

k3
nb
(d1(Xi) + k4)

with probability tending to one. This gives the result. Furthermore, we have max1≤i≤n dl(Xi) =

Op(n
1/r), so that

max
1≤i≤n

|Rni| = Op(n
−1b−3n1/r).

Provided n(r−2)/rb6 → ∞, this term is op(n−1/2). With additional smoothness conditions on k and

m, this condition can be substantially weakened.
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We now turn to the leading term Tni. By the Masry (1996a) results

max
1≤i≤n

¯̄̄̄
¯ 1nb2

nX
j=1

k0
µ
Ui − Uj

b

¶
d(Xj)−Ei

·
1

b2
k0
µ
Ui − Uj

b

¶
d(Uj)

¸¯̄̄̄
¯ = Op

(µ
log n

nb3

¶1/2)
, (36)

for any function d with finite moments, where d(Uj) = E[d(Xj)|Uj]. Under our bandwidth conditions

this term is op(1). Furthermore, for any twice continuously differentiable function d(u) we have¯̄̄̄
E

·
1

b2
k0
µ
Ui − Uj

b

¶
d(Uj) | Ui

¸
− [d(Ui)ψ(Ui)]

0
¯̄̄̄

(37)

=

¯̄̄̄Z
1

b2
k0
µ
Ui − u

b

¶
d(u)ψ(u)du− [d(Ui)ψ(Ui)]

0
¯̄̄̄

=

¯̄̄̄Z
1

b
k

µ
Ui − u

b

¶
[d(u)ψ(u)]0du− [d(Ui)ψ(Ui)]

0
¯̄̄̄

=

¯̄̄̄Z
k(t)

¡
[d(Ui + tb)ψ(Ui + tb)]0 − [d(Ui)ψ(Ui)]

0¢ dt¯̄̄̄

= Op(b
2)

by integration by parts, change of variables and dominated convergence using the symmetry of k. This

order is uniform in i by virtue of the boundedness and continuity of the relevant functions. In (36)

and (37) take d(u) = 1 and d(u) = mθ(u), and note that [d(Ui)ψ(Ui)]
0 = d

0
(Ui)ψ(Ui) + d(Ui)ψ

0(Ui).

Therefore,

1

nb2

nX
j=1

k0
µ
Ui − Uj

b

¶
∂m

∂θ>
(Xi, θ0) =

∂m

∂θ>
(Xi, θ0)ψ

0(Ui) + op(1)

1

nb2

nX
j=1

k0
µ
Ui − Uj

b

¶
∂m

∂θ>
(Xj, θ0) = m0

θ(Ui)ψ(Ui) +mθ(Ui)ψ
0(Ui) + op(1)

uniformly in i.

In conclusion,

max
1≤i≤n

|Tni − 1

n

nX
j=1

L∗(Zi, Zj)| = op(n
−1/2) ; max

1≤i≤n
|Rni| = op(n

−1/2),

which gives the first part of the lemma. Also, we have

max
1≤i≤n

|1
n

nX
j=1

L∗(Zi, Zj)| = Op

(µ
log n

nb

¶1/2)
+Op(b

2),
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by the Masry results.

The proof of (34) follows as for (27).

6.5 Stochastic Equicontinuity Results

We now show that condition (iii) of Lemma 1 is satisfied in our case. Let Θn(c) = {θ:
√
n|θ−θ0| ≤ c}.

Since
√
n(bθ − θ0) = Op(1), for all ε > 0 there exists a cε and an integer n0 such that for all n ≥ n0,

Pr[bθ ∈ Θn(cε)] ≥ 1− ε. Define the stochastic process

νn(θ) =
1√
n

nX
i=1

f(Zi, θ)− E[f(Zi, θ)], θ ∈ Θ,

where

f(Zi, θ) = r[Λ(m(x, θ)), x] +
r0[Λ(m(x, θ)− Ui(θ)), x]Λ

0(m(x, θ)− Ui(θ))[Yi − 1(Ui(θ) > 0)]

ψ(Ui)

and define the pseudo-metric

ρ(θ, θ0) = E
³
[f(Zi, θ)− f(Zi, θ

0)]2
´
,

on Θ. Under this metric, the parameter space Θ is totally bounded. We are only interested in the

behaviour of this process as θ varies in the small set Θn. By writing θ = θ0 + γn−1/2, we shall make

a reparameterization to νn(γ), where γ ∈ Γ(c) ⊂ Rp. We establish the following result:

sup
γ∈Γ

|νn(γ)− νn(0)| = op(1) (38)

To prove (38) it is sufficient to show a pointwise law of large numbers, e.g., νn(γ) − νn(0) = op(1)

for any γ ∈ Γ, and stochastic equicontinuity of the process νn at γ = 0. The pointwise result is

immediate because the random variables are sums of i.i.d. random variables with finite absolute

moment and zero mean; the probability limit of νn(γ) is the same for all γ ∈ Γ by the smoothness
of the expected value in γ. To complete the proof of (38) we shall use the following lemma, proved

below, which states that νn is stochastically equicontinuous in θ. The difficulty in establishing the

required equicontinuity arises solely because the function m inside U is nonlinear in θ.

Lemma SE. Under the above assumptions, the process νn(γ) is stochastically equicontinuous,

i.e., for all ε > 0 and η > 0, there exists δ > 0 such that

lim sup
n→∞

Pr

"
sup

ρ(t1,t2)<δ

|νn(t1)− νn(t2)| > η

#
< ε.
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Proof of Lemma SE. By a second order Taylor series expansion of m(Zi, θ) around m(Zi, θ
0):

m(Zi, θ
0 + γn−1/2) = m(Zi, θ

0) +
1√
n

pX
k=1

∂m

∂θk
(Zi, θ

0)γk +
1

n

pX
k=1

pX
r=1

∂2m

∂θk∂θr
(Zi; θ)γkγr (39)

for some intermediate points θ. Define the linear approximation to m(Zi, θ
0 + γn−1/2),

T (Zi, γ) = m(Zi, θ
0) +

pX
k=1

∂m

∂θk
(Zi, θ

0)γk

for any γ. By assumption C2, for all k, r, supθ∈Θ |∂2m(Zi, θ)/∂θk∂θr|2 ≤ d(Zi) with Ed(Zi) < ∞.

Therefore, for all δ > 0 there exists an ε > 0 such that

Pr

·
1√
n
max
i,k,r

sup
θ∈Θn

¯̄̄̄
∂2m

∂θk∂θr
(Zi, θ)

¯̄̄̄
> ε

¸
≤ n

X
k,r

Pr

·
1√
n
sup
θ∈Θn

¯̄̄̄
∂2m

∂θk∂θr
(Zi, θ)

¯̄̄̄
> ε

¸

≤
P

k,r E[d(Zi)]

ε2
≤ δ,

by the Bonferroni and Chebychev inequalities. Therefore, with probability tending to one

max
1≤i≤n

¯̄̄̄
¯ 1n

pX
k=1

pX
r=1

∂2m

∂θk∂θr

(Zi; θ)γkγr

¯̄̄̄
¯ ≤ π√

n

for some π <∞. Define the stochastic process

νn1(γ, π) =
1√
n

nX
i=1

f(Zi, θ0 + γn−1/2, πn−1/2)− Ef(Zi, θ0 + γn−1/2, πn−1/2)

on γ ∈ Γ and π ∈ Π = [0, π], where

f(Zi, θ0 + γn−1/2, πn−1/2)

= r[Λ(m(x, θ0 + γn−1/2)), x]

+
r0[Λ(m(x, θ0 + γn−1/2)− Ui(θ0 + γn−1/2)), x]Λ0(m(x, θ0 + γn−1/2)− Ui(θ0 + γn−1/2))

ψ(Ui)

×[Yi − 1(T (Zi, γn
−1/2) +

π√
n
> 0)]

It suffices to show that νn1(γ, π) is stochastically equicontinuous in γ, π, and the deterministic cen-

tering term is of smaller order. The latter argument is a standard Taylor expansion. The argument

for νn1(γ, π) is very similar to that contained in Sherman (1993) because we have a linear index

structure in this part. One can apply Lemma 2.12 in Pakes and Pollard (1989).
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σ = 5 σ = 10 σ = 50

n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

PRMSE bµ1 3.97 2.73 2.27 4.01 2.73 2.30 3.97 2.67 2.23bµ3 14.10 12.79 12.56 14.04 12.85 12.60 13.92 12.79 12.52bµ4 7.00 3.69 2.66 6.98 3.67 2.65 6.91 3.71 2.65bµ5 4.90 3.48 3.14 4.98 3.48 3.13 4.97 3.50 3.16

PMAE bµ1 3.15 2.21 1.82 3.18 2.19 1.84 3.18 2.14 1.79bµ3 12.49 12.13 12.15 12.37 12.17 12.20 12.27 12.12 12.12bµ4 5.72 3.00 2.15 5.72 2.99 2.14 5.62 3.02 2.14bµ5 3.94 2.88 2.66 4.01 2.87 2.65 3.99 2.89 2.68

IRMSE bµ1 14.56 12.63 12.21 14.55 12.64 12.20 14.59 12.59 12.17bµ3 17.59 16.04 15.74 17.55 16.07 15.79 17.57 16.10 15.79bµ4 12.74 10.41 9.89 12.73 10.38 9.90 12.85 10.51 10.00bµ5 11.74 10.33 10.02 11.76 10.31 10.03 11.92 10.43 10.14

IMAE bµ1 10.96 10.16 10.05 10.95 10.15 10.04 10.98 10.08 9.97bµ3 14.42 13.36 13.13 14.35 13.38 13.18 14.34 13.40 13.16bµ4 10.08 8.50 8.22 10.06 8.48 8.23 10.17 8.59 8.32bµ5 9.23 8.44 8.31 9.25 8.42 8.32 9.38 8.53 8.42

Table 1: Conditional Mean in 5-bid design; 10,000 replications; Bandwidth by Silverman’s Thumb;

Pointwise Root Mean Squared and Absolute Errors (PRMSE and PMAE) calculated at x = 0.
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σ = 5 σ = 10 σ = 50

n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

PRMSE bµ1 7.90 3.07 1.24 4.12 2.98 4.50 37.49 41.47 43.19bµ3 11.18 6.43 5.40 12.09 9.99 9.86 45.97 48.60 49.37bµ4 9.91 7.47 6.85 11.10 9.70 9.30 45.90 46.78 46.75bµ5 28.14 26.41 26.03 24.18 22.07 21.33 28.74 24.32 22.50

PMAE bµ1 7.10 2.61 0.94 3.26 2.61 4.36 37.29 41.42 43.16bµ3 8.12 5.65 5.17 10.97 9.76 9.75 44.62 48.29 49.25bµ4 7.59 6.34 5.98 10.33 9.26 8.84 44.78 46.19 46.24bµ5 24.26 24.38 24.65 21.12 20.17 19.92 23.56 21.38 20.59

IRMSE bµ1 17.37 17.49 17.42 13.11 13.24 13.24 30.48 30.14 30.30bµ3 11.18 6.43 5.40 12.09 9.99 9.86 45.97 48.60 49.37bµ4 9.91 7.47 6.85 11.10 9.70 9.30 45.90 46.78 46.75bµ5 21.93 20.17 19.75 18.66 16.69 16.08 33.37 32.01 31.66

IMAE bµ1 15.74 15.71 15.46 11.39 11.47 11.57 29.40 29.13 29.25bµ3 8.12 5.65 5.17 10.97 9.76 9.75 44.62 48.29 49.25bµ4 7.59 6.34 5.98 10.33 9.26 8.84 44.78 46.19 46.24bµ5 18.05 17.50 17.39 15.83 14.71 14.38 29.72 29.33 29.25

Table 2: Conditional Standard Deviation in 5-bid design; 10,000 replications;

Bandwidth by Silverman’s Thumb
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σ = 5 σ = 10 σ = 50

n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

PRMSE bµ1 5.59 3.32 2.60 6.19 3.80 3.05 11.30 7.34 5.92bµ3 10.65 7.05 6.28 10.42 7.11 6.24 12.42 9.63 8.90bµ4 6.27 3.33 2.51 6.42 3.45 2.67 9.12 5.11 3.96bµ5 5.78 3.35 2.61 5.88 3.39 2.60 7.56 4.38 3.42

PMAE bµ1 4.40 2.63 2.06 4.91 3.01 2.43 9.00 5.83 4.72bµ3 8.56 5.73 5.22 8.35 5.80 5.19 10.16 8.30 7.93bµ4 5.02 2.68 2.01 5.13 2.75 2.14 7.26 4.09 3.16bµ5 4.59 2.67 2.08 4.70 2.71 2.08 6.04 3.49 2.72

IRMSE bµ1 12.30 7.54 6.02 12.37 7.57 6.05 15.76 11.12 9.82bµ3 12.65 8.05 6.98 12.46 8.10 6.94 15.90 12.38 11.55bµ4 9.22 5.12 3.93 9.35 5.19 4.03 13.37 9.24 8.32bµ5 8.91 5.13 4.00 9.00 5.15 3.99 12.31 8.85 8.07

IMAE bµ1 8.81 5.41 4.33 8.96 5.47 4.40 12.05 8.51 7.54bµ3 9.99 6.46 5.70 9.80 6.52 5.66 12.35 9.80 9.24bµ4 7.14 3.95 3.02 7.24 4.01 3.12 10.40 7.23 6.57bµ5 6.87 3.97 3.08 6.95 3.98 3.09 9.53 6.90 6.36

Table 3: Conditional Mean in Continuous design; 10,000 replications; Bandwidth by Silverman’s Thumb
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σ = 5 σ = 10 σ = 50

n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

PRMSE bµ1 9.59 7.43 6.49 7.49 5.43 4.55 10.74 7.91 7.17bµ3 40.77 41.70 41.96 37.21 37.90 38.04 18.75 18.18 18.08bµ4 18.37 12.46 10.44 16.99 12.00 10.35 15.96 8.70 6.92bµ5 20.38 15.14 13.32 19.07 14.52 12.72 24.20 15.84 12.30

PMAE bµ1 8.86 7.10 6.25 6.41 4.79 4.05 8.68 6.65 6.16bµ3 38.72 41.16 41.66 35.33 37.34 37.73 17.15 17.58 17.73bµ4 14.01 9.95 8.54 14.39 10.62 9.25 11.89 6.72 5.49bµ5 15.15 11.68 10.55 15.88 12.62 11.21 18.37 11.54 9.12

IRMSE bµ1 12.13 10.00 9.08 10.98 8.98 8.08 18.80 14.35 12.92bµ3 40.77 41.70 41.96 37.21 37.90 38.04 18.75 18.18 18.08bµ4 18.37 12.46 10.44 16.99 12.00 10.35 15.96 8.70 6.92bµ5 18.51 14.00 12.20 17.54 13.36 11.82 24.18 18.16 16.00

IMAE bµ1 10.05 8.43 7.69 9.35 7.59 6.77 14.06 11.05 10.33bµ3 38.72 41.16 41.66 35.33 37.34 37.73 17.15 17.58 17.73bµ4 14.01 9.95 8.54 14.39 10.62 9.25 11.89 6.72 5.49bµ5 13.34 10.53 9.43 14.20 11.28 10.08 18.32 13.42 11.95

Table 4: Conditional Standard Deviation in Continuous design; 10,000 replications;

Bandwidth by Silverman’s Thumb
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