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Willingness to Pay for Seabirds
Green, Jakowitz, Kahneman, McFadden (1997)

What value would your household place on 
saving about 50,000 seabirds each year from 
offshore oil spills?
- Several million seabirds live out of sight off Pacific 

coast
- Small oil spills kill estimated 50,000+ seabirds per 

year
- Usually not possible to force tanker companies to 

pay
- Public money would have to be spent yearly to save 

the birds, extra funds required

Contingent Valuation
Experimental Design

• Control subjects asked open-ended WTP
• In what is termed referendum format, 

treatment subjects were asked if WTP ≥ v, 
where bid v was set by experimental design 

• In the GJKM study, bids were set at quantiles
of the controls’ WTP distribution

• Questions:  
– What are median and mean WTP?
– Does the format (open-ended vs. referendum) 

matter?     
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Table 1. Willingness-to-Pay to Save 50,000 Off-Shore Seabirds per Year
Starting Point Bid Open-EndedDistribution

$400$150$60$25$5
12.0%8.3%0.0%8.5%12.2%19.8%$0-4.99
22.0%29.2%41.7%25.5%67.4%27.3%$5-24.99
20.0%27.1%14.6%53.2%12.2%31.4%$25-59.99
18.0%16.7%41.7%8.5%8.2%12.4%$60-149.99
10.0%18.8%2.1%2.1%0.0%5.0%$150-399.99
18.1%0.0%0.0%2.1%0.0%4.1%$400+

5048484749121Sample size

4.1%9.1%21.5%52.9%80.2%P(Open-Ended Response>Bid)
2.8%4.1%5.9%7.1%5.7%    (Std. Error)

18.0%18.8%43.8%66.0%87.8%P(Anchored Response>Bid)
5.4%5.6%7.2%6.9%4.7%    (Std. Error)

$50.00$43.00$25.00$25.00$10.00$25.00Median Response
$23.41$10.87$14.04$1.16$2.33$6.03    (Std. Error)

$143.12$60.23$49.42$45.43$20.30$64.25Mean Response (a)
$28.28$8.59$6.51$12.61$3.64$13.22    (Std. Error)

Std. ErrorCoefficient
0.320.284Marginal effect of starting point bid

0.1360.273K-J Interquartile Anchoring Index
$76.90$167.33Nonparametric referendum mean (b)

1.312.60       Referendum multiplier
$138.96$265.59Parametric referendum mean

2.324.13       Referendum multiplier
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Survival Curves
• Let T denote a random failure time, and G(t|x) 

= Prob(T≥t|x), t ≥ 0, denote the survival curve 
conditioned on a d-vector of (time-invariant) 
covariates x.

• In most applications, t is time.  Alternately:  
– t is the administered dose of a toxin, T is lethal 

dose, and G is the dose-response curve
– t is a bid in referendum Contingent Valuation and 

T is the subject’s Willingness-to-Pay (WTP).

Survival Data
• Survival analysis often assumes a size N 

sample of i.i.d. observations (xn,tn), where xn
is a d-vector of covariates and tn is completed 
(or censored) duration.

• Some applications provide interval-censored 
data: Tn is latent and one observes (xn,vn,yn), 
where vn is a test level in the t dimension set 
by experimental design, and independent of 
Tn given xn.  yn = 1(Tn ≥ vn) is a binary
indicator for the event Tn ≥ vn.  The 
conditional mean of yn given xn) is G(vn|xn). 
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Interval-Censored Data

• Critical feature:  T and V conditionally independent, 
given X 

• Failure times not observed retrospectively. 
• Analysis of a single test level v and a binary status 

indicator y can be extended to multiple (adaptive) 
test levels and multinomial status. 

X

T

Y = 1(T$V)

V
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Interval-Censored Data Examples
• Animal experiments:  At time v, the animal is 

sacrificed, y is one iff abnormality is present
• Materials Testing:  At treatment level v, y is 

one iff material meets requirement; e.g., 
crash test at speed v. 

• Dose-Response:  At treatment level/dose v, 
y is one iff lethal dose exceeds v.  
– Referendum contingent valuation has the dose-

response form, testing if willingness-to-pay 
(WTP) exceeds a bid v.

Longitudinal Interval-Censored Data
• Panels with periodic waves yield interval-censored 

data if retrospective data on T is unavailable or 
unreliable when failure occurs between waves.

• Statistical issue:  If x is not time-invariant, then even 
if x(s), 0 ≤ s ≤ t, is predetermined for T given T ≥ t, 
intra-wave feedbacks may nevertheless make x(v) 
endogenous. 

• Statistical issue:  If the failure time T interacts with 
interview scheduling, then the inter-wave duration 
(v) becomes endogenous, biasing conditional 
hazard rate estimates. 
– Measured hazard rates in the Health and Retirement 

Study depend on interview timing within a wave 
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Alternative Formulation of Survival Model

• If T = exp(m*(x,η)), with m* decreasing in a 
disturbance η that has a continuous CDF F(·|x), 
then G(t|x) = F(M*(x,log t)|x), where M* is the 
inverse of m* in its 2nd argument.

• Normalization:  Define ξ = F(η|x) and  T = 
exp(m(x,ξ)) ≡ exp(m*(x,F-1(ξ|x))).  Then ξ is 
uniform [0,1] and G(t|x) = M(x,log t), where M is 
the inverse of m in its 2nd argument.

Specializations
• T = Λ(m(x,θ0) - η)

→ G(t|x) = F(m(x,θ0) - Λ-1(t)|x)
a semiparametric model when F, θ0 unknown, m, Λ known

– T = exp(m(x,θ0) – η)   → G(t|x) = F(m(x,θ0) – log t|x)

• T = exp(x·θ0 - η) → G(t|x) = F(x·θ0 - log t|x)

– Type 1 extreme value F(η) = exp(-exp(-αη)) gives the 
parametric Weibull proportional hazards model, 

G(t|x) = exp(-tα·exp(-x·θ0α))
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Assumptions to set the problem

• A.1. Covariate vectors x are distributed in 
the population with a CDF Hx that has a 
compact support in a d-dimensional 
space.  The survival curve G has a 
continuously differentiable positive density 
g(t|x) with a compact support.

• A.2. The generalized moment function 
r(t,x) is continuous in (t,x), and for each x 
is twice continuously differentiable in t. 

Experimental Design Assumption
• A.3. There is an asymptotic distribution H(v,x) = 
∫w≤v∫z≤xh(w|z)dwHx(dz) of the treatments and 
covariates, where h(t|x) is a continuous density 
that for each x is strictly positive on a compact 
interval containing the support of G(t|x). The 
experimental design is described by an empirical 
CDF HN(v,x) such that N1/2[HN(v,x) - H(v,x)] 
converges weakly to a Gaussian process.

• For some nonparametric estimators, a rate less 
than N1/2 suffices and Gaussianity is not required

• A.3 implies supv,x |HN(v,x) - H(v,x)| → 0 a.s.       

Experimental Design Examples
• HN(v,x) is a random sample from H(v,x). 

– A.3 holds by Shorack-Wellner on convergence of 
triangular arrays of empirical processes, and a.s. 
convergence holds by Glivenko-Cantelli.

• At N, xn is sampled randomly from Hx.  A fixed 
design for v with JN possible values of v is 
selected.  vn is drawn randomly from a density 
hN(v|x) on this finite support that for each x 
converges weakly to a positive  continuous 
density h(v|x).
– Sufficient:  JN/N1/2 → ∞, max gap of order 1/JN, and 

CDF’s of hN and h coinciding at design points

Inference Problems
• Survival curve features of interest are 

moments, quantiles, and percentiles 
(unconditional, or conditional on x).

• The generalized moment problem to 
estimate µ(x) = ET|xr(T,x), for a C2 function 
r(t,x) approximates many cases of interest.

• The estimation problem is semiparametric
when unknown G depends on x through a 
known function m(x,θ0) of an unknown 
parameter vector θ0; e.g., the index x· θ0.

Mathematical elements
• ∫r(v)G(dv) = r(0) + ∫r’(v)G(v)dv
• If Z is an importance random variable with a 

positive density q on the support of G, then
∫r’(v)G(v)dv = ∫[r’(z)G(z)/q(z)]q(z)dz

= EZ r’(Z)G(Z)/q(Z)
• If V is a design random variable with a 

positive density h on the support of G, and Y 
is a status indicator with EY|V Y = G(V), then

∫r’(v)G(v)dv = EV r’(V)G(V)/h(V)
= EV,Y r’(V)Y/h(V) 
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Estimating µ(x) = ET|xr(T,x),

• Y = 1(T≥v) satisfies G(v|x) = EY|v,x Y.
• Plug estimate G^(t|x) into µ(x) = ∫t≥0r(t,x)G(dt|x) 

to get an estimator µ^
0(x)

• Parametric problem is standard.
• In semiparametric or nonparametric problem

– The curse of dimensionality applies -- undersmooth
G^ to get a best rate for µ(x).

– For practical estimation of µ(x), avoid explicit 
computation of G^ if possible

Estimators
UnknownKnownCon-

ditional
Uncon-
ditional

F(η)H(v|x), m, Λµ^
5(x)µ^

5

H(v|x), F(η)m, Λµ^
4(x)µ^

4

F(η)H(v|x), m, Λµ^
3(x)µ^

3

F(η), θ0m, Λ- - -θ^

H(v|x), G(t|x)- - -µ^
2(x)µ^

2

G(t|x)H(v|x)µ^
1(x)µ^

1

G(t|x)H(v|x)µ^
0(x)µ^

0

Estimators µ^j are nonparametric for j ≤ 2, semiparametric for j > 2.  
Estimator µ^5 requires moment r(t,x) = [Λ(t)-1]k, k a positive integer. 

Estimator descriptions

• Nonparametric
– µ^

0(x)  plug-in estimator
– µ^

1(x)  ragged integrand, design density
– µ^

2(x)  smooth integrand, any importance density    
• Semiparametric

– θ^            nonlinear least squares 
– µ^

3(x)  ragged integrand, design density
– µ^

4(x)  smooth integrand, uniform importance
– µ^

5(x)  special ragged integrand, design density

Integration-by-parts formulation of µ(x) 

• Notation:  r’(t,x) = ∂r(t,x)/∂t
• Define s(x,v,y) = yr’(v,x)/h(v|x) 

τ(x,v) = G(v|x)r’(v,x)/h(v|x) = EY|x s(x,v,Y)
• Integrating by parts,

µ(x) = ∫t≥0r(t,x)g(t|x)dt = r(0,x) + ∫t≥0G(t|x)r’(t,x)dt
= r(0,x) + ∫v≥0 τ(x,v)H(dv|x) 
= r(0,x) + EV|x τ(x,V)               smooth
= r(0,x) + EY,V|x s(x,V,Y) ragged

Example:  Unconditional Moment Estimator
McFadden (1994), Lewbel (1997)

• Target:  µ = EX µ(X)
= EX r(0,X) + EY,V,X s(X,V,Y)

• Estimate µ by a sample average

µ^
1 = N-1∑n≤N {r(0,xn) + s(xn,vn,yn)}

– Assumptions 1-3 imply µ^
0 is root-N CAN (elementary)

– If xn,vn are sampled from H(v,x), µ^
0 is unbiased

Estimators µ^
0(x) and µ^

1(x) 
• Nonparametric estimator G^(v|x) from, say, nearest 

neighbor regression of Y on v,x, is plugged into 
formula for µ(x) to get µ^

0(x).  Estimator will have an 
IRMSE determined by G^(v|x).

• Let Kb(·) denote a kernel of dimension d with 
bandwidth b.  For each x, regress 

s(xn,vn,yn) = α0(x) + (xn-x)α(x), 
weighting the observations by Kb(x-xn)1/2.

µ^
1(x) = r(0,x) + α0(x) 

The large sample properties of µ^
1(x) are those of 

the local regression estimator of α0(x)
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Estimator µ^
2(x)

• Base estimator on smooth integrand

µ(x) = r(0,x) + EV|x τ(x,V)

• Replace G(v|x) by a local linear smooth of Y
• Replace h(v|x) by a uniform importance 

density
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Semiparametric problem
• A.4. Assume

T = Λ(m(x,θ0) - η) 
→ G(t|x) = F(m(x,θ0) - Λ-1(t)|x)

with F and θ0 unknown, Λ and m known, Λ
invertible and continuously differentiable, F a 
C2 CDF independent of x with compact 
support containing 0

• ET|x Λ-1(T) = α0 + m(x,θ0), with α0 = - E η
• Targets:  The finite parameter vector θ0 and

the generalized conditional moment µ(x)

Definitions 
(location-adjusted design)

• U = m(x,θ0) - Λ-1(V) and un = m(xn,θ0) - Λ-1(vn) 
• ΨN(u)  empirical CDF of U, with weak limit 
Ψ(u) that has a positive continuous density ψ
on a support that contains the support of G
– This property of ΨN(u) follows from A.3., but may 

hold without A.3. if some components of x are 
continuously distributed

• s*(x,u,y) = r’(Λ(m(x,θ0) - u),x)Λ’(m(x,θ0) - u)
·(y-1(u>0))/ψ(u) 

τ*(x,u) = EY|x s*(x,u,Y)

Corollary 1

If A1-A4, then

EY|u Y = F(u)

µ(x) = r(Λ(m(x,θ0)),x) + ∫s*(x,u)ψ(du)

ψN(u) = N-1∑n≤N h(Λ(m(xn,θ0)-u)|xn)-u|xn)
·Λ’(m(xn,θ0)-u) → ψ(u)

Estimator θ^

• Define s#(x,v,y) = y(dΛ-1(v)/dv)/h(v|x)

• Λ-1(0) + EY,V|x s#(x,v,y) = α0 + m(x,θ0)

• A nonlinear regression of s#(xn,vn,yn) on 
α0 + m(xn,θ) provides a root-N CAN 
estimator of θ0 if identification 
conditions are met
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Estimator µ^
3(x)

• When θ0 is known: 
Replace ψ(u) by ψN(u) in s*(x,u,y)
µ^

3(x) = r(Λ(m(x,θ0)),x) + N-1∑n≤N s*(x,un,yn)

• When θ0 is unknown, plug the estimator θ^ 

into the definition of U and the formula µ^
3(x)

• Theorem 3.  The estimator µ^
3(x), with θ0 

either known or replaced by the plug in 
estimator θ^ , is root-N CAN

Estimator µ^
4(x)

• When θ0 is known: 
Form a kernel estimator ψ~

N(u) from the empirical 
density at the points un = m(xn,θ0) - Λ-1(vn).
Replace ψ(u) by ψ~

N(u) in s*(x,u,y),

µ^
4(x) = r(Λ(m(x,θ0)),x) + N-1∑n≤N s*(x,un,yn)

• When θ0 is unknown, plug the estimator θ^ into the 
definition of U and the formula µ^

4(x)

• Theorem 4.  The estimator µ^
4(x), with θ0 either 

known or replaced by the plug in estimator θ^ , is 
root-N CAN

Estimator µ^
5(x)

• r(v,x) = [Λ-1(v)]k, k a positive integer
• ET|x [Λ-1(T)]k = ET|x [m(x,θ0) - η]k

= ∑j≤k (-1)j
nCj m(x,θ0)k-j Eη ηj

= ∑j≤k m(x,θ0)j αj

• Regress s(x,v,y), defined for this special r, 
on m(x,θ0)j for j ≤ k to estimate the αj, and 
plug these into the formula above. 
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Monte Carlo Study
• log T = β1 + β2X – ση
• X uniformly distributed on [-30,30]
• η standard normal
• β1 = 100, β2 = 2
• Treatments:

– 5-bid design at {25, 50, 75, 125, 175}
– Continuous design uniform on [25,175]

• Bandwidths chosen using Silverman’s thumb
• 10,000 repetitions 

Table 1.  Conditional 
Mean in 5-bid design, 

10,000 repetitions
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Table 3.  Conditional 
Mean in continuous 
design, 10,000 
repetitions
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Application
• WTP to protect California wetlands
• “Double Referendum” contingent valuation 

format:  first bid drawn from design, second 
bid half if “No”, double if “Yes”

• Covariates:  Age, years in California, 
education, income bracket, sex, race, 
membership in environmental organization

• N = 530
• 14 bid levels total (number of first bid levels = ?)
• Data collected by Hanemann et al
• Model:  log T = x·θ - η

Density of WTP

First bid data
(kernel-smoothed)

Table 5. Estimates

Of Mean WTP
Table 6


