Estimating Conditional Moments of a Survival Curve from Interval-Censored Data

Arthur Lewbel, Boston College Oliver Linton, LSE Daniel McFadden, UC Berkeley

Revised 2003

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

Willingness to Pay for Seabirds

Green, Jakowitz, Kahneman, McFadden (1997)

What value would your household place on saving about 50,000 seabirds each year from offshore oil spills?

- Several million seabirds live out of sight off Pacific coast
- Small oil spills kill estimated 50,000+ seabirds per year
- Usually not possible to force tanker companies to pay
- Public money would have to be spent yearly to save the birds, extra funds required

Contingent Valuation Experimental Design

- · Control subjects asked open-ended WTP
- In what is termed <u>referendum</u> format, treatment subjects were asked if WTP ≥ v, where bid v was set by experimental design
- In the GJKM study, bids were set at quantiles of the controls' WTP distribution
- Questions:
 - What are median and mean WTP?
 - Does the format (open-ended vs. referendum) matter?

Distribution	Open-Ended			Starting P	oint Bid	
		\$5	\$25	\$60	\$150	\$400
\$0-4.99	19.8%	12.2%	8.5%	0.0%	8.3%	12.0%
\$5-24.99	27.3%	67.4%	25.5%	41.7%	29.2%	22.0%
\$25-59.99	31.4%	12.2%	53.2%	14.6%	27.1%	20.0%
\$60-149.99	12.4%	8.2%	8.5%	41.7%	16.7%	18.0%
\$150-399.99	5.0%	0.0%	2.1%	2.1%	18.8%	10.0%
\$400+	4.1%	0.0%	2.1%	0.0%	0.0%	18.1%
Sample size	121	49	47	48	48	50
P(Open-Ended Response>Bid)		80.2%	52.9%	21.5%	9.1%	4.1%
(Std. Error)		5.7%	7.1%	5.9%	4.1%	2.8%
P(Anchored Response>Bid)		87.8%	66.0%	43.8%	18.8%	18.0%
(Std. Error)		4.7%	6.9%	7.2%	5.6%	5.4%
Median Response	\$25.00	\$10.00	\$25.00	\$25.00	\$43.00	\$50.00
(Std. Error)	\$6.03	\$2.33	\$1.16	\$14.04	\$10.87	\$23.41
Mean Response (a)	\$64.25	\$20.30	\$45.43	\$49.42	\$60.23	\$143.12
(Std. Error)	\$13.22	\$3.64	\$12.61	\$6.51	\$8.59	\$28.28
	c	oefficient	Std. Error			
Marginal effect of starting point bid		0.284	0.32			
K-J Interquartile Anchoring Index		0.273	0.136			
Nonparametric referendum mean (b)		\$167.33	\$76.90			
Referendum multiplier		2.60	1.31			
Parametric referendum mean		\$265.59	\$138.96			
Referendum multiplier		4.13	2.32			

Outline A willingness-to-pay (WTP) experiment Conditional survival curves Interval-censored data and examples Survival models and specializations Regularity and design assumptions Nonparametric estimators Semiparametric estimators Monte Carlo evidence

9. Application

Survival Curves

- Let T denote a random failure time, and G(t|x)
 = Prob(T≥t|x), t ≥ 0, denote the survival curve conditioned on a d-vector of (time-invariant) covariates x.
- In most applications, t is time. Alternately:
 - t is the administered dose of a toxin, T is lethal dose, and G is the dose-response curve
 - t is a bid in referendum Contingent Valuation and T is the subject's Willingness-to-Pay (WTP).

Survival Data

- Survival analysis often assumes a size N sample of i.i.d. observations (x_n,t_n), where x_n is a d-vector of covariates and t_n is completed (or censored) duration.
- Some applications provide <u>interval-censored</u> <u>data</u>: T_n is latent and one observes (x_n, v_n, y_n) , where v_n is a test level in the t dimension set by experimental design, and independent of T_n given x_n . $y_n = \mathbf{1}(T_n \ge v_n)$ is a <u>binary</u> <u>indicator</u> for the event $T_n \ge v_n$. The conditional mean of y_n given x_n) is $G(v_n|x_n)$.

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

- · Failure times not observed retrospectively.
- Analysis of a single test level v and a binary status indicator y can be extended to multiple (adaptive) test levels and multinomial status.

Interval-Censored Data Examples

- Animal experiments: At time v, the animal is sacrificed, y is one iff abnormality is present
- Materials Testing: At treatment level v, y is one iff material meets requirement; e.g., crash test at speed v.
- Dose-Response: At treatment level/dose v, y is one iff lethal dose exceeds v.
 - Referendum contingent valuation has the doseresponse form, testing if willingness-to-pay (WTP) exceeds a bid v.

Longitudinal Interval-Censored Data

- Panels with periodic waves yield interval-censored data if retrospective data on T is unavailable or unreliable when failure occurs between waves.
- Statistical issue: If x is not time-invariant, then even if x(s), 0 ≤ s ≤ t, is predetermined for T given T ≥ t, intra-wave feedbacks may nevertheless make x(v) endogenous.
- Statistical issue: If the failure time T interacts with interview scheduling, then the inter-wave duration (v) becomes endogenous, biasing conditional hazard rate estimates.
 - Measured hazard rates in the Health and Retirement Study depend on interview timing within a wave

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

Alternative Formulation of Survival Model

- If T = exp(m*(x,η)), with m* decreasing in a disturbance η that has a continuous CDF F(·|x), then G(t|x) = F(M*(x,log t)|x), where M* is the inverse of m* in its 2nd argument.
- Normalization: Define $\xi = F(\eta|x)$ and $T = exp(m(x,\xi)) \equiv exp(m^*(x,F^{-1}(\xi|x)))$. Then ξ is uniform [0,1] and $G(t|x) = M(x,\log t)$, where M is the inverse of m in its 2nd argument.

Specializations

• $T = \Lambda(m(x,\theta_0) - \eta)$

$$\rightarrow$$
 G(t|x) = F(m(x, \theta_0) - \Lambda^{-1}(t)|x)

a semiparametric model when F,
$$\theta_0$$
 unknown, m, Λ known

$$- \ T = exp(m(x, \theta_0) - \eta) \ \ \rightarrow \ G(t|x) = F(m(x, \theta_0) - log \ t|x)$$

• $T = \exp(x \cdot \theta_0 - \eta) \rightarrow G(t|x) = F(x \cdot \theta_0 - \log t|x)$

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

⁻ Type 1 extreme value $F(\eta) = exp(-exp(-\alpha\eta))$ gives the <u>parametric</u> Weibull proportional hazards model, $G(t|x) = exp(-t^{\alpha} exp(-x \cdot \theta_0 \alpha))$

Assumptions to set the problem

- A.1. Covariate vectors x are distributed in the population with a CDF H_x that has a compact support in a d-dimensional space. The survival curve G has a continuously differentiable positive density g(t|x) with a compact support.
- **A.2.** The generalized moment function r(t,x) is continuous in (t,x), and for each x is twice continuously differentiable in t.

Experimental Design Assumption

- A.3. There is an asymptotic distribution $H(v,x) = \int_{w_{s}v_{s}} \int_{z=x} h(w|z) dwH_x(dz)$ of the treatments and covariates, where h(t|x) is a continuous density that for each x is strictly positive on a compact interval containing the support of G(t|x). The experimental design is described by an empirical CDF $H_N(v,x)$ such that $N^{1/2}[H_N(v,x) H(v,x)]$ converges weakly to a Gaussian process.
- For some nonparametric estimators, a rate less than $N^{1/2}\,\mbox{suffices}$ and Gaussianity is not required
- * A.3 implies $sup_{v,x}\left|H_N(v,x)-H(v,x)\right|\to 0$ a.s.

Experimental Design Examples

- $H_N(v,x)$ is a random sample from H(v,x).
- A.3 holds by Shorack-Wellner on convergence of triangular arrays of empirical processes, and a.s. convergence holds by Glivenko-Cantelli.
- At N, x_n is sampled randomly from H_x . A fixed design for v with J_N possible values of v is selected. v_n is drawn randomly from a density $h_N(v|x)$ on this finite support that for each x converges weakly to a positive continuous density h(v|x).
 - Sufficient: $J_N/N^{1/2}\to\infty$, max gap of order $1/J_N$, and CDF's of h_N and h coinciding at design points

Inference Problems

- Survival curve features of interest are moments, quantiles, and percentiles (unconditional, or conditional on x).
- The generalized moment problem to estimate µ(x) = E_{T|x}r(T,x), for a C² function r(t,x) approximates many cases of interest.
- The estimation problem is semiparametric when unknown G depends on x through a known function $m(x,\theta_0)$ of an unknown parameter vector θ_0 ; e.g., the index $x \cdot \theta_0$.

Mathematical elements

- $\int \mathbf{r}(\mathbf{v})\mathbf{G}(\mathbf{dv}) = \mathbf{r}(0) + \int \mathbf{r}'(\mathbf{v})\mathbf{G}(\mathbf{v})\mathbf{dv}$

$$V_{O}(V) dV = \int [r'(z)G(z)/q(z)]q(z) dx = \mathbf{E}_{z} r'(Z)G(Z)/q(Z)$$

• If V is a design random variable with a positive density h on the support of G, and Y is a status indicator with $\mathbf{E}_{Y|V} Y = G(V)$, then $\int r'(v)G(v)dv = \mathbf{E}_V r'(V)G(V)/h(V)$ $= \mathbf{E}_{VY} r'(V)Y/h(V)$

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

Estimating $\mu(x) = \mathbf{E}_{T|x} \mathbf{r}(T, x)$,

- $Y = \mathbf{1}(T \ge v)$ satisfies $G(v|x) = \mathbf{E}_{Y|v,x} Y$.
- Plug estimate G[^](t|x) into µ(x) = ∫_{t≥0}r(t,x)G(dt|x) to get an estimator µ[^]₀(x)
- Parametric problem is standard.
- In semiparametric or nonparametric problem
 - The curse of dimensionality applies -- undersmooth $G^{\scriptscriptstyle \wedge}$ to get a best rate for $\mu(x).$
 - For practical estimation of µ(x), avoid explicit computation of G[^] if possible

Uncon-	Con-	Known	Unknown
ditional	ditional		
μ^0	µ^_(x)	H(v x)	G(t x)
μ^1	$\mu_{1}^{(x)}$	H(v x)	G(t x)
μ^2	µ^2(x)		H(v x), G(t x)
θ^		m, Λ	F(η), θ ₀
μ^3	μ [^] ₃ (x)	H(v x), m, Λ	F(η)
μ^4	µ^4(x)	m, Λ	H(v x), F(η)
μ^5	μ [^] ₅ (x)	H(v x), m, Λ	F(η)

Estimator descriptions

- Nonparametric
 - $-\mu_0^{(x)}$ plug-in estimator
 - $-\mu_{1}^{*}(x)$ ragged integrand, design density
 - $-\mu_{2}^{^{n}}(x)$ smooth integrand, any importance density
- Semiparametric
 - $-\theta^{\wedge}$ nonlinear least squares
 - $-\,\mu^{\scriptscriptstyle A}_{\ 3}(x)\,$ ragged integrand, design density
 - $-\mu_{4}^{(x)}(x)$ smooth integrand, uniform importance
 - $-\mu_{5}^{^{}}(x)$ special ragged integrand, design density

Integration-by-parts formulation of $\mu(x)$

- Notation: $r'(t,x) = \partial r(t,x)/\partial t$
- Define s(x,v,y) = yr'(v,x)/h(v|x) $\tau(x,v) = G(v|x)r'(v,x)/h(v|x) = \mathbf{E}_{Y|x} s(x,v,Y)$
- Integrating by parts,
- $\mu(x) = \int_{t \ge 0} r(t, x) g(t|x) dt = r(0, x) + \int_{t \ge 0} G(t|x) r'(t, x) dt$

smooth

- $= r(0,x) + \int_{v \ge 0} \tau(x,v) H(dv|x)$
- $= r(0,x) + E_{V|x} T(x,V)$
- = $r(0,x) + \mathbf{E}_{Y,V|x} s(x,V,Y)$ ragged

Example: Unconditional Moment Estimator McFadden (1994), Lewbel (1997)

- Target: μ = E_X μ(X) = E_X r(0,X) + E_{Y,V,X} s(X,V,Y)
- · Estimate µ by a sample average

$$\mu_{1}^{*} = N^{-1} \sum_{n \le N} \{r(0, x_{n}) + s(x_{n}, v_{n}, y_{n})\}$$

- Assumptions 1-3 imply $\mu_{\ 0}^{\scriptscriptstyle A}$ is root-N CAN (elementary)
- If $x_n\!,\!v_n$ are sampled from H(v,x), $\mu^{\scriptscriptstyle A}{}_0$ is unbiased

Estimators $\mu_0^{}(x)$ and $\mu_1^{}(x)$

- Nonparametric estimator G[^](v|x) from, say, nearest neighbor regression of Y on v,x, is plugged into formula for μ(x) to get μ[^]₀(x). Estimator will have an IRMSE determined by G[^](v|x).
- Let $K_b(\cdot)$ denote a kernel of dimension d with bandwidth b. For each x, regress

$$s(x_n,v_n,y_n) = \alpha_0(x) + (x_n-x)\alpha(x),$$

weighting the observations by $K_b(x-x_n)^{1/2}$.

 $\mu_{1}^{(x)} = r(0,x) + \alpha_{0}(x)$

The large sample properties of $\mu^{*}_{-1}(x)$ are those of the local regression estimator of $\alpha_{0}(x)$

Estimator $\mu_{2}^{(x)}$

· Base estimator on smooth integrand

$$\mu(x) = r(0,x) + \mathbf{E}_{\vee|x} \tau(x, \vee)$$

- Replace G(v|x) by a local linear smooth of Y
- Replace h(v|x) by a uniform importance density

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

Semiparametric problem

- A.4. Assume
 - $T = \Lambda(m(x,\theta_0) \eta)$

 $\rightarrow G(t|x) = F(m(x,\theta_0) - \Lambda^{-1}(t)|x)$ with F and θ_0 unknown, Λ and m known, Λ invertible and continuously differentiable, F a C² CDF independent of x with compact support containing 0

- $\mathbf{E}_{T|x} \Lambda^{-1}(T) = \alpha_0 + m(x, \theta_0)$, with $\alpha_0 = -\mathbf{E} \eta$
- Targets: The finite parameter vector θ_0 and the generalized conditional moment $\mu(x)$

$$\begin{array}{l} \hline Definitions \\ (location-adjusted design) \\ \bullet \ U = m(x,\theta_0) - \Lambda^{-1}(V) \ and \ u_n = m(x_n,\theta_0) - \Lambda^{-1}(v_n) \\ \bullet \ \Psi_N(u) \ empirical \ CDF \ of \ U, \ with \ weak \ limit \\ \Psi(u) \ that \ has \ a \ positive \ continuous \ density \ \psi \\ on \ a \ support \ that \ contains \ the \ support \ of \ G \\ - \ This \ property \ of \ \Psi_N(u) \ follows \ from \ A.3., \ but \ may \\ hold \ without \ A.3. \ if \ some \ components \ of \ x \ are \\ continuously \ distributed \\ \bullet \ s^*(x,u,y) = r'(\Lambda(m(x,\theta_0) - u),x)\Lambda'(m(x,\theta_0) - u) \\ \quad \cdot (y-1(u>0))/\psi(u) \\ r^*(x,u) = E_{Y|x} \ s^*(x,u,Y) \end{array}$$

Corollary 1

If A1-A4, then

$$E_{Y|u} Y = F(u)$$

 $\mu(x) = r(\Lambda(m(x,\theta_0)),x) + \int s^*(x,u)\psi(du)$

$$\begin{split} \psi_N(u) &= N^{-1} \sum_{n \leq N} h(\Lambda(m(x_n, \theta_0) - u) | x_n) - u | x_n) \\ & \cdot \Lambda'(m(x_n, \theta_0) - u) \rightarrow \psi(u) \end{split}$$

Estimator θ[^]

- Define $s^{\#}(x,v,y) = y(d\Lambda^{-1}(v)/dv)/h(v|x)$
- $\Lambda^{-1}(0) + \mathbf{E}_{Y,V|x} s^{\#}(x,v,y) = \alpha_0 + m(x,\theta_0)$
- A nonlinear regression of $s^{\#}(x_n, v_n, y_n)$ on $\alpha_0 + m(x_n, \theta)$ provides a root-N CAN estimator of θ_0 if identification conditions are met

Estimator $\mu_{3}^{(x)}(x)$

- When θ₀ is <u>unknown</u>, plug the estimator θ[^] into the definition of U and the formula μ[^]₃(x)
- Theorem 3. The estimator $\mu_{3}^{*}(x)$, with θ_{0} either known or replaced by the plug in estimator θ^{2} , is root-N CAN

Estimator $\mu_4^{(x)}$

• When θ_0 is <u>known</u>: Form a kernel estimator $\psi_N^{\sim}(u)$ from the empirical density at the points $u_n = m(x_n, \theta_0) - \Lambda^{-1}(v_n)$. Replace $\psi(u)$ by $\psi_N^{\sim}(u)$ in s*(x,u,y),

 $\mu_{4}^{(x)} = r(\Lambda(m(x,\theta_{0})),x) + N^{-1}\sum_{n \leq N} s^{*}(x,u_{n},y_{n})$

- When θ_0 is <u>unknown</u>, plug the estimator θ^{\wedge} into the definition of U and the formula $\mu_4^{\wedge}(x)$
- Theorem 4. The estimator $\mu_4^{^}(x)$, with θ_0 either known or replaced by the plug in estimator $\theta^{^}$, is root-N CAN

Estimator $\mu_{5}^{(x)}(x)$

- $r(v,x) = [\Lambda^{-1}(v)]^k$, k a positive integer
- $\mathbf{E}_{T|x} [\Lambda^{-1}(T)]^k = \mathbf{E}_{T|x} [m(x,\theta_0) \eta]^k$

$$= \sum_{j \le k} (-1)^j {}_n C_j m(x, \theta_0)^{k-j} \mathbf{E}_{\eta} \eta^j$$

= $\sum_{j \le k} m(x, \theta_0)^j \alpha_j$

 Regress s(x,v,y), defined for this special r, on m(x,θ₀)^j for j ≤ k to estimate the α_j, and plug these into the formula above.

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

Monte Carlo Study

- $\log T = \beta_1 + \beta_2 X \sigma \eta$
- X uniformly distributed on [-30,30]
- η standard normal
- $\beta_1 = 100, \beta_2 = 2$
- Treatments:
 - 5-bid design at {25, 50, 75, 125, 175}
 - Continuous design uniform on [25,175]
- · Bandwidths chosen using Silverman's thumb
- 10,000 repetitions

Table 1. Co Mean in 5-bi 10,000 rep	onditional d design, petitions		n=100	$\sigma = 5$ n=300	n=500
	IRMSE	$\widehat{\mu}_1$	14.56	12.63	12.21
		$\widehat{\mu}_{3}$	17.59	16.04	15.74
		$\widehat{\mu}_4$	12.74	10.41	9.89
		$\widehat{\mu}_{5}$	11.74	10.33	10.02
	IMAE	$\widehat{\mu}_1$	10.96	10.16	10.05
		$\widehat{\mu}_{3}$	14.42	13.36	13.13
		$\widehat{\mu}_4$	10.08	8.50	8.22
		$\widehat{\mu}_{5}$	9.23	8.44	8.31

Table 3. Co Mean in cor design, 10,0 repetitions	onditional htinuous)00		n=100	$\sigma = 5$ n=300	n=500
	IRMSE	$\widehat{\mu}_1$	12.30	7.54	6.02
		$\widehat{\mu}_{3}$	12.65	8.05	6.98
		$\widehat{\mu}_4$	9.22	5.12	3.93
		$\widehat{\mu}_{5}$	8.91	5.13	4.00
	IMAE	$\widehat{\mu}_1$	8.81	5.41	4.33
		$\widehat{\mu}_{\pmb{3}}$	9.99	6.46	5.70
		$\widehat{\mu}_4$	7.14	3.95	3.02
		$\widehat{\mu}_{5}$	6.87	3.97	3.08

Outline

- 1. A willingness-to-pay (WTP) experiment
- 2. Conditional survival curves
- 3. Interval-censored data and examples
- 4. Survival models and specializations
- 5. Regularity and design assumptions
- 6. Nonparametric estimators
- 7. Semiparametric estimators
- 8. Monte Carlo evidence
- 9. Application

Application

- WTP to protect California wetlands
- "Double Referendum" contingent valuation format: first bid drawn from design, second bid half if "No", double if "Yes"
- Covariates: Age, years in California, education, income bracket, sex, race, membership in environmental organization
- N = 530
- 14 bid levels total (number of first bid levels = ?)
- Data collected by Hanemann et al
- Model: $\log T = x \cdot \theta \eta$

Density of WTP First bid data (kernel-smoothed)	Denetty 	
		zi 40 ca ba ra 23

Table 5. Estima	ates	Log	Linear
Of Mean WT	P	bid1	bid2
	$\overline{\mu_3}$	$\underset{(4.4683)}{62.0320}$	306.0211 (411.4603)
	$\widehat{\mu}_{\mathfrak{Z}}(\overline{X})$	$\underset{\left(4.2751\right)}{61.5918}$	302.4752 (328.7766)
	$\widehat{\mu}_4$	$\underset{\scriptscriptstyle(5.0823)}{64.6992}$	369.2809 (394.6291)
	$\widehat{\mu}_4(\overline{X})$	$\underset{\scriptscriptstyle(4.4995)}{63.7869}$	472.5140 (328.2098)
	$\overline{\widehat{\mu}_{5}}$.	99.1164 (4.1348)	141.5369 (9.0742)
	$\widehat{\mu}_{5}(\overline{X})$	98.7726 (6.6526)	134.0196 (21.4996)

Table 6	Log Linear		
	bid1	bid2	
YEARCA	0.0021 (0.0022)	$\begin{array}{c} 0.0131 \\ (0.0062^{*}) \end{array}$	
SEX	-0.0460 $_{(0.0632)}$	$\underset{(0.1740)}{0.2579}$	
$\ln(AGE)$	-0.2040 (0.1088)	$\substack{-0.4801\ (0.2563)}$	
EDUC	$\underset{(0.01154)}{0.0119}$	$\underset{(0.0404)}{0.0307}$	
WHITE	0.1338 (0.0797)	$\underset{(0.2173)}{0.2164}$	
ENVORG	$\substack{-0.1085\ (0.0792)}$	$\underset{\left(0.2331\right)}{0.0946}$	
$\ln(\mathrm{INCOME})$	$0.0972 \\ (0.0500^{*})$	0.3796 (0.1474*)	