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Willingness to Pay for Seabirds
Green, Jakowitz, Kahneman, McFadden (1997)

What value would your household place on

saving about 50,000 seabirds each year from

offshore oil spills?

- Several million seabirds live out of sight off Pacific
coast

- Small oil spills kill estimated 50,000+ seabirds per
year

- Usually not possible to force tanker companies to
pay

- Public money would have to be spent yearly to save
the birds, extra funds required

Contingent Valuation
Experimental Design

» Control subjects asked open-ended WTP
* In what is termed referendum format,
treatment subjects were asked if WTP 2 v,
where bid v was set by experimental design
In the GJKM study, bids were set at quantiles
of the controls’ WTP distribution
* Questions:

— What are median and mean WTP?

— Does the format (open-ended vs. referendum)
matter?

Observations at

A// treatment bids

Bounds on curve
between design bids

0.5 mm =TT Prob(WTP>Bid)

Shaded Area
= Mean

0 Median
Bid

Table 1. Willingness-to-Pay to Save 50,000 Off-Shore Seabirds per Year

T Gpen-Ended Starting Point Bid
$60 $150

$5 $25 $400
$0-4.99 19.8% T2.2% 5% 1 X i
§5-24.99 27.3% 67.4% 255% M7% 29.2% 22.0%
$25-50.99 31.4% 12.2% 53.2% 14.6% 27.1% 20.0%
$60-149.99 12.4% 8.2% 85% 7% 16.7% 18.0%
$150-399.99 5.0% 0.0% 2.1% 2.1% 18.8% 10.0%
$400+ 4.1% 0.0% 21% 0.0% 0.0% 18.1%
Sample size 121 49 47 48 48 50
P(Open-Ended Response>Bid) 80.2% 52.9% 21.5% 9.1% 41%
(Std. Error) 57% 7.4% 5.9% 4.1% 2.8%
P(Anchored Response>Bid) 87.8% 66.0% 43.8% 18.8% 18.0%
(Std. Error) 47% 6.9% 7.2% 56% 5.4%
Median Response $25.00 $10.00 $25.00 $2500  $43.00 $50.00
(Std. Error) $6.03 $2.33 $1.16 $14.04  $10.87 $23.41
Mean Response (a) $64.25 $20.30 $45.43 $4942 6023  $143.12
(Std. Error) $13.22 $3.64 $12.61 $6.51 $8.59  $28.28

Coefficient _Std. Error

Marginal effect of starting point bid 0284 0.32
K-J Interquartile Anchoring Index 0273 0.136
Nonparametric referendum mean (b) $167.33  $76.90
Referendum multiplier 260 131
Parametric referendum mean $26559  $138.96
Referendum multiplier 4.13 232




WTF Results
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Survival Curves

* Let T denote a random failure time, and G(t|x)
= Prob(Tzt|x), t = 0, denote the survival curve
conditioned on a d-vector of (time-invariant)
covariates x.

* In most applications, t is time. Alternately:
—tis the administered dose of a toxin, T is lethal

dose, and G is the dose-response curve

— tis a bid in referendum Contingent Valuation and
T is the subject’'s Willingness-to-Pay (WTP).

Survival Data

Survival analysis often assumes a size N
sample of i.i.d. observations (x,,t,), where x,
is a d-vector of covariates and t, is completed
(or censored) duration.

Some applications provide interval-censored
data: T, is latent and one observes (X,,v,,Y,).
where v, is a test level in the t dimension set
by experimental design, and independent of
T, given x,. y,=1(T,2v,)is a binary
indicator for the event T, 2 v,. The
conditional mean of y, given x,) is G(v,|X,)-
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Interval-Censored Data
T
[ ]
X Y = 1(T>V)

\%

Critical feature: T and V conditionally independent,
given X

Failure times not observed retrospectively.
Analysis of a single test level v and a binary status
indicator y can be extended to multiple (adaptive)
test levels and multinomial status.




Interval-Censored Data Examples

* Animal experiments: At time v, the animal is
sacrificed, y is one iff abnormality is present

* Materials Testing: At treatmentlevel v, yis
one iff material meets requirement; e.g.,
crash test at speed v.

» Dose-Response: At treatment level/dose v,
y is one iff lethal dose exceeds v.

— Referendum contingent valuation has the dose-
response form, testing if willingness-to-pay
(WTP) exceeds a bid v.

Longitudinal Interval-Censored Data

» Panels with periodic waves yield interval-censored
data if retrospective data on T is unavailable or
unreliable when failure occurs between waves.

« Statistical issue: If x is not time-invariant, then even
if x(s), 0 s <t, is predetermined for T given T 2 t,
intra-wave feedbacks may nevertheless make x(v)
endogenous.

» Statistical issue: If the failure time T interacts with
interview scheduling, then the inter-wave duration
(v) becomes endogenous, biasing conditional
hazard rate estimates.

— Measured hazard rates in the Health and Retirement
Study depend on interview timing within a wave
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Alternative Formulation of Survival Model

* If T = exp(m*(x,n)), with m* decreasing in a
disturbance n that has a continuous CDF F(|x),
then G(t|x) = F(M*(x,log t)|x), where M* is the
inverse of m* in its 24 argument.
Normalization: Define {=F(n|x)and T =
exp(m(x,§)) = exp(m*(x,F'(§|x))). Then ¢ is
uniform [0,1] and G(t|x) = M(x,log t), where M is
the inverse of m in its 2" argument.

Specializations

© T=AmM(x,8p) - n)
— G(tlx) = F(m(x,8,) - A'(t)Ix)
a semiparametric model when F, 8, unknown, m, A known

— T =exp(m(x,6) —n) — G(t|x) = F(m(x,6,) — log t|x)
* T =exp(x-6; - n) — G(t|x) = F(x-6, - log t|x)

— Type 1 extreme value F(n) = exp(-exp(-an)) gives the
parametric Weibull proportional hazards model,

G(t|x) = exp(-t*-exp(-x-6,a))

Outline

A willingness-to-pay (WTP) experiment
Conditional survival curves
Interval-censored data and examples
Survival models and specializations
Regularity and design assumptions
Nonparametric estimators
Semiparametric estimators

Monte Carlo evidence

Application

©® NN




Assumptions to set the problem

* A.l. Covariate vectors x are distributed in
the population with a CDF H, that has a
compact support in a d-dimensional
space. The survival curve G has a
continuously differentiable positive density
g(t|x) with a compact support.

* A.2. The generalized moment function
r(t,x) is continuous in (t,x), and for each x
is twice continuously differentiable in t.

Experimental Design Assumption

* A.3. There is an asymptotic distribution H(v,x) =
Jwedzxn(W|z)dwH,(dz) of the treatments and
covariates, where h(t|x) is a continuous density
that for each x is strictly positive on a compact
interval containing the support of G(t|x). The
experimental design is described by an empirical
CDF Hy(v,x) such that N"2[H\(v,x) - H(v,x)]
converges weakly to a Gaussian process.

* For some nonparametric estimators, a rate less
than N2 suffices and Gaussianity is not required

+ A3 implies sup, , [Hy(V.X) - H(v,x)| — 0 a.s.

Experimental Design Examples

» Hy(v,x) is a random sample from H(v,x).

—A.3 holds by Shorack-Wellner on convergence of
triangular arrays of empirical processes, and a.s.
convergence holds by Glivenko-Cantelli.

* AtN, x, is sampled randomly from H,. A fixed
design for v with Jy, possible values of v is
selected. v, is drawn randomly from a density
hy(v|x) on this finite support that for each x
converges weakly to a positive continuous
density h(v|x).

— Sufficient: J\ /N2 — «, max gap of order 1/Jy, and
CDF’s of hy and h coinciding at design points

Inference Problems

 Survival curve features of interest are
moments, quantiles, and percentiles
(unconditional, or conditional on x).

» The generalized moment problem to
estimate p(x) = E;,r(T,x), for a C? function
r(t,x) approximates many cases of interest.

* The estimation problem is semiparametric
when unknown G depends on x through a
known function m(x,8,) of an unknown
parameter vector 6;; e.g., the index x- 8,

Mathematical elements

+ Jr(v)G(dv) = r(0) + [r(v)G(v)dv
« If Zis an importance random variable with a
positive density q on the support of G, then
Ir(v)G(v)dv = JIr(z)G(z)/a(z)la(z)dz
= E; r(2)G(2)a(2)
* If V is a design random variable with a

positive density h on the support of G, and Y
is a status indicator with Ey,, Y = G(V), then

[P(v)G(v)dv = E, r(V)G(V)/h(V)
=Eyy r(V)Y/h(V)
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Estimating p(x) = Eq,1(T,X),

Y = 1(Tzv) satisfies G(v|x) = Ey,, , Y.

* Plug estimate G"(t|x) into u(x) = Lzor(t,x)G(dt|x)
to get an estimator p",(x)

» Parametric problem is standard.

* In semiparametric or nonparametric problem

— The curse of dimensionality applies -- undersmooth
G”" to get a best rate for p(x).

— For practical estimation of p(x), avoid explicit
computation of G" if possible

Estimators

Uncon- | Con- Known Unknown
ditional | ditional
Ho | Ho(X) H(vIx) G(tlx)
M| () H(vIx) G(tlx)
W2 | W) - H(vIx), G(t|x)
0" --- m, A F(n), 6,
M3 | Wa(x) | H(vIx), m, A F(n)
Wy | M) m, A H(vIx), F(n)
H's | H's(x) | H(vlx), m, A F(n)
Estimators A, are nonparametric for j < 2, semiparametric for j > 2.
Estimator p”; requires moment r(t,x) = [A(t)']%, k a positive integer.

Estimator descriptions

* Nonparametric

—W"%(x) plug-in estimator

—W"4(x) ragged integrand, design density

—M*y(x) smooth integrand, any importance density
» Semiparametric

-0 nonlinear least squares

—W"5(x) ragged integrand, design density

—W"4(x) smooth integrand, uniform importance

—M"s5(x) special ragged integrand, design density

Integration-by-parts formulation of u(x)

* Notation: r'(t,x) = ar(t,x)/ot

* Define s(x,v,y) = yr'(v,x)/h(v|x)
T(x,v) = G(v[x)r'(v,x)/h(v|x) = Ey, S(x,v,Y)

* Integrating by parts,

H(X) = Jor(tX)g(t]x)dt = 7(0,%) + JusgG(HX)F (t.x)dlt
=1(0,X) + [ 50 T(X,V)H(dV|x)
=r1(0,x) + By, 1(x,V)
=r(0,x) + Ev.vix s(x,V,Y)

smooth
ragged

Example: Unconditional Moment Estimator
McFadden (1994), Lewbel (1997)

» Target: p=Ey u(X)
= Ey r(0,X) + Eyyx s(X,V,Y)

+ Estimate p by a sample average

UA1 = N-1ZnSN {r(O’Xn) + S(Xn’vn’yn)}

— Assumptions 1-3 imply p"; is root-N CAN (elementary)
— If x,,,v,, are sampled from H(v,x), p", is unbiased

Estimators p"y(x) and p"(x)

» Nonparametric estimator G"(v|x) from, say, nearest
neighbor regression of Y on v,x, is plugged into
formula for p(x) to get p"y(x). Estimator will have an
IRMSE determined by G"(v|x).

 Let K,(-) denote a kernel of dimension d with
bandwidth b. For each x, regress

S(anvn!yn) = GO(X) + (Xn-X)G(X),
weighting the observations by K (x-x,)"2.

WY (x) = 1(0.X) + ag(x)
The large sample properties of p*,(x) are those of
the local regression estimator of ay(x)




Estimator p",(x)
» Base estimator on smooth integrand
H(x) = r(0,x) + Ey T(X,V)
* Replace G(v|x) by a local linear smooth of Y

* Replace h(v|x) by a uniform importance
density
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Semiparametric problem

* A.4. Assume
T =A(m(x,8) - n)
— G(tlx) = F(m(x,8,) - A (t)[x)
with F and 6, unknown, A and m known, A
invertible and continuously differentiable, F a
C? CDF independent of x with compact
support containing 0

* B A(T) = ag + m(x,8,), with oy =- E n
» Targets: The finite parameter vector 6, and
the generalized conditional moment u(x)

Definitions
(location-adjusted design)
U = m(x,6,) - A'(V) and u, = m(x,,8,) - A'(v,)
Y\ (u) empirical CDF of U, with weak limit
W(u) that has a positive continuous density g
on a support that contains the support of G

— This property of W\ (u) follows from A.3., but may
hold without A.3. if some components of x are
continuously distributed

s*(x,u,y) = r'(A(m(x,8,) - u),x)/A\'(m(x,8,) - u)
(y-1(u>0))/p(u)
T(X,u) = By, 8*(X,1,Y)

Corollary 1

If A1-A4, then
EY|u Y= F(U)
M(x) = r(A(M(x,80)).x) + [s*(x,u)p(du)

Wn(U) = N3 ey hA(M(X,,80)-u)[X,)-ulX,)
N (m(x;,8)-u) — w(u)

Estimator 6"
« Define s#(x,v,y) = y(dA'(v)/dv)/h(v|x)
* N(0) + Ey v, s*(x,v,y) = ag + m(x,8)

+ A nonlinear regression of s#(x,v,,y,) on
o, + m(x,,0) provides a root-N CAN
estimator of 6, if identification
conditions are met




Estimator p”;(x)

* When 6, is known:
Replace y(u) by wy(u) in s*(x,u,y)
H5(X) = r(A(M(X,8,)),x) + N'Y .\ $*(X,U,.,Y,)

« When 6, is unknown, plug the estimator 8"
into the definition of U and the formula p";(x)

« Theorem 3. The estimator p";(x), with 6,
either known or replaced by the plug in
estimator 6", is root-N CAN

Estimator pu”,(x)

* When 6, is known:
Form a kernel estimator y~y(u) from the empirical
density at the points u, = m(x,,0,) - A'(v,)).
Replace y(u) by wy(u) in s*(x,u,y),

H4(x) = r(A(M(x,89)).x) + N3 oy $™(X,Up,Yn)

» When 6, is unknown, plug the estimator 8" into the
definition of U and the formula p",(x)

« Theorem 4. The estimator p",(x), with 8, either
known or replaced by the plug in estima?or 0", is
root-N CAN

Estimator p"5(x)

* r(v,x) = [AY(v)], k a positive integer

= AT = Erix [M(x,0) - nl
=2 (1) 1G m(x,8o)*1 E, 1y
= 2je M(X,8,) o

* Regress s(x,v,y), defined for this special r,

on m(x,8,) for j < k to estimate the o, and
plug these into the formula above.
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Monte Carlo Study

*log T=B;+BX-0n

» X uniformly distributed on [-30,30]

* n standard normal

* B,=100,B,=2

* Treatments:

— 5-bid design at {25, 50, 75, 125, 175}

— Continuous design uniform on [25,175]
Bandwidths chosen using Silverman’s thumb
10,000 repetitions

Table 1. Conditional
Mean in 5-bid design,
10,000 repetitions

g=>5

n=100 n=300 n=>500

IRMSE i, | 1456 1263 1221
i | 1759 1604 1574
iig| 1274 1041 989
i, | 1174 1033 1002
IMAE  ji, | 1096 1016 10.05
i, | 1442 1336 1313
iy | 1008 850 822
i, | 923 844 831




Table 3. Conditional
Mean in continuous
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T =39

fee;;%’t‘iblg'ooo | n=100 =300 n=500
RMSE i, | 1230 754 602

i, | 1265 805 698

i | 922 512 303

i, | 891 513 400

IMAE i, | 881 541 433

i, | 999 646 570

i | 714 395 302

i,| 687 397 308

© XN ORWN =

Application

A willingness-to-pay (WTP) experiment

Interval-censored data and examples
Survival models and specializations
Regularity and design assumptions

Application

* WTP to protect California wetlands

* “Double Referendum” contingent valuation
format: first bid drawn from design, second
bid half if “No”, double if “Yes”

» Covariates: Age, years in California,
education, income bracket, sex, race,
membership in environmental organization

* N =530

* 14 bid levels total (number of first bid levels = ?)
» Data collected by Hanemann et al

* Model: logT=x6-n

Density of WTP
First bid data

(kernel-smoothed)

Dararsy

QOO0 o034 GOUH GO OO GOED  CORd4  DRed

Table 5. Estimates Log Linear
Of Mean WTP Lt Lt
Ti; | 62.0320 306.0211
(4.4683) (411.4€03)
jio(X) | 61.5918 302.4752
o (4.2751) (328.77€€)
7is | 64.6992 369.2809
= (5.05823) (304.6201)
iy (X) | 63.7869 472.5140
(4.4995) (328.2008)
fs | 99.1164 141.5369
(4.1348) (9.0742)
ji;(X) | 98.7726 134.0196
(6.652€) (21.499€)

Log Linear

Table 6 _ _
bid1 d?2
YEARCA 0.0021 0.0131
(0.0022) (0.00€2%)
SEX —0.0460 0.257
(0.0632) (0.1740)
]n(ACE) —0.2040 —0.4801
(0.1088) (0.2563)
EDUC 0.0119 0.0307
(0.0134) (0.0404)
WHITE 0.1338 0.2164
(0.0797) (0.2173)
ENVORG —0.1085  0.0946
(0.0792) (0.2331)
In(INCOME) | 0.0972  0.3796
{0.0300+) (0.1474%)




