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Summary I

Survival analysis arises in many fields of study such as medicine, biology,
engineering, public health, epidemiology, and economics. This workshop

aims to provide a comprehensive treatment of Semiparametric Bayesian

methods for survival and longitudinal data. There will be four 2-hour

sessions.

# Reference Book

J.G. Ibrahim, M.-H. Chen, and D. Sinha, Bayesian Survival Analysis,
Springer-Velag, Second Printing, 2005.

Website: “http://www.stat.uconn.edu/~mhchen/survbook.”
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‘ Overview I

In this session, we will start with a brief introduction and we will then
discuss Bayesian models based on prior processes for the baseline hazard
and cumulative hazard, construction of the likelihood function, and prior
elicitation. Gamma processes, beta processes, correlated gamma
processes, and frailty models will be introduced. Several examples and

case studies will be presented to illustrate the various models.
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‘ Outline '

Bayesian models based on prior processes for the baseline hazard

and cumulative hazard.
Gamma, processes

Beta processes

Correlated gamma processes
Prior distributions

Frailty models
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‘ 1.1 Introduction I

e These tutorial lectures focus on
— Modelling
— Priors
— Computations

— Applications

e (Goals in these four sessions are to present
— Modeling strategies and main ideas
— Prior elicitation strategies
— Advantages over other methods

— MCMC implementation
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1.2 Semiparametric Models'

# Piecewise Constant Hazard Model

Let D = (n,y, X, v) denote the observed data, where
y=(y1,y2,...,Yn), v = (V1,0a,...,vs) with v; = 1 if the i*"
subject failed and 0 otherwise, and X is the n X p matrix of

covariates with i* row /.

One of the most convenient and popular models for semiparametric

survival analysis is the piecewise constant hazard model.
Discrete approximation to continuous time model.

To construct this model, we first construct a finite partition of the
time axis, 0 < 851 < 82 < ...< sy, with sy >y; forallt=1,2,...,n.

Discrete vs. continuous time - Discrete time model converges to

continuous time model as intervals become finer and finer.
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e Thus, we have the J intervals (0, s1], (s1,s2], ..., (ss—1,8s]. In the
7*" interval, we assume a constant baseline hazard ho(y) = \; for
y € Ij = (sj—1,55].

e Letting A = (A1, A2,...,As)’, we can write the likelihood function of
(B, A) for the n subjects as

L(B,A|D)

:H H (Aj exp(z;B)) Oij "exp{ — dij [Aj(yz' — 8j-1)

j—1
+ Z Ag(sg — 59—1)] exp(wé,@)}, (1)
g=1

where §;; = 1 if the i*" subject failed or was censored in the j*"
interval, and 0 otherwise, ®; = (x1, Zi2, . . ., Tip) denotes the p x 1
vector of covariates for the i*" subject, and B = (B1, B2, ...,Bp) is

the corresponding vector of regression coefficients.
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The indicator d;; is needed to properly define the likelihood over the
J intervals. The semiparametric model in (1), sometimes referred to
as a piecewise erponential model, is quite general and can
accommodate various shapes of the baseline hazard over the

intervals.

If J =1, the model reduces to a parametric exponential model with

failure rate parameter A = \;.

The piecewise exponential model is a useful and simple model for
modeling survival data. It serves as the benchmark for comparisons
with other semiparametric or fully parametric models for survival
data.

A common prior of the baseline hazard A\ is the independent gamma,
prior A\j ~ G(aw;, Xoj) for j =1,2,...,J, where G(ao;, Aoj) denote
the gamma distribution with parameters (agj, \o;), with density
given by

1

m(Ajlaog, Aoj) oc AT exp(—AojAg)-
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Here ao; and Ag; are prior parameters which can be elicited through
the prior mean and variance of );.

Another approach is to build a prior correlation among the \;’s
using a correlated prior ¥ ~ N (1, 2y ), where ¥; = log()\;) for
7=1,2,...,J.

The likelihood in (1) is based on continuous survival data.

The likelihood function based on grouped or discretized survival
data is given by

J
L(B,AID) « || G,
j=1

where

G;f :exp{ — ANjA; Z exp(m%,@)}

kET\’,J‘ —'Dj

x 1T [1—exp{=X;A; exp(2{8)}] (2)

lEDj

Aj = s; —8j—1, Rj is the set of patients at risk, and D; is the set of
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patients having failures in the j*" interval.

e When one considers the piecewise constant baseline hazard model
with h; = Aj\; and A; = s; — s;_1, there is a great similarity
between the two likelihoods.

® Informative Prior Specifications: The Power Prior

e In many cancer and AIDS clinical trials, current studies often use
treatments that are very similar or slight modifications of
treatments used in previous studies. We refer to data arising from

previous similar studies as historical data.

e In carcinogenicity studies, for example, large historical databases

exist for the control animals from previous experiments.

e In all of these situations, it is natural to incorporate the historical
data into the current study by quantifying it with a suitable prior
distribution on the model parameters.
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From a Bayesian perspective, historical data from past similar
studies can be very helpful in interpreting the results of the current

study

To fix ideas, suppose we have historical data from a similar previous
study, denoted by Dy = (no,y,, Xo) where ng is the sample size of
the historical data, y, is the ng X 1 response vector, and Xg is the

no X p matrix of covariates based on the historical data.

The power prior is defined to be the likelihood function based on the

historical data Dg, raised to a power ag.

Here, 0 < ag < 1 is a scalar parameter that controls the influence of

the historical data on the current data.
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e We consider the power prior for an arbitrary regression model
(Ibrahim and Chen, 2000). Let the data from the current study be
denoted by D = (n,y, X), where n denotes the sample size, y
denotes the n x 1 response vector, and X denotes the n X p matrix
of covariates. Further, denote the likelihood for the current study by

L(68|D), where 0 is a vector of indexing parameters.

e Now suppose we have historical data from a similar previous study,
denoted by Do = (no, Yy, Xo). Further, let mo(0|.) denote the prior
distribution for @ before the historical data Dy is observed. We shall

call mo(0|.) the initial prior distribution for 6.

e Given ag, we define the power prior distribution of @ for the current
study as

7T(0|Do,a,o) OCL(0|Do)aO7T0(0|Co), (3)

where ¢y is a specified hyperparameter for the initial prior, and ag is
a scalar prior parameter that weights the historical data relative to
the likelihood of the current study.
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The prior parameter ¢y controls the impact of my(@|co) on the entire
prior, and the parameter ag controls the influence of the historical
data on 7(0|Dog, ao).

The parameter ap can be interpreted as a relative precision
parameter for the historical data. It is reasonable to restrict the
range of ag to be between 0 and 1, and thus we take 0 < ag < 1.

One of the main roles of ag is that it controls the heaviness of the
tails of the prior for 8. As ag becomes smaller, the tails of (3)

become heavier.

Setting ap = 1, (3) corresponds to the update of mo(@|co) using
Bayes theorem. That is, with agp = 1, (3) corresponds to the
posterior distribution of 6 from the previous study.

When ap = 0, then the prior does not depend on the historical data,
and in this case, m(0|Do,a0 = 0) = m(0|co). Thus, ap =0 is
equivalent to a prior specification with no incorporation of historical
data. Therefore, (3) can be viewed as a generalization of the usual
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Bayesian update of mo(0|co).

The parameter ag allows the investigator to control the influence of
the historical data on the current study. Such control is important in
cases where there is heterogeneity between the previous and current

study, or when the sample sizes of the two studies are quite different.

The hierarchical power prior specification is completed by specifying
a (proper) prior distribution for ag. This leads to a joint power prior

distribution for (8, ag) of the form
m(6,a0|Do) o< L(6]Do)"mo(6]co)m(aolvo), (4)

where 7, is a specified hyperparameter vector. A natural choice for

m(aol7y,y) is a beta prior.
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& Example 1.1: Melanoma data.

e Melanoma incidence is increasing at a rate that exceeds all solid
tumors. Although education efforts have resulted in earlier detection
of melanoma, patients who have deep primary melanoma (> 4 mm)
or melanoma metastatic to regional draining lymph nodes, classified
as high-risk melanoma patients, continue to have high relapse and
mortality rates of 60% to 75% (see KirkwoodKirkwood, J.M. et al.,
2000).

e Recently, several post-operative (adjuvant) chemotherapies have
been proposed for this class of melanoma patients, and the one
which seems to provide the most significant impact on relapse-free
survival and survival is interferon alpha-2b (IFN). This

chemotherapy was used in two recent Eastern Cooperative Oncology
Group (ECOG) phase III clinical trials, 1684 and E1690.
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e The first trial, E1684, was a two-arm clinical trial comparing
high-dose interferon (IFN) to observation (OBS). There were a total
of ng = 286 patients enrolled in the study, accrued from 1984 to
1990, and the study was unblinded in 1993. The results of this study
suggested that IFN has a significant impact on relapse-free survival
(RFS) and survival (OS), which led to U.S. Food and Drug
Administration (FDA) approval of this regimen as an adjuvant

therapy for high-risk melanoma patients.

e The ECOG trial E1690 was a three-arm phase III clinical trial, and
had treatment arms consisting of high-dose interferon, low-dose
interferon, and observation. This study had n = 427 patients on the

high-dose interferon arm and observation arm combined. E1690 was
initiated right after the completion of E1684.
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We consider the E1690 melanoma data as the current data (D). We
use E1684 as the historical data (Dy), and incorporate the E1684

data via the power prior in (3).
The power prior for (3, A) for model (1) is given by
m(B, X, a0|Do) o< L(B, | Do)*mo(B,A) ag® ™" (1 — ag)0~t,
where (ko,&o) are specified hyperparameters for the prior
distribution of ag, mo(5, A) is the initial prior distribution for (3, A),

and L(B, A|Do) is the likelihood function in (1) with Dy in place of
D.

For the initial prior 7o (8, \), we assume that $ and \ are
independent, where 8 has a uniform prior and A has a Jeffreys’s

prior. This leads to the joint initial improper prior
J
—1
o (B, ) x H S (5)
j=1
We consider the treatment covariate alone in the example here, and
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thus [ is one dimensional.

Table 1.1 shows results based on several values of ap using the initial
prior in (5). The value ap = 0 corresponds to a Bayesian analysis of
E1690 using noninformative priors, that is, not using any historical
data. A value of ap = 1 corresponds to giving the historical and
current data equal weight. In Table 1.1, HR denotes the hazard
ratio of OBS to IFN, SD denotes the posterior standard deviation,
and 95% HPD denotes 95% Highest Posterior Density intervals.

We see from Table 1.1 that as more weight is given to the historical
data, the posterior hazard ratios increase and the HPD intervals

become narrower and do not include 1.

This is reasonable since the posterior hazard ratios based on the
E1684 data alone were much larger than E1690 alone, and therefore
as more weight is given to 1684, the greater the posterior hazard

ratios and the narrower the HPD intervals.
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e Thus, the incorporation of 1684 into the current analysis via the
power prior sharpens the assessment between IFN and OBS and

leads to more definitive conclusions about the effect of IFN.

e This example thus demonstrates the effect of incorporating

historical data into an analysis.

TABLE 1.1. Posterior Estimates of Hazard Ratio for E1690 using E1684

as Historical Data

E(a|D,Do) | HR  SD  95% HPD
0 1.30 0.17 (0.99, 1.64)

0.05 1.30 0.16 (0.99, 1.63)
0.30 1.33 0.15 (1.03, 1.63)

1 1.36 0.13 (1.11, 1.62)
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& Models Using a Gamma Process

e The gamma process is perhaps the most commonly used

nonparametric prior process for the Cox model.

e The seminal paper by Kalbfleisch (1978, JRSSB) describes the

gamma, process prior for the baseline cumulative hazard function.

e The gamma process can be described as follows. Let G(a, A) denote
the gamma distribution with shape parameter a > 0 and scale

parameter A > 0.

e Let a(t),t > 0, be an increasing left continuous function such that
a(0) =0, and let Z(t),t > 0, be a stochastic process with the
properties:

(i) Z(0) = 0;
(ii) Z(t) has independent increments in disjoint intervals; and

(iii) for t > s, Z(t) — Z(s) ~ G(c(a(t) — a(s)),c).
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e Then the process {Z(t) : t > 0} is called a gamma process and is
denoted by Z(t) ~ GP(ca(t),c). We note here that «(t) is the mean
of the process and c is a weight or confidence parameter about the

mean.

e The sample paths of the gamma process are almost surely increasing

functions.

& Gamma Process on Cumulative Hazard

e Under the Cox model, the joint probability of survival of n subjects
given the covariate matrix X is given by

P(Y > y|B, X, Hy) = exp { > exp(w}ﬁ)Ho(yj)} :

=1

e The gamma process is often used as a prior for the cumulative

baseline hazard function Ho(y).
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e In this case, we take
Ho ~ GP(coH"™, co), (6)
where H™(y) is an increasing function with H*(0) = 0.

e H"™ is often assumed to be a known parametric function with
hyperparameter vector v,. For example, if H* corresponds to the
exponential distribution, then H™(y) = voy, where o is a specified
hyperparameter. If H*(y) is taken as Weibull, then H*(y) = noy"°,

where v, = (10, ko)’ is a specified vector of hyperparameters.
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e The marginal survival function is given by

P(Y > y|B,X,7y, o)

= [TloGvy) et an =1, (7)
7j=1

where ¢ is the characteristic function of an infinitely divisible
distribution function with unit mean, V; = >, R, exp(z;08), R, is
the risk set at time y;), and y1) < y2) < ..., < Y(n) are distinct

ordered times.

e For continuous data, when the ordered survival times are all
distinct, the likelihood of (83,70, co) can be obtained by
differentiating (7). Note that this likelihood, used by Kalbfleisch
(1978) and Clayton (1991), and among others, is defined only when
the observed survival times are distinct.
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e Sinha, Ibrahim, and Chen (2003, Biometrika) provide a Bayesian

justification of Cox’s partial likelihood via the gamma rocess prior.

e The extension to the cases when ties are present is also considered

by Chen, Ibrahim, and Shao (2004). Chen, Ibrahim, and Shao
(2004) further develop an efficient Markov chain Monte Carlo

algorithm to sample from the resulting posterior distribution.
& Gamma Process with Grouped-Data Likelihood

e Again, we construct a finite partition of the time axis,
0<s1<83<...<8y,withsy>y; foralls=1,...,n. Thus, we
have the J disjoint intervals (0, s1], (s1,s2], ..., (s7-1, 8], and let
I = (sj-1, 8]

e The observed data D is assumed to be available as grouped within
these intervals, such that D = (X, R;,D; : j =1,2,...,J), where R

is the risk set and D; is the failure set of the j** interval I;.
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Let h; denote the increment in the cumulative baseline hazard in
the j* interval, that is

hj = Ho(s;) — Ho(sj-1), j=1,2,...,J.

The gamma process prior in (6) implies that the h;’s are

independent and
hj ~ G(ao; — ao,j-1,¢C0), (8)

where ao; = coH"(s;), and H™ and co are defined in the previous
subsection.

Thus, the hyperparameters (H™, co) for h; consist of a specified
parametric cumulative hazard function H*(y) evaluated at the
endpoints of the time intervals, and a positive scalar ¢y quantifying
the degree of prior confidence in H*(y).

Now writing Ho ~ GP(coH™, co) implies that every disjoint

increment in Ho has the prior given by (8).
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e Thus, the grouped data representation can be obtained as

71—1

P(y; € I;|h) = exp {— exp(x;3) Z hk} (1 — exp{—h; exp(xz;8)}],

k=1
where h = (hy,ha,...,hy)".

e This leads to the grouped data likelihood function

J
L(B,h|D) < | | G,

j=1
where
G, = exp{ — h; Z exp(w%,@)} H [1 — exp{—h, exp(mf,@)}}.
kER;—D; IED;
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e A typical prior for 8 is a Np(ug, 20) distribution. Thus, the joint
posterior of (3, h) can be written as

J
(B, h|D) x H [Gjhg.ao‘j_ao’j_l)_l exp(—cohj)]
71=1

oxp { =3 (8= 1o)Z5 (B o) |-

e To sample from the joint posterior distribution of (8, h), it can be
shown that [3|h, D] is log-concave in B and thus the adaptive

rejection algorithm can be used efficiently to sample the components
of 3.

e Moreover, [h|3, D] is also log-concave in the components of h. We

can thus carry out the following Gibbs sampling scheme:
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(i) Sample from

(85189, h, D)
/ 1
X H G exp {—5(3 — Mo)zo_l(ﬁ — Ho)} ;
j=1
using the adaptive rejection algorithm for jy =1,2,...,p.

(ii) Sample from
n(hilh (=9, 8, D) o h;™O7 097
X exp{ — hj< Z exp(xz.3) -|—Co)}, (9)

kGRj —'Dj

where h{=9) denote the h vector without the j* component. The
full conditional distribution in (9) can be well approximated by a
gamma, distribution, and thus a more efficient Gibbs sampling scheme

would be to replace (9) by
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(ii*) Sample from [h|B, D] using independent samples from a conditional
posterior approximated by

hj ~ g (an — ap,5—1 + dj,Co + Z exp(az%,@)) .

kE’R,j _DJ

& Gamma Process on Baseline Hazard

e An alternative specification of the semiparametric Cox model is to

specify a gamma process prior on the hazard rate itself.

e We construct the likelihood by using a piecewise constant baseline
hazard model and use only information about which interval the
failure times fall into. Let 0 = sg < 81 < ... < sy be a finite

partition of the time axis and let
0j = ho(s;) — ho(sj-1)

denote the increment in the baseline hazard in the interval (s;_1, s;],
j = 1,2,...,], and § = (51,52,...,5])’.

1-28 M.-H. Chen



Session 1

e For an arbitrary individual in the population, the survival function
for the Cox model at time y is given by

S(ule) =exp {1 [ ho(u) du
mexp{ <Z5 — Si—1) )}, (10)

where ho(0) = 0, (u)* = w if u > 0, 0 otherwise, and 1 = exp(z’'3).

e This first approximation arises since the specification of  does not
specify the entire hazard rate, but only the d;.

e Let p; denote the probability of a failure in the interval (s;_1, s;],
j=1,2,...,J. Using (10), we have

j—1
Dj :S(Sj_l) — S(Sj) ~ €exXp {—77 251(83'_1 — Sl—l)}

=1

X [1 — exp {—n(sj —55-1) Z&l}] :
=1
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e Thus, in the ' interval (s;_1, s;], the contribution to the likelihood
function for a failure is p;, and S(s;) for a right censored

observation.

e For j =1,2,...,J, let d; be the number of failures, D; be the set of
subjects failing, c; be the number of right censored observations and
C; is the set of subjects that are censored. Also, let D = (n,y, X, v)
denote the data.

e The grouped data likelihood function is thus given by

g=1

J
L(B,8|D) =] {exp{ — d;(ay +bj)}

x 11 [1—exp{—nij}]}, (11)
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where n, = exp(x}.3),

J
a; = Z Z nk(sl—l — Sj—l),
l=j+1keDy
b; = Z Z Me(s1 — 8j-1),

and
j
Ty = (55— sj-1) > b,
=1

e We note that the grouped data likelihood involves the following
approximation: Instead of conditioning on exact event times, we
condition on the set of failures and set of right censored events in
each interval, and thus we approximate continuous right censored

data by grouped data.
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> Prior Elicitation

We demonstrate the use of the power prior for the gamma process
model.

Let Do = (no,¥Yq, Xo,V0) denote the data from the previous study
(i.e., historical data), where no denotes the sample size of the
previous study, yo denotes a right censored vector of survival times
with censoring indicators vo, and Xy denotes the n X p matrix of

covariates.
Let (3, d) denote the initial prior for (3,9).
Let ao denote the weight parameter, 0 < ap < 1.

The power prior distribution for (8, d) is given by

7T(/875|D07a0) X {L(IB75|DO)}GO 71—0(/875)7

where L(3,d|Do) is the likelihood function of (3, d) based on the
historical data Dy and thus, L(3,8|Do) is (11) with D replaced by

Do = (no,yO,Xo,I/o).
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e To simplify the prior specification, we take

T‘-O(IB7 5) — 770(:8|CO)7T0(5|00)7

where ¢y and @ are fixed hyperparameters.

e Specifically, we take mo(3|co) to be a p dimensional multivariate
normal density, N,(0,coWo), with mean 0 and covariance matrix
coWo, where ¢ is a specified scalar and Wy is a p x p diagonal

matrix.

e We take my(d|00) to be a product of J independent gamma,
densities, each with mean fo;/go; and variance foi/gs;,
1 =1,2,...,J. So, we get

J
m0(6160) o | | §70¢ 7! exp {—digoi} ,
i=1

where 6y = (f01,901, .. -,fOJaQOJ),-
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e The prior specification is completed by specifying a prior for ag. We

specify a beta prior for ap (0 < aop < 1), so that
m(ao|oo, o) x ad® (1 —ap)* 7t
thus obtaining the joint prior

m(B,98,a0|Do) xL(B,68|Do)*°mo(Bco)

X 70 (8|60)m(ao|ao, Ao).

& Example 1.2: Myeloma Data

e Our main goal in this example is to illustrate the behavior of the
power prior and the sensitivity of the posterior estimates to the

choice of ag and cg.

e The current dataset is E2479 (Study 2) and the historical dataset,
which consists of a similar study with ng = 65 in multiple myeloma,
conducted several years earlier, is labeled Study 1. Two
superimposed Kaplan-Meier plots for the two studies are displayed

in Figure 1.1.
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e A total of n = 339 observations were available from E2479, with 8
observations being right censored. Our analysis used p = 8
covariates. These are blood urea nitrogen (z1), hemoglobin (z2),
platelet count (z3) (1 if normal, 0 if abnormal), age (x4), white
blood cell count (x5), bone fractures (x¢), percentage of the plasma

cells in bone marrow (z7), and serum calcium (zs).

e To ease the computational burden, we standardized all of the
variables. The standardization helped the numerical stability in the
implementation of the adaptive rejection algorithm for sampling the
regression coefficients from the posterior distribution. Study 1

consisted of ng = 65 observations of which 17 were right censored.
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FIGURE 1.1. Survival curves for Study 1 and Study 2.
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We used J = 28 with the intervals chosen so that with the combined
data sets from the historical and current data, at least one failure or
censored observation falls in each interval. This technique for
choosing J is reasonable and preserves the consistency in the

interpretation of A for the two studies.

In addition, we take fOi = 8; — S;—-1 if S; — Si—1 2 1 and f07; = 1.1if
si —8;—1 < 1, and go; = 0.001.

For the last interval, we take go; = 10 for + = J since very little
information in the data is available for this last interval.

The above choices of fp; and go; ensure the log-concavity of
m0(0 | Bo), as this is required in sampling & from its conditional prior

and posterior distributions.

To obtain the posterior estimates of 3, 50,000 Gibbs iterations were
used after convergence. Tables 1.2 and 1.3 show the posterior

estimates of B8 under the prior parameters (fqy,0ay) = (0,0),
(0.5,0.06), (1,0), and ¢cop = 3, 10. We note that o,, = 0 implies
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ao = 0 or ap = 1 with probability 1.

From these two tables, it can be seen that the posterior means of 8
are very similar, and the posterior standard deviations are slightly
smaller when u,, is getting larger. Thus, the results are not too
sensitive to these values of (pay,04,) and co. This may be partially

explained by the relatively small sample size of the historical data.

From Table 1.2, we see that as ag increases, the posterior standard
deviations of the regression coefficients decrease, and thus the
precision in the estimates is improved. Thus, one of the advantages
in incorporating historical data is that it increases the precision in

estimation.

Another feature in Tables 1.2 and 1.3 is that the estimates are
remarkably robust with respect to the choices of (pa,,04,) and co,

thus revealing a desirable property in the power prior.
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TABLE 1.2. Posterior Estimates of 8 for Myeloma Data with ¢y = 3.
Posterior Mean Posterior Std. Error
Variable ap =0  pag =0.5 apo=1 | ao=0 pag =05 ap=1
x1 0.133 0.134 0.153 0.046 0.046 0.044
T2 —0.178 —0.182 —0.186 0.046 0.045 0.043
x3 —0.069 —0.076  —0.087 0.049 0.049 0.046
x4 0.406 0.411 0.371 0.049 0.049 0.046
xs5 0.229 0.236 0.218 0.054 0.054 0.051
x6 —0.004 —0.002 0.015 0.051 0.051 0.048
x7 0.440 0.446 0.399 0.058 0.058 0.054
xs 0.235 0.241 0.224 0.057 0.057 0.053
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TABLE 1.3. Posterior Estimates of 8 for Myeloma Data with

co = 10.
Posterior Mean Posterior Std. Error
Variable ap =0  pag =0.5 apo=1 | apo=0 pag =05 ap=1
1 0.131 0.134 0.153 0.047 0.046 0.045
9 —0.180 —0.182 —0.189 0.046 0.046 0.044
3 —0.072 —0.076  —0.090 0.049 0.049 0.046
x4 0.413 0.411 0.377 0.050 0.050 0.047
x5 0.226 0.236 0.224 0.055 0.054 0.052
x6 —0.005 —0.002 0.015 0.052 0.051 0.048
x7 0.449 0.446 0.406 0.058 0.058 0.055
s 0.241 0.241 0.228 0.057 0.057 0.054
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& Beta Process Models

e We first discuss time-continuous right censored survival data

without covariates.

e In this context, write the definition of the cumulative hazard H(t) as

H(t) = —1log(5(1)), (12)
where S(t) is the survival function.

e The gamma process can be defined on H(t) when this definition of

the cumulative hazard is appropriate.

e A more general way of defining the hazard function, which is valid

even when the survival time distribution is not continuous, is to use
the definition of Hjort (1990).
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e General formulae for the cumulative hazard function H(t) are

H(t) = /[O,t] dg(g:;), (13)

where

Fit)=1-S@t)=1-][{1-dH({)}. (14)

[0,¢]
The cumulative hazard function H(t) defined here is equal to (12)

when the survival distribution is absolutely continuous.

e Hjort (1990) presents what he calls a beta process with independent
increments as a prior for H{(.).

e A beta process generates a proper cdf F'(t), as defined in (13), and

has independent increments of the form
dH(s) ~ B(c(s)dH" (s),c(s)(1 — dH"(s))), (15)

where B(a, b) denotes the beta distribution with parameters (a,b).

1-42 M.-H. Chen



Session 1

e Due to the complicated convolution property of independent beta
distributions, the exact distribution of the increment H(s) is only
approximately beta over any finite interval, regardless of how small

the length of the interval might be.

e It is possible to deal with the beta process for the baseline
cumulative hazard appropriately defined under a Cox model with
time continuous data, but survival data in practice is commonly
grouped within some grid intervals, where the grid size is

determined by the data and trial design.

e So for practical purposes, it is more convenient and often sufficient
to use a discretized version of the beta process long with grouped

survival data.
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e Within the spirit of the definition of the cumulative hazard function
H (t) defined in (13), a discretized version of the Cox model can be
defined as

J
S(sile) = P(T > slz) = [[ (1 — hi) @B,
k=1

where hji 1s the discretized baseline hazard rate in the interval
I, = (Sk—1, Sk]. The likelihood can thus be written as

J

L) = (1= ny=eems=n @)
j=1
< [ (1 (- hj)exp(fviﬂ)) ,
leD,

where h = (h1, ho,...,hy)".

e To complete the discretized beta process model, we specify
independent beta priors for the hx’s. Specifically, we take
hi ~ B(cok ok, cok(1 — aor)), and independent for k =1,2,...,J.
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Though it is reasonable to assume that the hg’s are independent
from each other a priori, the assumption of an exact beta
distribution of the Ax’s is only due to an approximation to the true

time-continuous beta process.

Thus, according to the time-continuous beta process, the
distribution of the hx’s is not exactly beta, but it can be well
approximated by a beta distribution only when the width of I is

small.

Under the discretized beta process defined here, the joint prior

density of h is thus given by

J
m(h) x H h;0j°‘0j—1(1 _ hj)COj(l—OLOj)—l.
j=1

A typical prior for B is a N, (g, 20) prior, which is independent of
h.
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e Assuming an arbitrary prior for 8, the joint posterior of (3, h) can
be written as
J

(8, h|D) < L(B,h|D)r(R)x(8) = [ ((1 _ ) TieR; D exp () 5)>
71=1
J
X H (1 — (1 — h])eXp(wEIB)> H COJO‘OJ hj)coj(l_aoj)_lﬂ'(ﬂ),

lEDj 71=1

e We can use the Gibbs sampler to sample from the joint posterior
distribution of (3, h).
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& Correlated Gamma Processes

e Again, consider the piecewise constant hazard model. We construct
a finite partition of the time axis, 0 < s1 < s2 < ... < sy, with
s;g>uwy; forallt =1,2,...,n, and assume a constant baseline hazard
ho(y) = Mg for y € I, = (Sk—1, Sk

e The grouped data likelihood function of (A, 8) can now be written as

L(B,A|D) = ﬁ [ (H eXp(wéﬁ))

X exp {)\k(sk — Sk_1) ( Z exp(wﬁ;,@)) } ] 3
i€ER

where Ry is the set of patients at risk and Dy is the set of patients
having failures in the k*" interval.
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e The gamma process prior of Kalbfleisch (1978) discussed earlier
assumes independent cumulative hazard increments. This is
unrealistic in most applied settings, and does not allow for

borrowing of strength between adjacent intervals.

e Modeling dependence between hazard increments has been discussed

by Gamerman (1991), who proposes a Markov prior process for the
{log(Ax)}, by modeling

log(Ak) = log(Ak—1) + €k,
E(ex) =0, and Var(ex) = op.

e Arjas and Gasbarra (1994) introduced a first-order autoregressive

structure on the increment of the hazards by taking
M| Ak—1 ~ Glak, a/Ak—1)

for k > 1.
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e Nieto-Barajas and Walker (2000) propose dependent hazard rates
with a Markovian relation, given by A1 ~ G(a1,7v1),

Uk| Ak, v ~ P(veAk), vel&k ~ € (1/&k), (16)
Ak+1|Uk, Ve ~ G(Qk+1 + Uk, Ve+1 + Vk), (17)
and
B~ m(B),

for kK > 1, where w(3) denotes the prior for 8, which can be taken to

be a normal distribution, for example.

e Following Nieto-Barajas and Walker (2000), the innovation in the
process is the introduction of two latent processes {u} and {vx},
which are not observable and cannot be expressed in terms of

observable quantities.

e The role of the processes {uxr} and {vx} is fundamental, since they
allow us to control the strength of the correlation between different

hazard increments.
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e These processes can be characterized by examining the following

conditional expectations:

k41 + Uk
]
Ye+1 + Vk

E(uk| Ak, vk) = vk, E(ur|Ak) = Ak,

E(Apt1|ur, vk) =

and
Qr+1 + Vi Ak

Ve+1 + Vk
where ag, &, and &, are specified hyperparameters.

E(Ak+1| Ak, vk) =

e Note that we do not force the process to have the same first-order
autoregressive structure, in that the dependence can vary along the

time axis.

e We also note that the higher the value of vk, the closer the process is

to first-order autoregressive.

e When v, = 0, we have the independence model of Kalbfleisch (1978).
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Allowing vi to be a random process in (16) enables us to learn
about the degree of correlation between increments in adjacent time

intervals through the data.

This alternative Markov prior process generalizes the independent
gamma, process, but keeps the convenient conjugacy property of a

gamma prior with the Poisson distribution.

When ag, vx and v are constant over time, the hazard increments
Ak are marginally distributed as independent and identically
distributed (i.i.d.) gamma variates, and the process is a stationary
process.

Let XA = (A1, A2,...,A0)", v = (uo,u1,...,uy), v=(vo,v1,...,v5),

and define ug = vg = 0. With this process, the joint posterior is
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given by

(A, B, u,v|D) < L(A, B|D)

.
d A exp (= Ak (vx + vr—1))
Aok A,k
> H ke R F(ok +ur—1)

aptup_q XP(—VeAR) (Ve AR)TF

X (Ve + Vk—1) eXP(—z—:)]

J
X exp <— Z Ak (sk — Sk—l)Bk> (B),
k=1

where dj, is the number of events in Iy, = (sx_1, S/,

A = H exp(xz;3), and By = Z exp(x;3).

1€Dy, 1ERE
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e After some algebra, we obtain

m(A, B, u,v|D)

J
oC eXp {— Z A ((sg — Sk—1)Br + v, +vp_1 + ’Uk:)}
k=1

A (T + vp—1) @R TR0 F exp(— &)

og + up—1)ug!

<11

k=1

J
d —
> H /\kk+ak+uk—1+uk 1 x 7(B).
k=1
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‘1.3 Frailty Models'

e In studies of survival, the hazard function for each individual may

#® Introduction

depend on a set of risk factors or explanatory variables but usually

not all such variables are known or measurable.

e This unknown and unobservable risk factor of the hazard function is

often termed as the individual’s heterogeneity or fra:lty.

e Frailty models are becoming increasing popular in multivariate
survival analysis since they allow us to model the association
between the individual survival times within subgroups or clusters of

subjects.
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& Proportional Hazards Model with Frailty

e The most common type of frailty model is called the shared-frailty
model, which is an extension of the Cox proportional hazards model.

e This model can be derived as follows. Let y;; denote the survival
time for the 7' subject in the i'" cluster, i = 1,2,...,n, and
3 =1,2,...,m;. Thus, m; represents the number of subjects in the
it" cluster, and therefore we have a total of N = >, m; subjects.

e In the shared frailty model, we assume that the conditional hazard
function of y;; given the unobserved frailty random variable w; for
the i*" cluster and the fixed covariate vector z;; is given by

h(ylwi, z:5) = ho(y)w; exp(x;B), (18)

1 =1,2,...n,7=1,2,...,m;, where B is the p x 1 vector of
unknown regression coefficients, ho(.) is an unknown baseline hazard
function common to every subject, and x;; is the p X 1 covariate
vector for the " subject in the 3" cluster, and may be time
dependent.
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A common method is to use a parametric distribution for the frailty
w;. Finite mean frailty distributions such as the gamma and
log-normal are very popular in the literature in spite of their
theoretical limitations.

Other alternatives include using infinite mean distributions such as
the positive stable distribution.

The gamma distribution is the most commonly used finite mean
distribution to model the frailty term w;.

For finite mean frailty distributions, we need the mean of the frailty
distribution to be unity in order for the parameters of the model to
be identifiable.

Thus, for the gamma frailty model, the w;’s are assumed to be i.i.d.
with
wi ~ G R, (19)

where k is the (unknown) variance of the w;’s.

Thus, larger values of k imply greater heterogeneity among clusters.
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Letting w = (w1, w2,...,w,)’, we have
n 1
m(w|k) wa “Lexp(—ktwy). (20)
i=1

As mentioned in Anderson et al. (1993), in spite of promising results
by several authors, formal and completely satisfactory justifications
of these likelihood-based methods await more results on their

asymptotic and convergence properties.

Moreover, none of these likelihood-based methods directly maximize
the full likelihood given the data, and the small sample properties of

these estimators have yet to be studied.

Thus, Bayesian methods are attractive for these models since they
easily allow an analysis using the full likelihood and inference does

not rely on asymptotics.
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& Weibull Model with Gamma Frailties

Let v;; denote the censoring indicator variable, taking value 1 if the
7' subject (j = 1,2,...,m;) of the i*" cluster (i = 1,2,...,n) fails
and 0 otherwise. Hence, y;; is a failure time if v;; = 1 and a

censoring time otherwise.

Further, let v = (v11,v12, .+ -y Vnm,, ), ¥ = (Y11, Y12, - - -, Ynm,, ), and
X = (X1,X2,...,Xn), where X; is the m X p matrix of covariates
for the 3" cluster.

Let D = (X,v,y,w) denote the complete data and let
Dops = (X, v,y) denote the observed data.

Here, we only allow right censored survival data and assume that
the censoring is noninformative.

Let the Weibull baseline hazard function be given by

ho(yis) = youss ',

where (v, a) are the parameters of the Weibull distribution.
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e The hazard function is given by
h(yss|ig, wi) = yowygy 05, (21)

where 0;; = exp(x;.3), and the complete data likelihood is given by
J J

n m;

L(B,v,alD) = [ [ [ | (voys 'wibi;)” exp {—yys0iwi} . (22)

1=175=1

e The likelihood function of (3, ~, a) based on the observed data D
can be obtained by integrating out the w;’s from (22) with respect
to the density 7(w|k) given in (20).

e The observed data likelihood is far too complicated to work with,

and thus it is difficult to evaluate the joint posterior distribution of

(B, 7, @) analytically.

e To circumvent this problem, we use the Gibbs sampler to generate

samples from the joint posterior distribution.
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e Let 7(-) denote the prior density of its argument and let
S = Z Z Vi3 0iiW;. (23)
i=1 j=1

The full conditional distribution of each w; is a gamma distribution,

i.e.,
(wi| B, @, 7, Dobs) ~ G {ml + > vig, e+ va%Hij} o (24)

for:=1,2,...,n.
o Letting n = k™1, the full conditional distribution of 7 is given by

1 €XP{ N wi}
W(n|ﬁ,w,Dobs)O<i:H1wz- n T

(25)
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The full conditional of 3 is given by

n m;

w(B|n, w, Dops) x exp {,3' Z Z Vij i — 'yS} w(B). (26)

i=1j=1

If a priori v ~ G(p1, p2), then the full conditional of v is a gamma
distribution given by

("Y|,3,CK w Dobs {Pl +ZZV7’J’ P2 +S} (27)

=1 j5=1

Finally, the full conditional of « is given by

n m;

a—1
(B, 7, w, Dops) (H 11 y””) aZi=1 20 Vi oxp [~y S} m(a).

1=1j5=1
(28)

A priori, it is common to take a ~ G(a1,az2), so that
m(a) o< a® " exp(—aaz).
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e With these choices of priors, it can be shown that each of the above

full conditional densities in (24)—(28) is log-concave.

e The frailty model in (21) is a multiplicative frailty model. The
modeling strategy used in the BUGS software manual is based on an

additive frailty model,

(y’LJ |m”, ) g’bﬂayzg ) (29)

where
log(€:;) = C + ;B + bi, (30)
the b;’s are assumed i.i.d. N (O, m_l), and k is given a G(¢1, ¢2)

prior. The prior for a is G(a1,a2), and ( is given a normal prior.

e It is expected that both the multiplicative and additive hazard
Weibull model formulations will yield similar inferences since this
additive frailty model is actually a multiplicative frailty model with

a log-normal frailty distribution.
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& Gamma Process Prior for Hy(t)

o Clayton (1991) derives the Bayesian frailty model assuming a

gamma process for the cumulative baseline hazard Ho(t).

e When the gamma process prior on H(t) as developed earlier is used,
the complete (time-continuous) data likelihood of (3, Hy) is given by

n MmM;

L(B,Ho) = | | [ (wi exp(a;;B)dHo(yi;))"" exp {— exp(a;;B)wi Ho(yi;) }
i=1j=1
({10t ) (S i) ({1 T i
i=1 i=1j=1 i=1j=1

i=1j=1

X exp (— Z i exp(m;jﬂ)wiHo (yij)> : (31)
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e As discussed earlier, a grouped data version of (31) is given by
J
L(B, hlw, D) = T] Gih5** ™" exp(—cohy), (32)
71=1

where

G; =exp(—h; Z exp(z 3 + log(wg)))

kE'R,j

x || (1 — exp(— exp(h;ziB + log(wi)))),
lG'Dj
h = (h1,ha,...,hy)’, the h;’s are independent,
h; ~ G(aoj —o,j—1,¢c0) as defined in (8), R; is the set of patients at
risk, and D; is the set of patients having failures in the j*™ interval

as defined earlier.
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e The joint posterior distribution of (8, h, w|D) is given by
(B, h,w|Dos) x L(B, h|D)n(w)n(B), (33)
where () is the prior distribution for 8, and n(w) is given by (19).

e Clayton (1991) assumes a normal prior for 8, although other priors

can certainly be used.

e To sample from (33), we need to sample from the following full

conditional distributions:

~

(Z) :/8|w’h7D0bS:'
(7’7’) :w|187h7DObS:'
(4ii) [R|B, w, Dobs).

and

~
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# Piecewise Exponential Model for hq(?)

Piecewise exponential models provide a very flexible framework for

modeling univariate survival data.

Although in a strict sense it is a parametric model, a piecewise
exponential hazard can approximate any shape of a nonparametric

baseline hazard.

Therefore, in practice, defining a prior for a piecewise exponential
hazard is the same as defining a prior process for the nonparametric

hazard function.

We construct the piecewise exponential model in the same way

discussed earlier.

We first divide the time axis into J prespecified intervals
I = (sk—1,8k]) for k=1,2,...,J, where
0=50<81<...<85 <00, sy being the last survival or censored

time and assume the baseline hazard to be constant within intervals.
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That is,
ho(y) = Ak, for y € Ig. (34)

Although modeling the baseline hazard through an independent
increment prior process such as the gamma or beta process is
attractive and common, in many applications, it often turns out
that prior information is available on the smoothness of the hazard

rather than the actual baseline hazard itself.

For the frailty model, the marginal hazard is always a nonlinear
function of the baseline hazard involving covariates and frailty
parameters as well. However, the ratio of marginal hazards at the
nearby time-points given the same covariates is approximately equal

to the ratio of baseline hazards at these points.

Thus, in these cases, it is more attractive to consider some type of

correlated prior process for the baseline hazard.
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To correlate the A\x’s in adjacent intervals, a discrete-time
martingale process is used, similar to that of Arjas and Gasbarra

(1994) for the univariate survival model.

Given (A1, A2,..., Ak—1) we specify that

Ak—1
for k = 1,2...,J, where )\0 — 1, and E()\k|)\1,)\2,.. -,)\k—l) = )\k—1~

A6l A1, A2,y Aot Ng(ak, Ok ) (35)

The parameter ay in (35) controls the amount of smoothness
available and a small aj indicates less information on the smoothing

of the A\x’s. If ax = 0, then Ay and A\x_1 are independent.

When ar — oo, then the baseline hazard is the same in the intervals
Iy and Ix_q: i.e., Ax = Ag—1. Thus, in the limiting case, we get a

constant baseline hazard.

1-68 M.-H. Chen



Session 1

A version of the above process which can also be used, where
log(Ar) = &k and took

Eeléhor ~ N(&_1,7), k=1,2,...,J (36)

with & = 0. Taking this further, we can assume a second difference
prior process for &, i.e.,
€k|€k—27 Ek—l ~ N(2€k_1 — gk_Q, 7'2), k= 3, 4, e ooy J, and so forth.

A few remarks are in order on the choice of the number of grid
intervals J. It is clear that a very large J will make the model

nonparametric.

However, too large a J will produce unstable estimators of the Ag’s
and too small a choice may lead to poor model fitting. Hence, a
robust choice of J should be considered here.

Note that the maximum likelihood estimate of Ay depends on the
number of failures, di, in the k' interval I, and is 0 if dj is zero.

One advantage of the Bayesian approach with the correlated prior
process described here is to smooth out such jumps to zero.
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A random choice of J will make the posterior distribution have a
varying dimension and sampling techniques other than the Gibbs
sampler, e.g., reversible jump MCMC can be used to compute the

posterior distribution.

The above models can also be easily altered to accommodate

monotone baseline hazard functions.

Suppose that one intends to model the A;’s with the constraint
A < X <...< As. Then we can assume that

At — Ae—1 ~ G(ag,ar), k=1,2,...,J
instead of (35) or (36).

The likelihood can now be derived as follows. The j* subject of the
it? cluster has a constant hazard of hij = Ax0i;w; in the k'* interval
(k=1,2,...,J) given the unobserved frailty w;. If the subject has
survived beyond the k'™ interval, i.e., Yi; > Sk, the likelihood

contribution is exp{—AxAr0;;w;}, where Ay = sx — Sk—1.
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e If the subject has failed or is censored in the k" interval, i.e.,
Sk—1 < Yij < Sk, then the likelihood contribution is
(Mebi;w:)° exp {—Ak(yi; — sk—1)0:;w;} . Hence, the complete data
likelihood is given by

L(B,A|D)
n m; 9ij iy
X H H [{H eXp(—)\kAinj’wi)} (Agij-l-leij’wi)é”
1=1j5=1 k=1

X exXp {—)\gij_|_1(y1;j — 59, )Hijwi} ] ,

where g;; is such that y.; € (sg,;,Sg;;+1] = Ig;;+1-
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& Example 1.3: Kidney Infection Data
e We consider the following four models to fit the kidney infection
data:
Model I: Piecewise exponential model with gamma priors for the
Ar’s as in (35).
Model II: Weibull baseline hazard with multiplicative gamma,
frailties.

Model III: Piecewise exponential baseline hazard with normal

priors for the log(Ax)’s as in (36).
Model IV: Weibull baseline hazard with additive frailties.

e The proportional hazard’s component of each of the above models is
0ij = exp(x;B) = exp(Bseasers + Bageagei;),

where sex; = 1 if the i*" patient is a female and 0 otherwise, age;; is

the age at the j* infection of the " patient.
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The BUGS codes and datasets for these models are given at the
website “http://www.stat.uconn.edu/~mhchen/survbook.”

The following values of hyperparameters were used in this example.

1 we take ¢1 = ¢ = 0.001. Each component of

For the prior on k™
B was assumed a priori normal with 0 mean and variance 10°. The
same prior was assumed for ¢ in Model IV. For Model I all the az’s

were assumed to be 0.01.

For Model III, 72 was taken as 10* to make it comparable with the
corresponding prior precision for the Ax’s in Model I. For Models II1
and IV we took p1 = p2 = 0.001, and a; = a2 = 0.001.

We first investigated different choices of the grid size J for Models I
and III. We experimented with three choices of J = 5, 10, and 20.

The J = 5 case seemed to give worse model fitting than the J = 10
case and the last choice of J did not provide substantially better
results than the J = 10 case. Hence we decided to use J = 10
throughout.
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Model fitting and /or model choice were not very sensitive to small

variations on the values of the other hyperparameters as given above.

Widely different ax’s in Model I did change the estimates a little
bit. However, that did not alter the model choice ordering as

reported below.

Table 1.4 shows the posterior mean, standard deviation, and 95%

credible intervals for Bsez, Bage, K. We show the estimates of o and ~
(for Model IV p = exp{(}) in Table 1.5.

In both Tables 1.4 and 1.5, posterior means are followed by standard
deviations in the first row, and 95% credible intervals are shown in

the second row.

The estimates of Bse, show that the female patients have a slightly

lower risk for infection.
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The estimates of x from different models show that there is strong
posterior evidence of a high degree of heterogeneity in the
population of patients. Some patients are expected to be very prone

to infection compared to others with the same covariate value.

This is not very surprising, as in the dataset there is a male patient
with infection times 8 and 16, and there is also another male patient
with infection times 152 and 562.

The high posterior means of x also provide evidence of a strong

positive association between two infection times for the same patient.

The above analysis suggests that Models I and III are very close to

each other while Models II and IV are also somewhat similar.
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Infection Data
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/886113

Bage

K

Model 1

Model II

Model III

Model IV

—1.493 (0.468)
(—2.430, —0.600)
—1.888 (0.564)
(—3.034, —0.846)
—1.500 (0.480)
(—2.467, —0.624)
—1.69 (0.529)
(—2.780, —0.699)

0.006 (0.013)

(—0.018,0.032)

0.007 (0.013)

(—0.018, 0.032)

0.007 (0.013)

(—0.018,0.036)

0.006 (0.014)

(—0.019, 0.036)

0.499 (0.283)
(0.061, 1.160)
0.585 (0.307)
(0.115, 1.317)
0.523 (0.285)
(0.089, 1.195)
0.816 (0.507)
(0.079, 2.050)
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TABLE 1.5. Parameter Estimates of a and p for Weibull Models II and
IV for Kidney Infection Data
Model II Model IV
0! 1.278 (0.190) 1.22 (0.160)
(0.937, 1.692)  (0.916, 1.540)
p | 0.016 (0.015)  0.013 (0.014)
(0.001, 0.058)  (0.001, 0.053)
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& Positive Stable Frailties

e The choice of the gamma distribution for frailties arises partly for
mathematical convenience, since this distribution is conjugate to the
likelihood for w; and partly because, in the case of bivariate survival
data without covariates, integration over the unknown frailty yields
a class of bivariate survival time distributions with appealing

properties.

e This choice also has some less desirable consequences, however. The
marginal relationship between the hazard and covariates no longer
follows the proportional hazards model, since the marginal hazard

function h(y|x) is given by

_ ho(y) exp(z'B)
M) = oy exp(@B) + 1 3D

e Instead, we see in (37) that there is a convergence of hazards, at a

rate determined by k.
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In the multivariate case with covariates, this property has the
consequence that information for estimation of x comes partly from
the coincidence of failure within clusters, and partly from the

marginal convergence of hazards in relation to the covariates.

Several authors have pointed out that this is not a desirable
property for the multivariate model since it renders interpretation of
k difficult.

This problem persists with any other finite mean frailty distribution,

such as the log-normal.

The assumption of a positive stable distribution of the w;’s avoids
this problem, since the proportional hazards assumption for

covariates then remains true marginally.
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Also, in the finite mean frailty model, the unconditional effect of a
covariate, which is measured by the hazard ratio between unrelated
subjects (i.e., with different frailties) is always less than its
conditional effect, measured by the hazard ratio among subjects

with the same frailty.

In particular, suppose we consider two subjects from different
clusters with respective covariates 1 and x2. Let Si(y) and Sa2(y)
denote the corresponding unconditional survivor functions derived

under a frailty specification.

The covariate effects, as measured by the hazard ratio, are always
attenuated and further, Si(y) and S2(y) are usually not related via

a proportional hazards model.

The degree of attenuation of the core effect is not easy to quantify
unless both conditional and marginal specifications have a

proportional hazards structure.
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e [f the frailty distribution is an infinite variance positive stable
distribution with Laplace transform

E(exp(—sw)) = exp(—s°)

for 0 < a < 1, then Si1(y) and S2(y) will have proportional hazards
since

S(yle) = exp {—(0Ho(y))*} = exp {—exp(az'B)Hg (y)},  (38)
where Hy(y) denotes the cumulative baseline hazard function.

e From (38), it is easy to quantify the attenuation of the covariate
effect, since the parameter « is clearly the attenuation of 8 in the

marginal hazard.

e Thus, we no longer need to choose between conditional and
unconditional Cox model specifications, since a single specification

can be interpreted either way.
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e Although the positive stable frailty model is conceptually simple,
estimation of the resulting model parameters is complicated due to
the lack of a closed form expression for the density function of a
stable random variable.

e The Bayesian framework for this model using MCMC methods offers
an attractive alternative to frequentist methods. Specifically, it
greatly reduces the difficulty in estimating «, the parameter that
characterizes the tail behavior in stable distributions.

# Bivariate Measures of Dependence

e Oakes (1989) proposes a local measure of dependence, given by

5 _ S(y1,y2)A1825(y1, y2)
V"W v2) = 1R S0, y2)) (225 (u1, 92))

where A, denotes the operator —8%,, 7 =1,2.
J

(39)

e This function, which was introduced by Clayton (1978), may be
interpreted as the ratio of the conditional distribution of Y7 given
Y2 = y2, to that of Y7 given Ys > yo.
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e This measure has proved to be a useful quantity for assessing the
degree of association between survival times for a given frailty

distribution.

e For a model with gamma, frailties, that is, w ~ G(k™', k'), it can

be shown that the joint survival function of (Y1, Y2) is given by
1
[+ — log(S1(y1)) — log(S:(2))] /"

where S1(y1) and S2(y2) are the baseline survival functions. For this

S(y1,y2) =

Y

model, it can be shown that 0*(y1,y2) = 1 + K, so that 68" (y1,y2) is
free of (y1,y2) for this model. Also, 6*(y1,y2) = 1 + k implies that
the larger the k, the larger the correlation between Y; and Y>3, and
thus this measure of dependence sheds light on the role of x when

using gamma frailties. In particular, when £ — 0, 0™ (y1,y2) — 1,

indicating independence between Y7 and Y5.
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e For a model with positive stable frailties, the Laplace transform of w

is E(exp(—sw)) = exp(—s®), and the bivariate survival function is

S(y1,y2) = exp{—[—1og(S1(y1)) — log(S2(y2))]" } . (40)

The parameter o (0 < a < 1) is a scalar parameter that is a measure
of association between (Y1, Y2). Small values of « indicate high
association between (Y71, Y2). As a — 1, this implies less association
between (Y1, Y2) which can be seen from (40). For (40),

0" (y1,y2) = @~ (1 — @) [~ log(S1(y1)) — log(S2(y2))] ™ + 1. (41)

Thus (41) decreases in (y1,y2). Therefore, the association between
(y1,y2) is greater when (y1,y2) are small and the association
decreases over time. As o — 0, Y7 and Y2 achieve maximal
dependence. When a — 1, 6 (y1,y2) — 1, indicating independence
between Y; and Y>.
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