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‘ Overview I

In this session, we will discuss Bayesian methods for modeling
longitudinal and survival data.

e Joint models for survival and longitudinal data have recently
become quite popular in cancer and AIDS clinical trials, where a
longitudinal biologic marker such as CD4 count or immune response
to a vaccine can be an important predictor of survival.

e Joint models for survival and longitudinal data are also commonly
used in quality of life studies, where it is on interest to examine the
relationship between a patient’s quality of life and a time-to-event.

e Often in clinical trials where the primary endpoint is time to an
event, patients are also monitored longitudinally with respect to one
or more biologic endpoints throughout the follow-up period. This
may be done by taking immunologic or virologic measures in the
case of infectious diseases or perhaps with a questionnaire assessing
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the quality of life after receiving a particular treatment.

Often these longitudinal measures are incomplete or may be prone
to measurement error. These measurements are also important

because they may be predictive of survival.

Therefore methods which can model both the longitudinal and the
survival components jointly are becoming increasingly essential in

most cancer and AIDS clinical trials.

In this part of the session, we will give a detailed development of
joint models for longitudinal and survival data, and discuss
frequentist as well as Bayesian techniques for fitting such models.
We will discuss various approaches to model development, and lay
out the computational implementation in detail. Examples from

AIDS and cancer vaccine trials will be presented.
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‘ 3.1 Introduction I

& Joint Modeling in AIDS Studies

e In clinical trials of therapies for diseases associated with human
immunodeficiency virus (HIV), immunologic and virologic markers
are measured repeatedly over time on each patient. The interval
lengths vary between data collection times and missing data is quite

comimaorn.

e These markers are prone to measurement error and high within
patient variability due to biological fluctuations. Modeling these
covariates over time is preferable to using the raw data as noted by

many.

e In addition, models provide estimates for time points where data are

not available.
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Many HIV clinical trials focus on the opportunistic infections (OI)
associated with HIV disease where the survival endpoint is the time
to development of the OI. In these trials, immunologic and virologic

markers might be utilized as time-varying predictor variables.

The most common measure used to assess immunological health of
an HIV patient is the CD4+ lymphocyte count, or CD4 count for
short.

Higher CD4 counts indicate a stronger immune system that is more

prepared to resist infection. Lower CD4 counts indicate a higher risk
of an OI.

Viral load is a measure of the amount of virus in the blood plasma.
A lower viral load is preferable and may indicate successful
treatment of the disease. A patient’s success on treatment is often

evaluated by these two markers.
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e When a patient begins a successful treatment regimen, the viral load
may drop drastically and fall below a detectable level. The CD4
count may take longer to respond or may not respond at all.

e As viral load decreases, we may expect the CD4 count to increase as
the immune system has time to recover. However, CD4 count is

slower to respond than viral load.

e Because of this complex relationship between the immunologic and
virologic markers, we may want a multivariate model for the

longitudinal covariates.
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& Joint Modeling in Cancer Vaccine Trials

e In cancer vaccine (immunotherapy) trials, vaccinations are given to

patients to raise the patient’s antibody levels against the tumor cells.

e In these studies, the time-to-event endpoint is often time to disease
progression or time to death. A successful vaccine activates the

patient’s immune system against future tumor growth.

e In this case, a patient’s antibody production increases, indicating an
increase in the bodies’ immune strength. Therefore, measuring these
antibodies helps the clinician to evaluate the immunity level.

e The primary measures of antibody response for many cancers are
the IgG and IgM antibody titres. The levels of these markers are
conjectured to be associated with the clinical outcome and are

therefore monitored during follow-up.
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e These markers are prone to measurement error; therefore, the raw
data should not be used as covariates in a survival analysis. A
method which jointly models the longitudinal marker as well as the

survival outcome is therefore necessary.
& Joint Modeling in Health-Related Quality of Life Studies

e The collection of quality of life (QOL) data in clinical trials has
become increasingly common, particularly when the survival benefit
of a treatment is anticipated to be small or modest. In fact, one
might argue that for a patient, quality of life is at times an even
more important factor in treatment decisions than any modest

survival benefit.

e Although this type of data provides much useful information for the
decision-making process of both patient and physician, the
challenges encountered in the collection and analysis of QOL data
make it hard to provide meaningful statements about QOL

differences by treatment.

3-8 M.-H. Chen



Session 3

A QOL survey instrument is typically administered to study
participants at a number of prespecified time points during

treatment and follow-up.

Complete QOL data for patients at all of the specified collection
times is frequently unavailable due to adverse events such as

treatment toxicities or disease progression.

Patients who are very ill when they report to the clinic may be less
likely to complete the QOL instrument, and clinic personnel may
feel that it is unethical to ask a patient to complete such a form

when the patient feels so poorly.

Therefore it is quite plausible that the missingness of QOL data is
related to the patient’s QOL at the assessment time, and strong
evidence that QOL data is generally not missing at random has

become accepted in the literature.
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e [t is well known that such nonignorable missingness often leads to

serious biases and must be taken into account at the time of analysis.

e These considerations lead to the development of joint models for
longitudinal and survival data, where the longitudinal measure is
QOL, and the survival component of the model acts as a type of

nonignorable missing data mechanism.

e One such issue is that missingness of QOL data is often not
monotone, yielding observations with nonignorable intermittent
missingness. Another important issue is that a subject’s QOL data
is frequently subject to informative censoring by a terminal event

such as death or disease progression.
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& Recent Work on Bayesian Joint Modeling of Survival and
Longitudinal Data

e Brown, E.R., Ibrahim, J.G., and DeGruttola, V. (2005), “A Flexible
B-Spline Model for Multiple Longitudinal Biomarkers and Survival,”

Biometrics, 61, 65-74.

e Chen, M.-H., Ibrahim, J.G., and Sinha, D. (2004), “A New Joint
Model for Longitudinal and Survival Data with a Cure Fraction,”
Journal of Multivariate Analysis, 91, 18-34.

e Chi, Y. and Ibrahim, J.G. (2004), “A New Class of Joint Models for

Longitudinal and Survival Data Accomodating Zero and Non-Zero
Cure Fractions: A Case Study of an International Breast Cancer

Study Group Trial,” Technical Report, Department of Biostatistics,

University of North Carolina at Chapel Hill.
e Ibrahim, J.G., Chen, M.-H., and Sinha, D. (2004), “Bayesian

Methods for Joint Modeling of Longitudinal and Survival Data with

Applications to Cancer Vaccine Studies,” Statistica Sinica, 14,
863-883.
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e Brown, E.R. and Ibrahim, J.G. (2003), “A Bayesian Semiparametric
Joint Hierarchical Model for Longitudinal and Survival Data,”
Biometrics, 59, 221-228.

e Brown, E.R. and Ibrahim, J.G. (2003), “Bayesian Approaches to
Joint Cure Rate and Longitudinal Models with Applications to
Cancer Vaccine Trials,” Biometrics, 59, 686-693.

e Wang, Y. and Taylor, J. M. G. (2001), “Jointly modelling
longitudinal and event time data, with applications to AIDS

studies,” Journal of the American Statistical Association 96,
895-905.
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‘ 3.2 Methods for Longitudinal and Survival Data I

e Often in time-to-event studies, patients are monitored throughout
the study period with biologic measurements taken to evaluate
health status. Statistical packages are widely available to perform

survival analyses with time-dependent covariates.

e However, if the covariates are measured with error, the analysis
becomes more complex. Simply including the raw measurements in

the survival analysis leads to bias.
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& Partial Likelihood Models

e The hazard function of survival time with time-dependent covariates

X" (t) is generally expressed as

A(HA™ (1)) = lim <P(t < T <t 4 8[T > 1, X" (1))

where X" (t) is the covariate history up to time ¢ and T is the true

survival time.

e In the presence of right censoring we only observe Y = min(7, C),
where C is a potential censoring time and the failure indicator v,
which is equal to 1 if the individual is observed to fail (7' < C), and

0 otherwise.

e Therefore, we can write the hazard for those who fail as

lim %P(t <Y <t46v=1Y >t X 1)

6—0
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e The proportional hazards model relates the hazard to

time-dependent covariates,

h(t| X7 (t)) = ho(t) (X7 (2), B),

where (X *(t),B) is a function of the covariate history specified up

to an unknown parameter or vector of parameters 3.

e Leaving the underlying baseline hazard ho(t) unspecified, one
approach for estimating 8 is to maximize the Cox’s partial likelihood

vy
n

[T [e(X (W), B)/ Y (X (ye), B)I(y; > )| (1)
i=1 j=1

where I(y; > y;) is the indicator function so that I(y; > y;) = 1 if

y; > y; and 0 otherwise, X;*(t) is the covariate history for the ¢*"

case, y; is the observed survival time, and v; is the censoring

indicator, where v; = 1 if y; is a failure time and v; = 0 otherwise,

for:=1,2,...,n.
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e In our present setting, the true covariate history, X™(t¢), is not
available. However, we may have observations, X(t), representing
some function of the true covariate, X (t), which we refer to here as

the trajectory function.

e Tsiatis, DeGruttola, and Wulfsohn (1995) present a computationally
straightforward and easy-to-implement approach which reduces the

bias in a model with time-varying covariates measured with error.

e They use asymptotic approximations to show consistency of
estimates for modeling the longitudinal data separately, then
plugging the estimates into a Cox proportional hazards model.
Estimation and inference for the survival model are carried out

using the partial likelihood theory.
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e In the case where the trajectory function X*(¢) and X (¢) have the

same dimension, they specify the longitudinal model as
X(t) =X"(t) + €(t),

where €(t) is measurement error with E(e(t)) = 0, Var(e(t)) = o and
Cov(e(t1),e(te)) =0, t1 # t2, and X" (t) is the trajectory function.

o Letting X(t) = {X(t1), X(t2),...,X(¢;); t; <t} denote the history

of the observed covariate up to time ¢ leads to the hazard
A(H(0) = [ BEX (6, XO)APX (0)X(0), Y 2 1)

e Further assumptions that neither the measurement error nor the

timing of the visits prior to time ¢ are prognostic yield

h(t|X™(t), X (8)) = h(t|X7(t)) = ho(t)p(X7(t), B).
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e Combining the previous two expressions results in
h(t|X(t)) = ho(t)Elp(X7 (1), B)| X (t1), ..., X (85), 8 <, Y > t]. (2)

e Denote the conditional expectation in (2) by E(t,8). If E(t,8) were
known, we could estimate 8 by maximizing Cox’s partial likelihood,

vy

[1 | B 8)/ > Ei(wi, B)(ws > w)| (3)

where FEi(t, 8) = Elp(X;(t), 8)|X:(¢), Ys > t], &7 (1) and X;(¢)
denote the histories of true and observed covariates, and Y; is the

observed survival time for : = 1,2,...,n.

e Consider the case when the hazard is only a function of the
univariate current value, X (t¢). For the relative risk formulation of
the original Cox model, ¢(z,3) = e®?. Thus, to compute E(t, ) in
(2), we must estimate Elexp{B8X"(t)}|X(t),Y > t|, which is the
moment generating function of the conditional distribution
(@)X (), Y > 1]
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e Assuming a normal approximation to this conditional distribution,

we are led to the moment generating function

exp{Bu(t|X (1)) + 7o (t|X(t))/2},

where
p(tlX(t)) = E{X"(t)|X(t),Y >t}

and
o’ (t|X(t)) = Var{X*(t)|X(¢),Y > t}.

e At each event time, a new model for the covariate is fit given all the
covariate data up to that event time. The fitted value for that time

is then plugged into the model.

e For models that are more complicated than the Cox model or the
additive relative risk model, Tsiatis, DeGruttola, and Wulfsohn

(1995) recommend using the first-order approximation:

E(t,B) = E[p(X"(t),B8)|X(),Y > t)] = o(E(X"(t)|X(1),Y >1),B).
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This approximation allows any type of model to be used to fit the
longitudinal covariates. The conditional expected values of the
covariates X *(t) are simply plugged into (3) to get the maximum
likelihood estimates of the regression parameter 3 in the
proportional hazards model.

It is not clear how appropriate this approximation is or how it can
be validated.

Use of this approximation gives the investigator a method which can
be easily implemented using existing software. The analyst simply
fits the longitudinal data using an appropriate model, then includes
the fitted values from this model in a Cox proportional hazards
model.

Variance estimation follows from calculating the observed
information from the partial likelihood function. However,
alternative formulations would be more desirable because it would
be easier to validate model assumptions and would make more
efficient use of the data.
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& Joint Likelihood Models

e Although the two-stage procedure discussed in the previous section
allows for an easy analysis of the data with existing software
packages and reduces bias over using the raw covariate data X (t)
directly in a Cox model, a modeling approach that makes more
efficient use of the data by modeling the outcomes jointly may be

more desirable.

e One approach is based on a model for survival conditional on the
observed longitudinal covariate with the joint likelihood equal to
Jvx fx. This model is used when time to event is the primary
outcome of interest and longitudinal measurements may help predict

the outcome.

e The second approach sets the model up as fx|y fy. This second
approach is more often used in longitudinal studies where one might

want to account for time to loss of follow-up.
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DeGruttola and Tu (1994) propose such an approach and extend the
general random effects model to the analysis of longitudinal data

with informative censoring.

A similar model for informatively censored longitudinal data was
proposed by Schluchter (1992) and Schluchter, Greene, and Beck
(2001).

DeGruttola and Tu (1994) jointly model survival times and disease

progression using normally distributed random effects.

Assuming that these two outcomes are independent given the
random effects, the joint likelihood is easily specified.

The maximum likelihood estimates of the unknown parameters are

obtained using the EM algorithm.
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e Their model can be described as follows. Consider a sample of n
subjects, indexed by ¢, each of whom has m; observations of a
marker of disease progression. Let X; be an m; X 1 vector, whose
elements X;; are the observed values of the marker for the *"
person on the j*" occasion of measurement for i = 1,2,..., n;

i=1,2,...,ms.

e Let y; = min(¢;, ¢ci), where t; and ¢; denote the survival and
censoring times for the " subject, respectively. Then, the mixed

effects model of the disease progression marker is
X; = X: +€; and X: = Tia + Z;b;,

where «v is a p X 1 vector of unknown parameters, T; is a known
full-rank m; X p design matrix, b; ~ N (0, ¥) denotes a k x 1 vector
of unknown individual effects, the b;’s are i.i.d., Z; is a known
full-rank m; x k design matrix, €; ~ Ny, (0,0°%1;) is a vector of

residuals, and I; is an m; X m; identity matrix.
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e The following normal mixed effects model is used for the survival

times (or a monotone transformation of survival, as appropriate)
yi = w;¢ + XN'b; + 7,

where ¢ is ¢ X 1 vector of unknown parameters,

w; = (wi1, Wiz, ..., Wiq) is a ¢ X 1 known design matrix, Aisa k x 1
vector of unknown parameters, r; ~ N(0,w?), w > 0, and y; is the
survival time or some monotonic transformation of survival time

such as the log of survival time.

e The longitudinal marker and survival times are independent
conditional on the random effects; therefore, the complete data
log-likelihood, i.e., the likelihood that would apply if b; and y; were
observed, is written as

le =) log[$(Xilbi, o, 0°)$(bi| W) (i bi, ¢, w™)], (4)

i=1
where ¢(.|.) denotes the appropriate normal probability density

function.
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Estimation of the unknown parameters is accomplished using the
EM algorithm, a technique which iterates between solving for the
expected values of functions of the unobserved data (random effects
and errors in this case) given the observed data and the maximum

likelihood estimates of the parameters until convergence.

The covariance matrix of the estimates of the parameters of interest
(¢, ¢) at convergence of the EM algorithm can be obtained by using
Louis’s formula (Louis, 1982).

It is not clear how robust this model is to departures from
parametric assumptions, especially in the assumption of normality

for monotonic transformations of survival times.

The link between failure times and longitudinal outcomes is not
obvious or easily interpreted since it is made through the random
effects alone. There is no parameter linking failure time to the

longitudinal covariates directly.
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Waulfsohn and Tsiatis (1997) also propose a joint likelihood model.
They assume a proportional hazards model for survival conditional

on the longitudinal marker.

A random effects model is used to model the covariate and
measurement error. Maximum likelihood estimates of all parameters
in the joint model are obtained using the EM algorithm with
numeric quadrature and a Newton-Raphson approximation
performed at each iteration. The model is then applied to data from

an HIV clinical trial.

Denote by t; the true survival time for individual 2. Suppose we
observe y; = min(t;, ¢;), where ¢; corresponds to a potential
censoring time, and the censoring indicator v;, which takes 1 if the

failure is observed and 0 otherwise.

Assume the covariate for individual 7 is measured at time
ti = (tij : tij <wy;), where t;; is the time from randomization for

i=1,2,...,ms.
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e The random effects model for the longitudinal covariate is
Xij = Xij + €y (5)
and
Xij = boi + brits, (6)
for y =1,2,...,m;, where

b; = (boi, bis)' ~ Na(b, W), € ~ Ny, (0,0°I;),

b= (bo,b1)’, ¥ = (¥,;+) is a 2 X 2 unknown covariance matrix, and

I; is an m; X m; identity matrix, for ¢ = 1,2,...,n.

e The hazard function for the proportional hazards model is given by

h(t|bi, Xi,ti) = I’L(t|b1,) = ho(t) eXp{B(bOi + bh't)}.
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e The complete data log-likelihood is given by
> [Zlogf(Xijbi, ”) + log f (bi|b, ®) + log f (i, vi|bi, ho,ﬁ)] ,
i=1 L i=1

where f(X;;|b;,0”) and f(b;|b, ¥) are the densities of
N (bo; + biiti;, 0%) and N (b, ¥) distributions, respectively, and

I (yi, vilbi, ho, B) = [ho(y:) exp{B(boi + briyi)}]"

X exp [— /0 " ho (1) exp{ B(bo; + bliu)}du] |

e The EM algorithm is used to obtain the parameter estimates.

e To estimate the variance of 8 at EM convergence, Wulfsohn and

A A

Tsiatis (1997) define the profile score S3(0_5(8)) to be the
derivative of the log-likelihood with respect to § evaluated at B :
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The remaining parameters, @_g3, are estimated using restricted
maximum likelihood estimates which are calculated by using a

separate EM algorithm applied to the likelihood and keeping B fixed.

They estimate the variance by calculating this score over several
values of 4, then they fit a line to these estimates and take the
negative inverse of the slope of this line as the estimate of the

variance.

This involves implementing the EM algorithm several times to get
estimates for the other parameters for each value of 3 to estimate
this line. In their model and application, this linear approximation

appeared valid.

Some advantages of this approach are that it makes more efficient
use of the data than the two-stage approach suggested by T'siatis,
DeGruttola, and Wulfsohn (1995), it uses the full likelihood in
estimation, and makes a direct link between the survival and

longitudinal covariate.
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%

YE may

be inappropriate in some settings.

Also, the EM algorithm is slow to converge; therefore, it may not be
feasible to extend the model of the trajectory function to the
multivariate case. It took two hours to obtain estimates for a
dataset with 137 individuals with 24 failures and approximately six
covariate measurements after using reasonable starting values for the
parameters. There is no mention of the amount of time required to

get an estimate for the variance of B :

Although more complex models can be fit, it is not clear how
computationally intensive they would be, or whether the assumption

A

of linearity of Sz(6_3(3)) would still be reasonable.
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& Example 3.1: AIDS Data

e Consider a double-blind placebo controlled trial of patients with
advanced HIV. Of the total of 281 patients, 144 were randomized to
received zidovudine (ZDV), and the remaining 137 patients were

given a placebo.

e Measurements of CD4 count were taken prior to treatment and
approximately every four weeks while on therapy. The study lasted

for 18 weeks.

e The goal of the study was to understand the CD4 trajectories of the
patients and to evaluate the strength of the relationship between the

CD4 trajectory and survival.

e The unobserved trajectory here is assumed to be a true “biological
marker” according to the definition of Prentice (1989) in that the
treatment effect on survival is expressed through its effect on the

marker, which then affects survival.
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Thus, given the marker trajectory, there is no treatment effect on
survival. The data was fit to both this model and the two-stage
model proposed by Tsiatis, DeGruttola, and Wulfsohn (1995) in
which the unobservable marker trajectory estimates are re-evaluated

for each risk time.

Table 3.1 compares the estimates of the longitudinal covariate from
the two models for placebo group results. In Table 3.1, TSM and
JM denote the two-stage model and the joint model, respectively.
Estimates for the 8th and 16th event times are shown for the

two-stage model.

The parameter which describes the strength of the relationship
between CD4 and survival, 5, was estimated as —0.3029 compared

to the two-stage model which estimated it as —0.284.

The slope of the fitted line to the profile score for 5 is estimated to
be —41.980, giving an estimate of the standard error of 0.154 in
contrast to 0.144 in the two-stage model.
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TABLE 3.1. Parameter Estimates for AIDS Data.
Model Event bo b1 o2
TSM gth 4.23  —0.0050 0.301
16" 4.27  —0.0045 0.305
JM 417  —0.0047 0.396
Model Event Uiq AP Woo
TSM gth 1.18  0.0016  0.000032
16t 1.15  0.0024  0.000029
JM 1.11  0.0027  0.000014

e They explain that the increase in the variance estimate is due to the

random effects being influenced by the uncertainty in the estimated

growth curve parameters, therefore incorporating more variability.

e Also, they explain the increase in the estimate of standard error for

pure measurement error in joint estimation as due to overfitting in

the two-stage model.
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& Bayesian Methods for Joint Modeling of Longitudinal and

Survival Data

e The methods discussed earlier for joint modeling have all been based
on a frequentist approach. However, it may be advantageous to take

a Bayesian approach to solving this problem.

e In the Bayesian paradigm, asymptotic approximations are not
necessary, model assessment is more straightforward, computational
implementation is typically much easier, and historical data can be

eagsily incorporated into the inference procedure.

e The Bayesian methods we will review use an approach to building
the model as Ibrahim, Chen, and Sinha (2004, Statistica Sinica).

e For their longitudinal model, they assume that two covariates
(X1(t), X2(t)) are observed which both measure the true

unobservable univariate antibody measure (X™*(¢)).
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e The model is specified as
X1 (t) = X5 () + e (?) (7)
and

Xi2(t) = ao + a1X7 (1) + €i2(?), (8)
where Gi(t) = (Eil(t), €i2 (t))’,

0 2
e;(t) ~ N2 S G R
0 pO102 a%

e Further motivation of the model in (7) and (8) is given in Example
3.2.

e X/ (t) is modeled via a trajectory function, g~,(t), which may be

either linear or quadratic in nature.

e The survival times (y;’s) are modeled using a proportional hazards
model assuming the random errors of the longitudinal component
are not prognostic of the survival time.
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The hazard function is given by
R (1), Xi ("), 2i) = h(t| X7 (L"), 2:) = ho(t) exp{B1X7 (t7)+2iB,},

where X;"(t*) and X;(t") denote the histories of X; and X; up to
time t*, and z; denotes a p X 1 vector of baseline covariates for
subject 1.

We assume that the z;’s are not measured with error.

In addition, B, is a p X 1 vector of regression coefficients
corresponding to z;. Setting X; (t) = g~, (), the quadratic
parametric trajectory function, for example, takes on the form
Yio + Yirt + yiot®.

Let ti1,ti2,...,tim; denote the times at which the measurements X;;
are taken, and let g+, (ti;) denote the trajectory function evaluated
at t;;.

Conditional on the subject-specific trajectory parameters,
~; = (7vi0,7vi1, Vi2)’, the observed trajectories and survival times are
independent.
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Let Xi1 = (Ti11,%i21, - - -y Timy1)' and Xia = (xi12, Tiozy - - - Tim,;2)'
and let X1 = (X117X21, .. .,an), and X2 = (X12,X22, .. ,Xng).

Also let y; denote the event time for the " subject, which may be

right censored, and let ¥y = (y1,2,...,%n)" denote the vector of event
times.
Further, let v = (v1,v2,...,v,)" denote the vector of censoring

indicators, where v; = 1 indicates a failure and v; = 0 indicates a

right censored observation, and z = (27, 25,...,25,)".

We take ho(t) to be a constant \; over the time intervals

I; = (sj-1,s;], for j =1,2,...,J, where
So=0<s81<...<875< 8541 = 0.

The likelihood function for the joint model involves two components,

denoted by L1 and L,. The first component L is the likelihood for
(X1, X2), and Ls is the likelihood function for y.
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Let @ be a generic label for the vector of all the parameters in L1
and Lo. The likelihood function of @ is given by

L(H) = L1 (77 Qo, 01, E|‘>(17 X2)L2 (A7 b1, Ba, 7|y7 v, Z).
The contribution of the longitudinal component to the likelihood is

Ll(’% &o, 1, E|‘X134X2)

n

_m; 1
X111 [|Z| i/ exp{ 5 Z ( Tij1 — g, (tij), Tije — (@0 + a1g~, (tij))

1=1

X X7 (T — 97, (L), zij2 — (a0 + @197, (t”*"))/) H’

The contribution of the survival component to the likelihood is
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where d; is the number of failures in the k" time interval, t;; is the

the most recent time at which a measurement was taken, and

M = Z?:l m;.

e In (9), the computational algorithm for B;; proceeds as follows:

(i) If t; < cj—1, B;; =0.

(ii) If t; > cj, letting j;1 = max{l: A}, <cj_1} and j;2 = max{l: A}, <cj},
where A7, is the rescaled A;; so that AY, has the same unit as ¢;, then if
ji1 = Jiz, Bij = (¢j — cj—1) exp {B1gry, (Aij;,) + 282}, and if j;1 < ji2,
Bij = (A;'k,jil 41— Cj—1)€xp {519‘7’@- (Aijir+1) + 2582} + ngjil -|—1(A2<,l+1 -
A% exp{Bigy, (Au) + ziBa} + (cj — Af; ) exp {B1gv, (Aij,n) + 2B} -

(iii) If ¢cj—1 < t; < ¢j, using j;1 and j;2 given in (ii), then if j;; = j;2 or
ti < A7 41> When ji1 < Jaa,

Bij = (t; — cj—1) exp {B1gy, (Asj;, ) + 2ziB2 } , and otherwise, we define

Bi; = (A;,jil 41— Cj—1)€xp {Blg‘h (Aijir+1) + 2iBa} + Z;Zjﬂ—{—l(Az,l—l—l -

A%) exp {B1gy, (Air) + ziBa } + (t;i — Al ) exp {Brgv, (Air;) + 282},

where j;1 + 1 < k; < j;2 is chosen so that A;‘kz_ <t; < Af,ki—l—l‘
We note that when j;; (I = 1,2) does not exist, we define j; = 1,

and the calculation of B;; needs a minor adjustment.
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e In the likelihood function (9), we have invoked an approximation,
that is,

Yi n J
/ ho exp {519‘7 ) + ,8,2,27,} du =~ Z Z AjBij.
0

i=1 j=1

e The priors are all chosen to be noninformative with A; ~ G(a;, b;),
j=1,2,...,J, B1 ~ N((1,vi), B2 ~ N(C2,v3) (for p=1),
ao ~ N(C3,v3), a1 ~ N(Ca,03), 271 ~ Wa(no, Qo), where Qo is a
2 X 2 symmetric and positive definite matrix, Wa(no, Qo) denotes
the Wishart distribution with degrees of freedom ny and mean

matrix noQo, and ng and Q¢ are prespecified a prior:.
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e In Example 3.2, we take ng = 3 and Qo_l = 0.00112, where I3 is the
2-dimensional identity matrix, and -, e Ns3(pg, X0), where
to = (o1, o2, o3 ), and Y represents the variation in the

parameters.

e Additional normal and inverse Wishart priors are placed on u, and
Yo, respectively. That is, po1 ~ N(&o1,v81), po2 ~ N (o2, v52),
o3 ~ N (€03, v33), g " ~ Wa(n§, Qp), and n§ and Qf are chosen to

make the prior noninformative.
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& Example 3.2: Cancer Vaccine Data E2696

e We consider a phase II melanoma clinical trial conducted by the
Eastern Cooperative Oncology Group (ECOG), labeled here as
FE2696.

e Two treatment arms are used in our analysis here. The treatment
arms consist of a combination of interferon (IFN) and the
ganglioside vaccine (GMK), which we label as A (IFN + GMK).
The other treatment arm consists of GMK alone, labeled as B.
There were 35 patients on each treatment arm, resulting in a total

sample size of n = 70 patients.

e The survival endpoint is relapse-free survival (RFS), measured in
months. There were a total of 27 completely observed RF'S times.
The median RFS based on n = 70 patients is 17.71 months.

e [gG and IgM antibody titre measurements were taken at the five
time points, 0, 4, 6, 12, and 52 weeks. Natural logarithms of IgG

and IgM were used in all analyses.
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e Our primary goal in this analysis is to characterize the degree of
association between RF'S and the IgG and IgM antibody titre

measurements using our proposed model.

e Both the IgG and IgM antibody measures are related to the true
unobservable univariate antibody level X*. From a biological
perspective, a change in X7 often implies a change in X™ over a
suitable window of time on average, and hence X; is deemed more

important as a source of information on X* compared to Xs.

e This is why X; is assumed to be on an unbiased scale for X*. Thus

the forms of (7) and (8) are based on sound biological considerations.
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e Based on fitting a Cox model, the hazard ratio is 2.61 in favor of
treatment A with a P-value of 0.02, and the 95% confidence interval
is (1.17,5.82).

e Noninformative priors were used for all of the models in the analyses
below. For example, for the quadratic trajectory model with p = 1
using J =8, we take a; = b; =0, 57 =1,2,...,8, vg2~ :vgj = 100,
7=1,2,3,4,6 =& =& =& = o1 = o2 = o3 = 0, ao1 = ap2 =0,

1.0 O 0
bo1 = bp2 = 0.001, and 20_1 ~ W3 | 4, 0 0.1 0
0 0 0.1

3-44 M.-H. Chen



TABLE 3.2: Summary of transformed IgG and IgM Measures for E2696

Session 3

log(IgG) log(IgM)
TRT Week 0 4 6 12 52 0 4 6 12 52
Median 0.00 3.38 4.39 3.71 7.15 0.00 5.08 5.08 3.71 4.73
Mean 0.00 2.84 4.17 3.05 6.74 0.14 5.07 5.26 3.31 3.53
A SD 0.00 2.53 2.18 2.40 2.15 0.78 1.84 1.54 2.29 2.59
# of Missing 3 1 5 5 13 3 1 5 5 13
Median 0.00 3.04 3.71 3.04 6.46 0.00 5.08 5.08 4.39 3.71
Mean 0.00 2.23 3.12 2.23 5.87 0.58 5.02 4.99 3.85 2.99
B SD 0.00 2.35 2.47 2.39 1.86 2.04 1.94 1.40 2.04 2.46
# of Missing 7 2 0 6 16 7 2 0 6 16
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TABLE 3.3. Parameter Estimates for Cancer Vaccine Data E2696

Parameter Mean SD 95% HPD Parameter Mean SD 95% HPD
B1 -0.26 0.20 (-0.65, 0.12) o011 1.09 0.38 ( 0.36, 1.87)
Bo 1.01 0.43 ( 0.15, 1.85) 0012 0.26 0.09 (-0.15, 0.21)
p 0.60 0.05 ( 0.51, 0.69) 0013 -0.07 0.11 (-0.30, 0.14)
a% 4.12 0.42 ( 3.32, 4.96) 0022 0.03 0.02 (0.004, 0.06)
a’% 6.79 0.57 ( 5.73, 7.96) 0023 -0.01 0.02 (-0.04, 0.02)
A1 0.06 0.04 (0.004, 0.13) 0033 0.06 0.06 ( 0.01, 0.17)
Ao 0.05 0.04 (0.002, 0.13) aq 3.64 0.35 ( 2.96, 4.33)
Ag 0.05 0.05 (0.002, 0.13) aq —0.03 0.11 (-0.26, 0.18)
A4 0.05 0.05 (0.002, 0.13) H“O1 2.76 0.18 ( 2.42, 3.11)
A5 0.11 0.10 (0.006, 0.29) H“Oo2 1.80 0.52 (0.77, 2.78)
Ag 0.02 0.02 (0.001, 0.05) H“Oo3 -0.34 0.49 (-1.23, 0.66)
A 0.03 0.03 (0.000, 0.09) Ag 0.26 0.51 (0.000, 0.88)
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FIGURE 3.1. Marginal posterior density for 51 for cancer vaccine data.
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The posterior mean and standard deviation of 31 is —0.26 and 0.20,
respectively. A plot of the marginal posterior density of (3 is also

given in Figure 3.1.

The posterior estimate of ; is negative and far from 0, implying
that there is an association between relapse free survival and
antibody titre count.

That is, the magnitude of 31 implies that increased antibody titres
counts are moderately associated with longer relapse-free survival.

This phenomenon is also confirmed by the plots of the posterior
hazards in Figures 3.2 and 3.3. In Figures 3.2 and 3.3, e and o

correspond to treatments A and B, respectively.

As the antibody titre counts increase, there is a decrease in the
posterior hazard estimate for each individual. This phenomenon is
observed for both the IgG and IgM antibody measurements, and
therefore gives further evidence to the association between antibody
titres and relapse-free survival.
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FIGURE 3.2. Estimated hazard rate as a function of log(IgG) taken at

time point of peak measurement.
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time point of peak measurement.
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The treatment coeflicient 82 has posterior mean and standard
deviation of 1.01 and 0.43, respectively, with 95% HPD interval
(0.15,1.85).

Thus it is clear that there is also an important treatment difference
between A and B. Specifically, we see that treatment A (IFN +
GMK) is superior to treatment B (GMK alone).

The estimates for B2 in Table 3.3 confirm this result. Figure 3.1 also
confirms this, as we see that, for both the IgG and IgM antibody
titres, the posterior hazard estimates are consistently smaller for
treatment A then they are for treatment B, indicating a superior
treatment A effect.

A sensitivity analysis was conducted with respect to the choice of J.
The posterior estimates of 31, 82, and the a;’s were also very robust
with respect to the choice of J, yielding very similar estimates to
those of Table 3.2 for several different values of J. As a result, the
posterior hazard and trajectory function estimates were also robust
with respect to the choice of J.
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3.3. A New Model for Longitudinal and Survival

Data with a Cure Fraction

& The method we will review uses an approach to building the model as
Chen, Ibrahim, and Sinha (2004, JMV).

d E£1694 Data

e Data were from an Intergroup trial of the Eastern Cooperative
Oncology Group, the Southwest Oncology Group and Cancer and
Leukemia Group B.

e £1694 (Kirkwood et al., 2001) was designed to determine if GMK
was superior to IFN with respect to RFS and Overall Survival (OS),

with a secondary goal to determine the association of pre-existing
and vaccine-induced IgM and IgG antibodies with RF'S and OS.
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GMK abbreviates GM2-KLH/QS-21, a vaccine that has recently
been developed for treating melanoma.

IFN denotes Interferon Alpha-2b, which is a chemotherapy and has
a significant impact on RFS or OS.

One of the major drawbacks of IFN, and chemotherapies in general,
is that they are highly toxic.

IgM and IgG measures were taken at baseline, 6, 9, 12, 18 and 24
months, respectively. In this analysis, we consider n = 667 patients
and use RFS as the time-to-event variable in all analyses.

The minimum RF'S time was 0.0245 years and the maximum RF'S
time was 4.309 years. Once a patient relapsed, they dropped out of
the study, and hence no longitudinal measures were collected after
that time.

Two covariates included in the analysis are age (z;1) and gender
(zi2) (zi2 = 0 if male and 1 if female). We also let x; = 1 denote the
GMK arm and x; = 0 the IFN arm.
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e Table 3.4 gives a detailed summary of RFS time, censoring status,
covariates, and treatment.

TABLE 3.4. Summary of E1694 Data

Median IQR Frequency
Follow-up 1.44 1.64 Censored 404
Time to Relapse 0.64 0.78 Relapse 263
Age 50.59 18.96
Frequency Frequency
Sex Male 428 Female 239
Treatment GMK 344 IFN 323

e Compared to the E2696 study, the E1694 study was much better
designed as the two treatment arms are completely separated.
Therefore, with the E2696 study, we are able to make a direct
comparison between GMK and IFN.
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e Figure 3.4 shows the Kaplan-Meier survival curve of the E1694 data.
The Log-Rank test p-value is 0.056.
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FIGURE 3.4. KM RFS plots for E1694, where the solid (top) curve and the
dashed (bottom) curve corresponds to the IFN arm and the GMK arm,

respectively.
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Figure 3.4 shows a plateau in the Kaplan-Meier plot, motivating us

to consider a cure rate model for these data.

In all of the analyses, the IgG and IgM measures were transformed
to logarithms. Since many of the IgG and IgM measures were 0
before transformation, we first added a value of 1 to all IgG and IgM
titer values, then took natural logarithms.

Table 3.5 gives a detailed summary of the
(log(IgG + 1),log(IgM + 1))) measures along with summaries of

missing values.

The trajectories of measures are shown in Figures 3.5 and 3.6.
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log(IgG + 1)

log(IgM + 1)

TRT Week 0 4 12 52 0 4 12 52
Median 0.00 0.00 0.00 5.08 | 0.00 b5.77 4.39 0.00
Mean 0.23 1.87 2.05 3.42 | 0.0vr 5.30 3.17 1.76
GMK IQR 0.00 5.08 5.08 5.77 | 0.00 1.38 5.08 5.08
# of
108 90 144 185 19 84 85 222
Missing
Median 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 o0.00
Mean 0.04 0.08 0.42 0.00 | 0.03 0.07 0.09 0.12
IFN IQR 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 o0.00
# of
46 24 67 191 17 23 76 192
Missing
3-57 M.-H. Chen




Session 3

log(IgG+1) log(IgM+1)

0 5 1052 % 0 H 40 H 5 H 05 10 1B 20 2 30 H 40 & 0 5
Time in Weeks Time in Weeks

FIGURE 3.5. Trajectory plots for log(IgG+1) (left) and log(IgM+1) (right) for the
GMK arm.
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FIGURE 3.6. Trajectory plots for log(IgG+1) (left) and log(IgM+1) (right) for the
IFN arm.
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From Table 3.5, we can see that most IgG and IgM measures were 0
for the IFN arm.

From Figure 3.5, we see evidence of a quadratic trend in the IgG
trajectory with the peak IgG and IgM titers occurring at
approximately 4 weeks for GMK.

These numerical and graphical summaries also shed light on how to
model longitudinal measures. In particular, the mean trajectory
functions and the variability of these measures should be

treatment-dependent.

In order to study the relationship of these observable covariates to
RF'S or OS, we need to develop a Bayesian model for joint modeling
of the survival data and the longitudinal IgG and IgM

measurements.
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& Survival Component of the Model

e Let IV; denote the number of metastatis-competent tumor cells for
subject ¢ (in short, MCT).

e N;’s,v=1,...,n, are unobserved latent variables. Further, we
assume that the IV;’s are independent and each has a Poisson

distribution with mean 6;.

e Let a; be the vector of unobservable random effects characterizing
the induced immunological response of the 3" patient. Later, we
model the patient specific random immune response a; dependent

on the treatment covariate x;.

e Assume that given «;, the treatment x; does not influence N;, the
number of MCTs.
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e We further assume that

0i(xi, z:) = 0i(zi, 8, n, i) = exp(2;8 + a;n),

where 7 is a vector of regression parameters corresponding to «,
and 3 is the vector of regression coefficients corresponding to the
fixed covariates z;, which includes an intercept but does not include

;.

e The case n = 0 implies that the patient-specific immune response is
not associated with the number of MCTs in the body.

e Let Z;; denote the random time for the j** MCT to produce
detectable metastatic disease in the i*" subject.
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Let S(t|\) denote the survival function of the Z;;’s, which depends
on the vector of parameters A, F'(¢|A) =1 — S(¢|\), and
FUN) = &F(IN).

Assume that S(t) does not depend on z; and «;.

The time to relapse of cancer, T;, can be defined by
T; = min{Z,;;,1 < j < N;}, and T; = oo with probability 1 when
N; = 0.

It follows that the conditional survival function is given by

S’ip(t|/87Zi7n7 aia)‘) — P(T’L > t|,8,Z',;,’r],C¥',;,A)
= exp[—{0i(z:i, B, M, i) F(t|A)}].
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# Longitudinal Component of the Model

o Let W;(t) for the i*" patient denote the trajectory function, which is

modeled as a known parametric function of ¢t and «;.

e For subject i, W;(t) represents the true, unobservable univariate

immune response level at time t.

o We take W;(t) to be a linear or quadratic trajectory in t. Thus, the
trajectory functions for subject ¢ are of the form:
Linear:
U;(t) = aio + autt,
Quadratic:
U,(t) = auo + qurt + aaat”.

/ .
o Let ai = (o, 1) or a; = (o, i1, @i2)’ to be unknown patient

specific parameters.
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e Assume that the «;’s vary within patients such that
ai ~ N(p(wi), X(wi)),

where p(z;) is the mean of a;, ¥(z;) is the covariance matrix of oy,

and both of these quantities depend on the treatment covariate x;.

e We see that the model for ¥;(t) is quite general and results in
trajectory functions with different intercepts, slopes, and curvatures

for each patient in a treatment group.

e To incorporate the effect of treatment z; on pu(z;) and 3(x;), we

assume that

E(aij|xi, ) = pjz; and Var(aijlz;,X) = ;21 + (1 — x4)22.
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Given that the patient 7 is at observed at time ¢, that is i € R(?),
where R(t) is the risk set at time ¢, let Y;(¢) denote the observed
multivariate longitudinal response for subject ¢ at time ¢.

We assume that components of Y, (¢) are measurements of ¥, (¢) at

different scales taken at time t. So, we take
Yi(t) = g(Wi(?)) + ei(?),
where g is a known function.

At time point ¢, the random measurement error, ¢;(t) ~ N(0, o) are

independent of ¥;(¢) and they are also independent of ¢;(t") for
t £t

The vector of known functions g reflects the fact that each observed
antibody level measures the patients immune level against cancer in

its own scale. For simplicity, we will use the linear relationship

g (¥i(t)) = ¢o; + P1Tit + o + it
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or the quadratic relationship
9; (Vi(t)) = doj + d1jzit + ba;zit” + o + it + auat’
for j'"* component of Y;, j =1,...m.

Note that the terms ¢Oj + ¢1j$it and qboj + qblja:it + ¢2j$it2 can be
viewed as the fixed components of the trajectory function.

We write
Pi(t) = (Rir(t),..., Bim(t) = (do1 + Pu1zit, ..., pom + P1mzit)’
or

®;(t) = (Pir(t),..., Pim(t))
=(go1 + puizit + ¢pa1zit’, ..., pom + G1mTit + Gomait”)’.

For the E1694 data, we have m = 2. The IgG and IgM

measurements are respectively Y;; and Y;o.
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& The Main Features of the Proposed Joint Model

e Our model here characterizes the history of the three processes
process (Y;(t), ®;(t), ¥;(t)) given T; € R(t) and x;.

e The process ¥;(t) is shared by the longitudinal components and the
survival component to account for the correlation between them.
Thus, the survival component of the model is connected to the
longitudinal component of the model through 1 and 1 = 0 implies

that the longitudinal and survival measures are not associated.

e Fach longitudinal component has its own treatment dependent
process ®;;(t), which is not shared with the survival component, to
account for the sole contribution of the trajectory function to each

longitudinal component in addition to the common process ¥;(t).

3-68 M.-H. Chen



Session 3

e The proposed model does not require that all longitudinal responses
be observed at a given time point for the " patient. This is an
important feature of the model as in the E1694 data shown in Table
3.5, only one of the IgG and IgM measurements is available for

many patients.

e The mean trajectory functions and the variances of «; vary with
treatment. This property of the model is most suitable for the
E1694 data since we see in Table 3.5 that most of the longitudinal

measures in the IFN arm are zero.
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& Likelihoods

Let a;1,...,aim; denote the times at which the antibody

measurements are taken.
Let W;(a;;) denote the trajectory function evaluated at a;.

Let the IgG and IgM antibody titers for subject ¢« be denoted by

Y = Wity - Yimy1)'s let y, = (yy,-- ., y5,;) for 1 = 1,2,
respectively, and let y = (y7,y5)".

Let € = (z1,%2,...,%,) and Z = (27, 25,...,2,)".

Let t; denote the event time for the i*" subject, which may be right
censored and let ¢ = (¢1,...,t,)" denote the vector of event times.
Let = (61,...,0,) denote the vector of censoring indicators, where
0; = 1 indicates a failure and J; = 0 indicates a right censored

observation.
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o Let D =(y,x, Z,t,d) denote the observed data.

e We consider a piecewise exponential model for F'(t|\). Specifically,
we construct a finite partition of the time axis, 0 < s1 < ... < sy,
with sy > t; for all+ =1,2,...,n. Thus, we have the J intervals
(0, s1], (s1,82], -+, (S7-1,87]. We thus assume that the hazard for
F(t|A) is equal to \; for the j*" interval, j = 1,2,...,J, leading to

F(t|A) =1 —exp {_)‘j(t — 8j-1) — z_:)‘g(sg - 391)} :

g=1
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e The likelihood function can thus be written as
L(6|D) = Li(¢, %0, ¥|y,x)L2(B,n, A\, alt, d, 2),

where

(¢a Z]Oa\Ij|D HH H |20|_1/2

1k:a
. exp{

Ly(B,m, alt,8,2z) = | [ (8:f (X)) exp(—0:F (t:| ),
1=1

l\DIr—\ |/\

(yirs — gi5(ar)) So ' (yir; — gij(ak))}

and

= (¢, Zo,\If B, a),a=(al,a;...,a), and
F(tiN) = £F(EN)|

—Ulg
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® Priors
e We specify the joint prior as
7[-(207 ¢, 122 21, 227 :87 n, A) — 7[-(20)7[-(¢)7T(p’)ﬂ-(21)W(EQ)W(IB)W(W)W(A)

o We take X to be of the form X = Diag(c§1,052), and take o3, and

0o to have independent inverse gamma priors.

e For ¢, u, B, and 1, we take normal priors with diagonal

variance-covariance matrices.

e The conditional prior for a|u, Y1, X9 is specified as follows:

n

7T((x|l-1’721722) X 11

[mzl + (1 — 2;)5q| /2
1=1

X exp {—%(ai — p(@i)) [2:51 + (1 — i) D2] oy — u(wi))}] :
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e For ¥; and X2, we assume X = Diag(oig, 0r;) for the linear
trajectory and X = Diag(oig, 01, 0%2) for the quadratic trajectory,
where k£ = 1,2. Then, we specify an inverse gamma prior for each

variance component.

e Finally, we take independent gamma priors for A as follows:

J
T(A) x H )\§0_1 exp(—ToA;),

=1

where (o and 7y are pre-specified hyperparameters.
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& Computational Development

To develop an efficient computational algorithm, we introduce the latent
variables N = (N1, N2, ..., Ny)' into the likelihood function for the
survival component so that

N;

Ly(B,m, &, Nt,8,2) = | [ S| 7% (N f(:| X)) ?V,exp( 0:),
1=1

where S(t;|A) =1 — F(t;|\). Note that N; =0,1,...,00 if §; = 0 while
N;=1,2,...,00if §; = 1. It can be shown that

ZL2(,37777047N|75757Z) — LQ(,B,T],Q“I,(S,Z).
N

Using the collapsed Gibbs technique, we sample from the following

conditional posterior distributions in turn:
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la|d, X0, B, m, A, b, X1, X2, D], which is log-concave.

(|20, @, D], which is a multivariate normal with mean and
variance-covariance matrix depending on the form of the trajectory

function.

[X0|¢, a, D], which consists of two conditionally independent inverse
gamma distributions.

(p|a, X1, X2, D] is a multivariate normal, and its dimension, mean,

and covariance matrix depends on the form of the trajectory.

(X1, X2]a, p, D], which is the product of 4 (or 6) independent
inverse gamma distributions depending on the linear (or quadratic)
trajectory.

[B|m, A, «, D] has the density

m(BIn, A, a, D) < L2(B,m, a|t, 8, z)7(B).

Note that this conditional distribution does not depend on IN and it
can be shown that 7(8|n, A\, a, D) is log-concave.
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(7) [m|B, A\, o, D], which is similar to 7(8|n, A\, a, D). Thus, the density
of this conditional distribution is also log-concave.

(8) For each latent variable,
Ni|B,m, A, D ~ P(S(t:|A)0:) + b,
where P(S(t:|A)6;) denotes the Poisson distribution with mean
S(ti|N)0;.

(9) Given N, the conditional posterior density for X is

T(AIN, B,m,a, D) oc | [ SN 7% f(£: )% m(N).
i=1
With independent gamma priors for the \;’s, it is easy to see that
AN, B,mn, a, D] consists of J independent gamma distributions.

Thus, for (2) — (5), (8) and (9), the generation is straightforward, while
for (1), (6) and (7), we can use the adaptive rejection algorithm of Gilks
and Wild (1992), since the corresponding conditional posterior densities

are log-concayve.
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® Model Assessment via LPML

e To assess the goodness-of-fit of the proposed model, we consider the
Conditional Predictive Ordinate (CPO).

e The CPO statistic is defined as

CPO: = [ f(wir, iz, i, 8118, 21, 2:)n(61 D) d,

where 0 is the vector of all model parameters, D denotes the
data with the i*" subject deleted, and (0| D(=?) is the posterior
density of @ based on the data D(=%.

e The LPML is defined as LPML = > " | log(CPOy).
e We choose the model with the largest LPML value.

e For the E1694 data, we will use LPML to compare the linear and

quadratic trajectory models.

e [LLPML is particularly suitable for cure rate models with

noninformative priors.
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& Data Analysis

We consider analyses with the linear and quadratic trajectories.

In both analyses, a piecewise exponential model is used for F'(¢|\).
We take J = 10 and the intervals (s;_1,s;], 7 =1,2,...,J were

chosen so that at least one failure falls in each interval.

We take an improper uniform prior, i.e., w(A) o 1, for A. N (0, 100)
priors are specified for the location parameters 5;, n;, ¢;1, ¢j2, and
u; for 7 =0,1,2.

For the scale parameters o5; and op,, we independently take

oor ~ ZG(a =1,b=0.01) with density proportional to

(02,)~ (@Y exp(—b/od,). Similarly we take oii ~IG(a=1,b=0.1)
independently for £k = 1,2 and 5 = 0,1, 2.

3-79 M.-H. Chen



Session 3

The table below shows posterior estimates of the parameters based

on the linear as well as the quadratic trajectory model.

The quadratic trajectory model give a better fit to the data than the
linear trajectory model, as measured by the LPML statistic, as well
as the posterior estimates for ¢21 and ¢22, whose 95% Highest
Posterior Density (HPD) intervals do not include zero.

The posterior estimates of n2 and s do not include zero, giving
further evidence of the appropriateness of a quadratic trajectory

model.

The parameters that link the longitudinal model to the survival
model are the 7;’s, whose 95% HPD intervals all do not contain
zero, indicating an important association between (IgG, IgM) and

time-to-relapse.
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Linear Trajectory

Quadratic Trajectory

Parameter Mean SD 95% HPD Interval Mean SD 95% HPD Interval
n0 -0.815 0.245 (-1.301, -0.343) 0.398 0.198 ( 0.021, 0.793)
1 0.173 0.046 ( 0.083, 0.265) -0.326 0.108 (-0.530, -0.106)
N9 - - : 1.369 0.769 ( 0.245, 2.891)
Bo -0.479 0.122 (-0.723, -0.242) -0.426 0.124 (-0.672, -0.186)
B1 0.125 0.068 (-0.012, 0.256) 0.155 0.069 ( 0.020, 0.287)
Bo -0.055 0.069 (-0.189, 0.080) -0.026 0.070 (-0.164, 0.108)
o2, 1.921 0.082 ( 1.760, 2.080) 1.919 0.078 (1.769, 2.074)
0'82 3.591 0.131 ( 3.334, 3.847) 2.862 0.103 ( 2.666, 3.068)
$01 -0.163 0.042 (-0.246, -0.081) -0.086 0.042 (-0.169, -0.005)
b11 -3.402 1.620 (-6.792, -0.585) -2.103 2.509 (-6.941, 2.614)
b1 - - - 7.679 1.303 (-10.21, -5.348)
b2 0.401 0.053 ( 0.297, 0.506) 0.162 0.049 ( 0.065, 0.256)
®12 -4.536 1.620 (-7.835, -1.647) 8.119 2.518 ( 3.318, 12.945)
b9 - - - -19.95 1.329 (-22.53, -17.57)
©o 1.365 0.081 1.209, 1.526) 0.957 0.079 ( 0.801, 1.120)
n 7.877 1.668 ( 4.877, 11.259) 9.659 2.446 ( 5.180, 14.291)
no - - - 2.447 1.081 ( 0.869, 4.415)
o2 0.723 0.111 ( 0.508, 0.942) 0.818 0.108 ( 0.617, 1.042)
0'%1 18.303 4.480 (10.348, 27.432) 6.515 1.313 ( 4.052, 9.118)
o2, - - - 0.099  0.081 ( 0.011, 0.247)
0’%0 0.002 0.0003 (0.0016, 0.0028) 0.002 0.0003 (0.0016, 0.0028)
U%l 0.002 0.0003 (0.0016, 0.0028) 0.002 0.0003 (0.0016, 0.0028)
0'%2 - - - 0.002 0.0003 (0.0016, 0.0028)

LPML -7994.932 -7736.51
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