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‘ Overview I

In this fourth and final session, we will discuss Bayesian model
comparison and Bayesian model diagnostics in survival analysis. The
topics covered include Bayes factors and posterior model probabilities,
the Bayesian Information Criterion (BIC), the Conditional Predictive
Ordinate (CPO), and the L measure for Bayesian model comparison;
and Bayesian latent residuals and prequential methods for Bayesian
model diagnostics. Detailed examples using real data are presented, and

issues involving the computational implementation are addressed.
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4.1 Posterior Model Probabilities'

& General Notation

Model space: M
Model index: m, a specific model in M.
Model parameter vector: 8™ associated with model m.

Posterior model probability of model m:

p(D|m)p(m)

PnD) = 5 e pDlmp(m)’

where D denotes the data,
p(Dlm) = [ L©"™|D)r(6"™) d6'™.

L(6'™|D) is the likelihood, and p(m) denotes the prior probability

of model m.
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#® Variable Selection in the Cox Model
e Difficulties

Bayesian variable selection is often difficult to carry out because of the

challenge in

(i) specifying prior distributions for the regression parameters for all

possible models in M;
(ii) specifying a prior distribution on the model space; and

(iii) computations.
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e Specific Notation

Let p denote the number of covariates for the full model and let M
denote the model space. We enumerate the models in M by
m=1,2,...,K, where K is the dimension of M and model K denotes
the full model. Also, let B%) = (8o, B1,...,0p—1)" denote the regression
coefficients for the full model including an intercept, and let B (m) denote
a pm X 1 vector of regression coefficients for model m with an intercept,

and a specific choice of p,, — 1 covariates. We write
BXF) = (B™' B=m)Y where B~™) is BK) with B deleted.
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e Model

We consider the semiparametric model described in Session 1, which is
based on a discretized gamma process on the baseline hazard function
with independent increments. Under model m, the likelihood can be
written as

J
L™, 8|0t™) = [ {exp{—6j<aj +o)kx TT [1—expf-n™ 15} }

j=1 kED;

where n,gm) = exp(mém)’,B(m)), xgcm) is a pm X 1 vector of covariates for
the 3" individual under model m, X (m) denotes the n x Pm covariate
matrix of rank p,,, DM — (n,y, X(m), v) denotes the data under model
m7

J J
aj= > > (sim1—s-1), b= > 0™ (s1—s5-1),
l=34+1keD; =35 ke(C;

T; = (s; — sj—1) >.1_, &1, D; be the set of subjects failing, C; is the set
of subjects that are censored, and § = (d1,02,...,d5)’. Here, § can be

viewed as a nuisance parameter, which does not depend on m.
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e Power Prior for Model Parameters

We use the power prior

(B, 8, a0] D™) <L(B™, 8|DF™ )"0 1o (8™ |co)
X 7r0(5|00)7r(a0|a0, )\0),

where D(()m) = (no, Yy, Xém) ,V0) is the historical data under model m,

<

m0(8160) oc [T 67" exp {~8;90;} ,
71=1

m(ao|o, Ao) ag‘o_l(l — ao)AO_l,

and 0o = (fo1,901,---, fos,90s)" and (ao, \o) are prespecified
hyperparameters. For the purposes of prior elicitation, it is easier to
work with po = ao/(ao + o) and b = to(1 — po) (o + Ao + 1)_1.

An attractive feature of the power prior for 8(™ in variable selection
problems is that it is semiautomatic in the sense that one only needs a
one time input of (D(()m) , €0, 800, 0, Ao) to generate the prior distributions
for all m € M.

4-7 M.-H. Chen



Session 4

e Prior Distribution on the Model Space

Let the initial prior for the model space be denoted by po(m). Given the

historical data D(()m), the prior probability of model m for the current
study based on an update of yo via Bayes theorem is given by

om)y _ PG [m)po(m)
D S mem (DM mpo(m)

where p(Do|m) = [ L(B™,8|D5™ )mo(B™ |do)mo(8]ro)dB™ db,
L(s,8(™ |D(()m)) is the likelihood function of the parameters based on
D(()m), m0(B(™ |do) is the initial prior for 8™, and 7o (8|ko) is the initial
prior for 8. Specifically, we take 7o (8™ |do) to be a N, (0, doWO(m)),

where Wo(m) is the submatrix of the diagonal matrix WO(’C) corresponding

p(m) = p(m|D

Y

to model m, and
J £
7T0((5|K,0) X H 5j03 €Xp {—53'933-},
71=1
where Ko = (f5<1,95<1> . . '7f(3kJag(>)kJ)/‘
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Properties

— p(m) corresponds to the usual Bayesian update of po(m) using D(()m)
as the data.

— As dop — 0, p(m) reduces to po(m). Therefore, as do — 0, the

historical data D(()m) have a minimal impact in determining p(m).

— As dop — o0, T (,B(m) |do) plays a minimal role in determining p(m),
and in this case, the historical data play a larger role in determining
p(m).

— The parameter dp thus serves as a tuning parameter to control the
impact of D(()m) on the prior model probability p(m).

A Note

When there is little information about the relative plausibility of the
models at the initial stage, taking po(m) = %, m=1,2,...,KC, a priori is

a reasonable “neutral” choice.
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e Computing Prior Model Probabilities

Suppose that under the full model, we have a sample

{(5(()’3),50,1), l=1,2,...,L} from
70(BY), 8D oc w5 (BX), 8| DJ),
where

w5 (8%, 8|DF)) = L(BY), 8|DF )mo (B |do)mo (] ro).
Then, the prior probability of model m can be estimated by

B ZL: 5(BY, 80,01Dg™ Ywo (B, ™ 1857)
L ) 502D o(m)
. . (m) =1 7o (1801 ,00,1 )
p(m) =p(m|Dy ) = ;
K L (J) 5 D(J) (—3) (J)
L K;

where
g (8™, 8]D{™)) = L(B™, 8| D{™ )mo (BU™ |do )0 (8]k0),
and wo (8™ | B{™)) is a completely known conditional density whose

support is contained in, or equal to, the support of the conditional
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density of B(~™) given 8(™ with respect to the full model joint prior

distribution.

Choice of wq

We take
wo(BC™ (B = (2m) = PPm)/2|5y; gy |1/

X eXP{ - —(5( m) [2%8 2m) 211 2m(18(_m) - ﬁ11.2m)}a

where

Si1.2m = D1im — L12m Saom Di2m;
Ellm is the covariance matrix from the marginal distribution of B (=m)
>12m consists of the covariances between B8(~™ and 8™, and Yoo, is
the covariance matrix of the marginal distribution of B(™) with respect

to the joint normal distribution V. (,80, Zo) for 8. Also

f11.2m = B 4+ 1285, (B — 5™,

—m) —m)

where [L( is the mean of the normal marginal distribution of B

and (™ is the mean of the normal marginal distribution of 8(™.
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Features

There are several nice features of the above Monte Carlo procedure:

(i) we need only one random draw from mo(8Y), 5|D(()’C) ), which greatly
eases the computational burden;

(ii) it is more numerically stable since we calculate ratios of the

densities; and

(iii) mo (B, 8 |D(()’C)) plays the role of a ratio importance sampling
density (see Chen and Shao, 1997) which needs to be known only up
to a normalizing constant since this common constant cancels out in

the calculation.

4-12 M.-H. Chen



Session 4

e Computing Posterior Model Probabilities
Difficulty

Computing the posterior model probability p(D{™|m) requires
evaluating the ratio of two analytically intractable integrals, one from

the prior distribution and another from the posterior distribution.

A Key Theoretical Result

It can be shown that the posterior probability of model m is given by

(B ™ =0 p®))
(8™ =0|D;")

K (8= = 0|D())
; ,3( ) _0|D(’C))

m)

p(4)
where 7(8™™) = 0|D(()’C)) and (8™ = 0|D™)) are the marginal

prior and posterior densities of 8™ evaluated at 8(~™) = 0 for
m=12,...,K.
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Monte Carlo Estimation

Due to the complexity of the prior and posterior distributions, the
analytical forms of 7(8(~™ |D(()’C)) and 7(B8C"™ | D)) are not available.
However, we can adopt the importance-weighted marginal posterior
density estimation (IWMDE) method of Chen (1994) to estimate these

marginal prior and posterior densities.

The IWMDE method requires using only two respective Markov chain
Monte Carlo (MCMC) samples from the prior and posterior distributions
for the full model, making the computation of complicated posterior

model probabilities feasible.
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It directly follows from the IWMDE method that a simulation consistent
estimator of 7(8(=™ = 0|D™)) is given by

#(B(—™) = o|DX))

(—m) g(m)y T8 B™) = 0,81,a0,| D))
Zw('@l |/Bl ) () i
=1 71-(13[ a(slaa'O,l|D( ))

SIES

where w(B8™(8(™) is a completely known conditional density of
pi—m) given B(™) whose support is contained in, or equal to, the
support of the conditional density of 8 (=m) given 3 (m) with respect to
the full model joint posterior distribution,

{( l(’C), d1,00,),l =1,2,...,L} is a sample from the joint posterior
distribution 7(8"), 8, ao|D™)). To construct a good w(B~™|8(™)), we
can use a procedure similar to the one used to construct wo(8(~™|B8(™)

for calculating the prior model probabilities.
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e Example: Multiple myeloma data

Objectives:

Our main goals in this example are to illustrate the prior elicitation and
variable selection techniques and to examine the sensitivity of the

posterior probabilities to the choices of (uo,03), co, and do.

The Data:

We have two similar studies in the multiple myeloma study E2479, Study
1 (historical), and Study 2 (current). Our analysis uses p = 8 covariates.
These are blood urea nitrogen (x1), hemoglobin (z2), platelet count (z3)
(1 if normal, O if abnormal), age (x4), white blood cell count (zs), bone
fractures (z¢), percentage of the plasma cells in bone marrow (z7), and
serum calcium (zg). A total of n = 339 observations were available from
Study 2, with 8 observations being right censored, while Study 1

consisted of ng = 65 observations of which 17 were right censored.

4-16 M.-H. Chen



Session 4

Initial Priors and Others:

— We take Wé’c) to be the diagonal elements of the inverse of the Fisher
information matrix based on the Cox’s partial likelihood where
JC = 28 = 256 in this example.

— We use a uniform initial prior on the model space, that is, pg(m) = % for
m=1,2,...,K.

— We take 8g = kg and use f()j =85 —8j—1 if Sj — 8j—1 > 1 and foj =1.11if
sj —s;j—1 <1, and go; = 0.001. For the last interval, we take go; = 10 for
9 = J since very little information in the data is available for this last
interval. The above choices of fp; and go; ensure the log-concavity of
m0(8]|60), as this is required in sampling § from its conditional prior and

posterior distributions.

— We use J = 28, with the intervals chosen so that with the combined
datasets from the historical and current data, at least one failure or

censored observation falls in each interval.

— A stepwise variable selection procedure in SAS for the current study yields

(z2,x3,x4,x7,28) as the top model.
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Choice of ¢y

TABLE 4.1. The Posterior Model Probabilities for (uo,02) = (0.5,0.004), do = 3

and Various Choices of c¢g.

co m p(m) p(D|lm) p(m|D)

3 (1234578) | 0.015 0.436 0.769

10 | (1234578) | 0.015 0.310 0.679

30 | (1234578) | 0.015  0.275 0.657

Note that we use (1234578) to denote the model indexed by

(1,2, %3, 24,25, T7,X8).
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Table 4.1 gives the model with the largest posterior probability using
(po,03) = (0.5,0.004), (i.e., ag = Ao = 30) for several values of cy. For
each value of cp in Table 4.1, the model (x1, z2, 23, T4, x5, 27, xs) obtains
the largest posterior probability, and thus model choice is not sensitive
to these values. In addition, for dyp = 3 and for any ¢y > 3, the
(z1,x2,x3, x4, x5, T7,x8) model obtains the largest posterior probability.
Although not shown in Table 4.1, values of cp < 3 do not yield
(z1,x2,x3, T4, x5, T7,x8) as the top model. Thus, model choice may
become sensitive to the choice of ¢g when ¢y < 3.
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Choice of dy

TABLE 4.2. The Posterior Model Probabilities for (uo,o2) = (0.5,0.004), co = 3
and Various Choices of dj.

do m p(m) p(D|lm) p(m|D)

5 (1234578) | 0.011 0.436 0.750

10 | (1234578) | 0.005 0.436 0.694

30 | (1234578) | 0.001  0.436 0.540
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From Table 4.2, we see how the prior model probability is affected as dy
is changed. In each case, the true model obtains the largest posterior
probability. Under the settings of Table 4.2, the (x1,z2, x3, T4, X5, T7, T3)
model obtains the largest prior probability when do > 3. With values of
do < 3, however, model choice may be sensitive to the choice of dy. For
example, when dy = 0.0001 and ¢ = 10, the top model is

(z1,x2, 24,5, x7, ) With posterior probability of 0.42 and the
second-best model is (x1, z2, 23, T4, 5, x7, x3) With posterior probability
of 0.31. Finally, we mention that as both ¢y and dy become large, the
(x1,T2,x3, x4, T5,T7,x8) model obtains the largest posterior model

probability.

4-21 M.-H. Chen



Session 4

Incorporation of Historical Data ((uo,0d))

TABLE 4.3. The Posterior Model Probabilities for ¢g = 10, dg = 10 and Various
Choices of (ug,03).

(po,od) m p(m) p(D|m) p(m|D)

(0.5, 0.008) | (1234578) | 0.005  0.274 0.504

(0.5, 0.004) | (1234578) | 0.005  0.310 0.558

(0.98, 0.0004) | (1234578) | 0.005 0.321 0.572

Table 4.3 shows a sensitivity analysis with respect to (uo,0g). Under
these settings, model choice is not sensitive to the choice of (uo,05). We
see that in each case, (x1, T2, x3, T4, x5, 27, Ts) obtains the largest
posterior probability. In addition, there is a monotonic increase in the

posterior model probability as more weight is given to the historical data.
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‘4.2 Criterion-Based Methods.

® An Introduction

e Many of the proposed Bayesian methods for model comparison
usually rely on posterior model probabilities or Bayes factors, and it
is well known that to use these methods, proper prior distributions
are needed. It is also well known that posterior model probabilities
are generally sensitive to the choices of prior parameters, and thus
one cannot simply select vague proper priors to get around the

elicitation issue.

e Criterion based methods do not require proper prior distributions in
general, and thus have an advantage over posterior model

probabilities in this sense.
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& L. Measure

The L measure criterion is constructed from the posterior predictive
distribution of the data, and can be written as a sum of two components,
one involving the means of the posterior predictive distribution and the

other involving the variances.

Consider an experiment that yields the data y = (y1,...,y»)". Denote
the joint sampling density of the y;’s by f(y|@), where 0 is a vector of

indexing parameters.

Let z = (21,...,2n)" denote future values of a replicate experiment. That

is, z is a future response vector with the same sampling density as y|0

We note that y and z may represent a transformation of the original
data. For example, in survival analysis, it is common to take the
logarithms of the survival times, and thus y would represent the logs of

the survival times.
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e Case 1: y is fully observed

When y is fully observed, the L measure can be calculated as

ZVar 2i|yi) —|—1/Z —y@

where 0 < v < 1, u; = E(zi|y), and [zi|y] denotes the posterior

predictive distribution with a density proportion to
f(z|0)m(6]y).

Small values of the L measure imply a good model.
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e Case 2: y is censored

Let ¥ = (Yobss Ycens), Where y s denotes the completely observed
components of y, and Y., denotes the censored components. Here, we
assume that y_ ., is @ random quantity and a; < Y.ens < @r, Where a;
and a, are known.

Let D = (n,Y,pe, @1, ar) denote the observed data. Then the L measure

is modified as

L(yobs)
=By . ip[1{ar < Ycens < ar}L(y)]

= [ [ L) £ Weensl@)7(OID) dycons 6,

a,;

where 1{a; < Yeons < @r} is a generic indicator function taking the

value 1 if a; < Y.epns < ar and 0 otherwise.
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e Choice of v

The choice of ¥ has much potential influence on the properties of the L

measure, calibration distribution, and model choice in general.

For the linear model, Ibrahim, Chen, and Sinha (2001) theoretically
show that certain values of v yield highly desirable properties of the L
measure and the calibration distribution compared to other values of v.

Based on their theoretical exploration, v = % is a desirable and

justifiable choice for model selection.

4-27 M.-H. Chen



Session 4

e Computation

It can be shown that L(y) can be expressed as a posterior expectation,
so that

n

L(y) = ) {Egp(El(2:)%6]) — ui} +v ) (mi —v:)?,
1=1

i=1
where p; = FEg|p[F(2i|0)], and the expectation Eg|p is taken with
respect to the posterior distribution 7 (6|D).

Suppose that {0,, ¢ =1,2,...,Q} is an MCMC sample from 7(6|D)
and {Yeens,q» 4= 1,2,...,Q} is an MCMC sample from the truncated

posterior predictive distribution

H{ar < Yeens < @r}f(Yeens|0)7(6]D).
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Then an Monte Carlo estimate of L(y,}¢) is given by

n

E(obs) = { % fj (B|z)?164]) - n?}

+V{ > (i — yi)°

{i: y; observed}

=1

1 Q
+5qz

Z (ﬂz‘ - ycens,iq)Ql } ’

{i: y; censored}

where ji; = (1/Q) 222:1 FE(2:|0,), and ycens,iq is the ;th component of

Ycens,q-
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In the cases where E[(z;)?|0] and E(z;|0) are not analytically available,
we need an MCMC sample {(z4,0,), ¢ =1,2,...,Q} from the joint
distribution f(z|@)7(0|D). Then, in f)(yobs), we replace

E[ 2)°|0,]) and E(2:|04)

I M@
I M@

Q
Z z,,,,q and —Zzz,q,

th component of z,.

where z; 4 is the ¢
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#® The Calibration Distribution
e Why Calibration?

Consider, for example, variable subset selection, in which a model with 5
predictors achieves the minimum criterion value, but a model with 3
predictors achieves a slightly larger criterion value. Which model should
be chosen? On the basis of the criterion value alone, the model with 5
predictors wins, but it is less parsimonious than the 3 predictor model.
This situation arises often in practice, and in these cases, it is desirable
to have a calibration of the criterion to formally compare criterion values
between the candidate models. Thus, one of the crucial steps in using
criterion based methods for model assessment and model choice is to

define a calibration for the criterion.

4-31 M.-H. Chen



Session 4

e Calibration Distribution

Let ¢ denote the candidate model under consideration, and let ¢ denote
the true model. Further, let L.(y,,,) denote the L. measure for the
candidate model ¢, and let L:(y,,,) denote the L. measure for the true
model t. Now consider the difference in L. measures,

D(yobs7 V) = Lc(yobs) T Lt(yobs)'

To calibrate the L measure, we construct the marginal distribution of
D(y1e, V), computed with respect to the prior predictive distribution of
Yobs Under the true model ¢, denoted by

pt(yobs) — /ft(yobs|0)77t(0) do.

Thus, the calibration distribution is defined as

pL. = p(D(yobsv V))a

which is the marginal distribution of D(ys, V), computed with respect
t0 Pt(Yobs)-
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e Summary of Calibration Distribution

Once pr, is computed, several statistical summaries can be obtained
from it to summarize the calibration. These include various HPD
intervals and the mean of D(y_,.,v). The mean of the calibration
distribution is denoted by

pe(v) = Ee(D(Yobs, V)

where F;(-) denotes the expectation with respect to the prior predictive
distribution of the true model. This summary, u.(v), is attractive since
it measures, on average, how close the centers are of the candidate and
true models. If the candidate model is a good model, then pu.(v) should
be close to 0, whereas if the candidate model is far from the true model,
then p.(v) should be far from 0. We note that p.(v) depends on the
candidate model and therefore changes with every c. If ¢ = ¢, then

pe(v) = 0 for all v.
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e Comments

— For pr, to be well defined, we need a proper prior distribution for 8.
This definition of the calibration distribution is appealing since it

avoids the potential problem of a double use of the data as discussed
by Bayarri and Berger (1999).

— Since the true model ¢ will not be known in practice, we use the

criterion minimizing model %,,;, to compute

A

D(yob57 V) — Lc(yobs) _ Ltmin (yobs)7

and

A

ﬁLc — p(D(yobs7 V))7

where pr,, is computed with respect to the prior predictive

distribution of the criterion minimizing model.
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e Computation

Computing the calibration distribution requires the following two steps:
(i) Generate a pseudo-observation y from the prior predictive
distribution f; . (y|@0)m: . (0); and
(ii) Set y,1,o = ¥ and compute MC estimates of L.(y,ps) and
Lt . (Yobs)-

We repeat (i) and (ii) @ times to obtain MCMC samples of L.(y.;s) and
Lt . (Yobs)- Using these MCMC samples, we can compute the entire

calibration distribution pr.., for example, by using the kernel method.

We note that step (ii) may be computationally intensive. However, the

entire computational procedure is quite straightforward.
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& Example: Breast Cancer Data

e The Data

The data given on page 7 are from Finkelstein and Wolf (1985), which
consists of a data set of (case-2) interval censored data. In this data set,
46 early breast cancer patients receiving only radiotherapy (covariate
value £ = 0) and 48 patients receiving radio-chemotherapy (x = 1) were

monitored for cosmetic changes through weekly clinic visits.

Sinha, Chen, and Ghosh (1999) consider a semiparametric Bayesian
analysis of these data using three models based on a discretized version
of the Cox model (Cox 1972). Specifically, the hazard, A(y|z), is taken to
be a piecewise constant function with A(y|z) = A;07 for y € I;, where

0, = ePi, I; =(aj_1,a;]for j=1,2,...,9,0=ap < a1 < - < ay = 0,

and g is the total number of grid intervals.
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e Models

We consider the following three models:

i.id. .
t (i) A "% G(ny,;) for j=1,...,g; and

(11) B~ N(B())wo)
2: (i) A;’s have the same prior as in model M;; and

(11) Bi+1|P1s---sBg—1 ~ N(Bj,wj) for j=0,...,9 — 1.

51 () ajtilar,...,a; ~ N(aj,v7), where a; = In();); for
3=0,1,...,9g —1; and

(ii) same as in Ma.
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Table 4.4 shows the results using v = 7, and reveals that model M is

the criterion minimizing model with an L measure value of 80.45.

Models M5 and M3 have ,uc(%) values of ,u2(%) = 5.36 and
M3(%) = 28.91, respectively, and therefore, model M2 is much closer to

the criterion minimizing model than model Ms.

TABLE 4.4. L Measure and Calibration Summaries

for Breast Cancer Data.

Model | L Measure | pc(3) 95% HPD
1* 80.45 — —
2 87.24 5.36 | (4.24, 6.34)
3 113.54 28.91 (27.23, 30.23)

* Criterion minimizing model.
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This is also clearly displayed in Figure 4.1, which gives the calibration
distributions for models M2 and M3. We see from Figure 4.1 that there
is a wide separation between pr, and pr,, and pr, has smaller dispersion
than pr,. The HPD intervals for models M3y and M3 do not contain 0.
We conclude here that both models M2 and M3 are sufficiently different
from one another as well as being sufficiently different from the criterion

minimizing model.
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Density

L0-
0.8

0.6

0.2

7 !
] .
\
0.0 - g )
.0

0 5 10 15 20 25 30 35
D

FIGURE 4.1. Calibration distributions for breast cancer data; solid curve:
model M2, and dashed curve: model M3j.
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‘4.3 Conditional Predictive Ordinate'

& CPO Statistic

The Conditional Predictive Ordinate (CPO) statistic is a very useful
model assessment tool which has been widely used in the statistical
literature under various contexts. For a detailed discussion of the CPO
statistic and its applications to model assessment, see Geisser (1993),
Gelfand, Dey, and Chang (1992), Dey, Chen, and Chang (1997), and
Sinha and Dey (1997). For the i*" observation, the CPO statistic is
defined as

CPO; = f(y;| DY) = / F(yilB, A, )7 (B, \| DY) dB dA,

where y; denotes the response variable and x; is the vector of covariates
for case i, D(™" denotes the data with the it" case deleted, and
(B, A\ D'=") is the posterior density of (3, A) based on the data D™%.

CPO; is the marginal posterior predictive density of y; given D=9 and
can be interpreted as the height of this marginal density at y;. Thus,
large values of CPO; imply a better fit of the model.
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& CPO Plot

For comparing two competing models, we examine the CPO;’s under
both models. The observation with a larger CPO value under one model
will support that model over the other. Therefore, a plot of CPO;’s
under both models against observation number should reveal that the
better model has the majority of its CPO;’s above those of the poorer
fitting model. In comparing several competing models, the CPO; values
under all models can be plotted against the observation number in a

single graph.
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& Pseudomarginal likelihood (LPML)

An alternative to CPO plots is the summary statistic called the
logarithm of the Pseudomarginal likelihood (LPML) defined as

LPML = ) "log(CPO).
i=1
To compare LPML’s from two different studies for a given model, we
propose to use a modification of LPML, which is the average LPML,

given by

ALPML = ML
n

where n is the sample size. The statistic ALPML can be interpreted as

the relative pseudomarginal likelihood.
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& Advantages of the CPO Approch

e Compared to Bayes factor approach, CPO or LPML is always well
defined as long the posterior predictive density is proper. Thus,
LPML is well defined under improper priors, and in addition, it is
very computationally stable. However, the Bayes factor is not well
defined with improper priors, and is generally quite sensitive to

vague proper priors.

e Compared to L measure, The L measure is a Bayesian criterion
requiring finite second moments of the sampling distribution of y;,
whereas the CPO or LPML statistic does not require existence of
any moments. Since the cure rate models have improper survival
functions, no moments of the sampling distribution exist, and
therefore the L. measure is not well defined for these models. Thus,
the LPML statistic is well motivated.
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& Example: Melanoma data
e Data

We use the E1684 (historical) and E1690 (current) melanoma datasets to
illustrate the CPO statistic.

e Models

We consider the piecewise exponential (PE) model and the
semiparametric cure rate (SPCR) model. For the piecewise exponential
model, we consider a fully parametric analysis (i.e., J = 1) and a
semiparametric analysis using J = 5. For the semiparametric cure rate
model, we use J = 5. We note that J = 1 corresponds to a fully

parametric cure rate model.
e Incorporation of Historical Data

We consider several choices of ag, including ap = 0 and a9 = 1 with
probability 1, E(ao|D) = 0.05, E(ao|D) = 0.30, and E(ao|D) = 0.60.
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TABLE 4.5. CPO Statistics for 1684 and E1690.

Study Model ALPML
E1684 PE (J = 5) —1.3775
E1690 PE (J = 5) —1.2232
E1684 | SPCR (J =1) —1.3407
E1690 | SPCR (J =1) —1.2172
E1684 | SPCR (J =5) —1.3439
E1690 | SPCR (J =5) —1.2184
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Table 4.5 shows results of ALPML for the E1684 and E1690 studies
separately, based on ap = 0 with probability 1. We see from Table 4.5
that the results for PE and SPCR are quite similar, yielding similar
ALPML statistics. In addition, the PE model with J = 5 gives
comparable results to the cure rate models. However, the exponential
model (i.e., the PE model with J = 1) yields a smaller CPO statistic
relative to the other models, indicating a poorer fit. These results
suggest that the SPCR models appear to provide a more adequate fit to
the E1690 data compared to the exponential model and are comparable
to, but slightly better than, the PE model with J = 5.
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TABLE 4.6. LPML Statistics for PE and SPCR Models.

Model | E(ag|D) J=1 J=25 J =10
PE 0 —575.60 —522.30 —523.62
0.05 —575.45 —522.05 —523.20

0.20 —575.23 —521.67 —522.39

0.30 —575.13 —521.59 —522.12

0.60 —574.95 —521.61 —522.02

1 —574.64  —522.24  —-522.71

SPCR 0 —519.75  —520.24  —524.42
0.05 —519.61 —519.89 —523.82

0.20 —519.39 —519.43 —522.83

0.30 —519.34 —519.31 —522.53

0.60 —519.40 —519.67 —522.56

1 —519.67 —520.16 —522.97
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Table 4.6 is quite informative.

First, we see that J = 5 is better than J =1 or J = 10. However,
for the SPCR model, J =1 and J = 5 are fairly close.

Second, for both J =1 or J = 5, the cure rate model yields a better
fit than the PE model.

Third, the incorporation of the EE1684 data into the analysis
improves the model fit.

Fourth, for all the cases, LPML is a concave function of E(ao|D)
(see Figure 4.2). This is an interesting feature in LPML in that it
demonstrates that there is an “optimal” weight for the historical
data with respect to the statistic LPML, and thus this property is

potentially very useful in selecting a model.
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FIGURE 4.2. Plot of LPML’s for SPCR with J = 5.
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& Example: Breast cancer data
e Computational Detail for Interval Censored Data

For interval censored data, the CPO statistic for the ' observation is
defined as
CPO; = P(E € (a’lwa’?“i”xia D(_i))a

where D% denotes the interval censored data with the 7" patient
removed. CPOQO; is the posterior predictive probability of the observed
data for the it" patient given the modified data D~ . Let 8 denote the
vector of model parameters. CPO; can be computed as

-1
1
P(YL € (a’livaTiHoaxi)]) ’

where the expectation is taken with respect to the joint posterior
w(0|D).

CPO, = (E
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Note that

l

~

P(Y; € (a1;,0ar,]|0,2:) = exp {— )\kﬁlfiﬁk} — exp {— Z )\kﬁziﬁk}
k=1

k=1

where Ay = ap — ar_1 and 0 = exp(Br). Thus, a Monte Carlo estimate
of CPO; is given by

CPO, —E L
P(Yz S (a’liaa’rz’HOami)

i i -
:%l:il [exp{—IZAkIGZ;Ak}—eXp{—Z)\klezliAk}] ;

k=1 k=1

where {0r;, [ =1,2,---, L} (L is large) is an MCMC sample from the
posterior distribution 7 (0|D).
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e Results

The values of the LPML’s are —157.61 and —188.33 for M7 and Mo,
respectively, and the CPO;’s are displayed in Figure 4.3. Based on the
LPML statistics, it is clear that M is more preferable than Ms. The
plots of the pairwise log CPO ratios are consistent with the single
summary measure LPML. In Figure 4.3, 84% of the log CPO ratios for
M1 versus My are positive. Therefore, the data support M, instead of

M, which is also consistent with the L measure criterion.
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FIGURE 4.3. Plot of log CPO ratios for M versus M, for breast cancer
data.
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4.4 The Other Methods'

The other methods for model comparison and model assessment include
Bayesian Model Averaging and Bayesian Information Criterion.
Bayesian Model Averaging (BMA) is one of the popular approaches to
model selection. In this approach, one bases inference on an average of
all possible models in the model space M, instead of a single “best”
model. Suppose M = {Mi, Ma,..., Mk}, and let A denote the
quantity of interest such as a future observation, a set of regression
coefficients, or the utility of a course of action. Then, the posterior

distribution of A is given by
K
T(A|D) = Zﬂ' A|D, Mg)p(My|D),
k=1

where D denotes the data, w(A|D, My) is the posterior distribution of A
under model My, and p(My|D) is the posterior model probability.
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The Bayesian Information Criterion (BIC) is defined as

BIC = —2{£(6x) — £0(60)} + (pk — po) log(n),

where £ (0) and £o(0) are the log maximized likelihoods under Mj,
and a reference model My, whose parameter has dimension pg, where n

is the sample size.

Due to the time constraint, the details for these two methods will not be
discussed further in this session. We refer the interesting audiences to
the following papers for more discussions: Madigan and Raftery (1994),
Madigan and York (1995), Raftery (1996), Volinsky, Madigan, Raftery,
and Kronmal (1997), and Volinsky and Raftery (2000).
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4.5 Bayesian Model Diagnostics'

& Bayesian Latent Residuals
e The Frailty Model

Under the proportional hazards frailty model,
h(ylwi, zi;) = ho(y)ws exp(z; B),

let Ho(t) be the cumulative hazard function. Suppose we divide the time
axis into J prespecified intervals I = (sx—1,sk] for k=1,2,...,J, and
assume the baseline hazard to be constant within these intervals. Then it
follows that for t € I, = (sg—1,8k], k =1,2,...,J, Ho(t) = Zle A,

where A; = s; — s;_1.
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e Latent Residuals

Define

wij = w(Yij|wi, Tij) = Ho(yiz)0s5wi,
where 0;; = exp(xz;;8) for i =1,2,...,n and j =1,2,...,m;. Recall
ho(t) = A\, if t € I, = (Sk—1, Sk]. Then the survival function is given by

Sij(tlwi, T45)
t
:exp{—eijwi/ ho(u) du}
0
:exp{—HijwiHo(t)}.

It follows that the probability density function of the survival time T;; is

given as
fij (t|w,;, :137;3-) = ho (t)@zng exp{—@ijwiﬂo (t)}
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Thus,
P(ui; < u)
=P(0s;wiHo(t) < u) = P(Ty; < Hg ' (u/(8ijw:)))
=1 — exp{—0iwi(u/(0:;w:))} =1 — exp(—u),

which implies that given w;, u;; has a standard exponential distribution.
Further, if

;5 (t) = exp(—us; (¥is)),
then v;; given w; has a standard uniform distribution. Also, conditional
on w;, the v;;’s are independent.Then, the v;;’s can be treated as

standardized residuals. We call the v;;’s Bayesian latent residuals since

they are functions of the unobserved frailty random variable w;.
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e Residual Plots

Using the v;;’s, Aslanidou, Dey, and Sinha (1998) propose two diagnostic
plots, using the output from the MCMC samples. First, if the model is
correct, then the v;;’s have a uniform distribution. Thus, a box-plot of
the Monte Carlo estimates of the v;;’s can be used to check model
adequacy for a given dataset. Alternatively, a Q-Q plot of v;; versus a
standard uniform distribution produces similar features. The estimates

of the v;;’s are obtained as

L

A ~1 l
vij = L E Vij»
1=1

where

vij = exp(—Ho(ys;)'0i;wi),
Ho(yi;), Hﬁj, and w!} are the values of Ho(yi;), 0:;, and w; computed at
the [ MCMC iteration for [ = 1,2, ..., L, and L is the total number of
MCMC iterations.
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e Example: Kidney Infection Data

Aslanidou, Dey, and Sinha (1998) reanalyze the kidney infection data
given in Example 1.4 of the textbook. They assume that

w; ~ G(k™ ', k1), so that E(w;) = 1 and Var(w;) = k. The prior for the
hyperparameter « is G(6,1) with E (k) = Var(k) = 6 to assure enough
heterogeneity among the patients. Since n = k!, the prior for 7 is taken
to be an inverse gamma, ZG(6,1). For the A\x’s, k =1,2,...,J, they
consider the priors A1 ~ G(0.7,0.7) and Ax|A\x—1 ~ G(0.7,0.7/Ap_1) for
k=2,3,...,J. They consider only one covariate, i.e., sex, in their
analysis. For 3, the regression coefficient corresponding to sex, they take
a N(—1.2,100) prior. The prior mean is chosen near the estimate found
by other analyses of this dataset. The variance of the prior is taken large
enough to incorporate sufficient diffuseness. Finally, they divide the

survival times of the patients into J = 20 equal intervals.
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For the model checking analysis, they obtain the following results. The
first infection of the 19th, 35th, and 36th patients did not have a nice fit
in the model like the rest of the subjects for the first infection. This can
be concluded from the box-plots of the quantities vig,1, v35,1, and vse,1,
which did not seem to follow a uniform distribution. A similar
phenomenon is observed for the second infections of the 14th, 15th, and
22nd patients. For illustration, Figure 4.4 shows the box-plots of the first
infection for the 16th patient, who fit nicely to the model, and the first
infection of the 36th patient who did not have a nice fit.
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FI1GURE 4.4. Box-plots of vis,1 and vse,1.
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® Prequential Methods
e The Contributors of the Method

The prequential method discussed here is proposed by Arjas and
Gasbarra (1997, Biometrika), who extend the prequential approach
introduced by Dawid (1992) to continuous time marked point processes.

e Notation

— Data:
Suppose that the data are of the form {(Y,, X»)}, where
0=Yy <Y1 <Y <...<Yn are “the observed times of occurrence”
and X,, is a description of the event which occurred at Y,,. For

simplicity, the marks X, are assumed to take values in a countable
set F.
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— The Pre-t History
He = {(Yn, Xn) : Yo <t}

consisting of the events in the data which occurred before (and
including) time ¢, and by H;— the corresponding history when the
inequality in the definition of H; is strict.

— The Internal Filtration of Process
Ae = o{H:+}

is the o-field of H,..
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— The Canonical Path Space (2

It consists of the sequences w = {(yn,Zn) : n > 0} such that z,, € E,
where FE is some measurable space, 0 = yo < y1 < y2 < ..., and

Yn < 00 implies ¥y, < Yn+1, on the one hand, and on the distribution
of the “initial mark” Xy and the (A;)-compensators of the counting

processes

Nt(x) — Z 1{Y’I’L§taX’n=$}(t)7 t 2 ij S E)

Y, <t

on the other.
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e Statistical Model of the Marked Point Process

Let 6 denote an unknown parameter 6, which can be viewed as an initial
unobserved mark Xy of the marked point process at time Yy = 0. The
parameter space © may be finite-dimensional real or abstract, but its
role will always be the same: for any given value § € ©, we assume that
there is a corresponding probability P? defined on the path space

Q= {w = (Xn);ozo : X5 € E}

In practice, as noted above, P? is specified most conveniently in terms of
an initial distribution for X¢ and the corresponding conditional
intensities, hf (z), say, € E,t > 0. In classical statistical inference, the
family

M={P’: 6O}

is called a statistical model of the marked point process.
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e Bayesian Inference

In Bayesian inference, both the parameter 6 and the process sample path
Ho are viewed as random elements. The joint distribution of (6, H) is
then determined by probabilities of the form

P(6€ A Hoo € B) = Pg 3.y (Ax B) = /PO(B)w(dG),
A

where 7(6) is the prior distribution for 6.

4-68 M.-H. Chen



Session 4

e Dynamical Prediction Problem

The prediction at time ¢ concerns the unobserved future sample path,
say, H(t,00), and the predictions are updated continuously on the basis of
the observed H:. At time t = 0, the predictive distribution is simply the
marginal of Hy,, obtained from P(0 € A, H- € B) by letting A = ©.

Let P denote this probability and also let £ denote the corresponding
expectation. Then, the updating of P corresponds to viewing Ho, as a
pair (H¢, H(t,00)) and conditioning the joint distribution of § and H. on
‘H:, again integrating out the parameter . This continuous updating of
predictions, which in practice is done by applying Bayes’ formula on the
corresponding posterior distributions for 6, is at the heart of the method

proposed by Arjas and Gasbarra (1997) for model assessment.
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e A Useful Theoretical Result

Let w(df|H:—) denote the posterior distribution given the pre-t history
H,_. It follows that the predictive (P,.A;)-intensities h;(z) is given by

he(z) = E(he (z)[Heo).

Notice that iLt(a:) needs to be evaluated sequentially, which could be
difficult to compute, unless the analytic form for this posterior
expectation is available.

For a particular mark « € F, the corresponding sequence of precise times
at which x occurs, say

0 = 0, Tif+1 = inf{Y, > T Xn = x}.

We are led to the following result, given in Arjas and Gasbarra (1997).
Result 4.1: The spacings H.= (z) — ﬁIT,f (z), k=0,1,2,..., of the

[y

A

(P, Ay )-compensator Hy(z) = [ hs(z) ds form a sequence of independent

O T

E(1) random wvariables.
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e Total Time on Test Plot

The plot process,
n— Sp = Z Hri',
i<n
under the Bayesian forecasting system, has independent £(1) increments.
Asymptotically, the Kolmogorov law of the iterated logarithm gives a
sharp result on the behavior of the random walk process {S, — n}: with
probability 1,

lim sup Sn — 11 = +1
Vv2n loglogn
and
liminf —2" =" — 1.
Vv2nloglogn
Thus,

n =+ \/inoglogn

constitutes two bounds for S,,. If {S,} infringes the boundaries and does

not return, this can be used as evidence against the model.
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e Prequential P-value

To quantify the evidence for or against the model, Arjas and Gasbarra
(1997) consider some functionals of the whole sample path {S,}. Since
Sn'\’g(nql),then

Gn = Fy(Sn;n,1) ~U(0,1),
where F, (- ;n,1) denotes the cdf of G(n,1). The test statistics are

G1n, = max G and G2, = min Gg.

<n k<n
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By computing the reference distributions of Gi1nx and Gany we can assign

p-values to the whole sample, i.e.,
P(Gin > gin) and P(Gan < g2n),

where g1y = max gk, gaN = niin gr are the observed values of the
k<N k<N

statistics. Arjag and Gasbarra (1997) call these statistics prequential
P-values. As usual, P-values close to 0 would be used as evidence
against the model P. In principle, the distribution of GG1, could be
computed recursively. Here approximate prequential P-values were
determined by a simple Monte Carlo method, by generating independent
identically distributed samples of the process {G }.
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e Example: Point Process with Serially Correlated Spacings

Models

Let 0 < Y; <Y <...denote a simple point process and also let
Nn = Yn — Yn—1 denote the spacings, with Yo = 0. Arjas and Gasbarra
(1997) consider the following three competing Bayesian models:

Model My. Suppose that (i) the model parameter 6 is a real-valued random
variable with prior distribution Fx(-;a,3) (o = shape parameter and 8 =
scale parameter), and that (ii) conditionally on 6, the spacings {nn,;n > 1}
are independent and distributed as £(0). In other words, {Yr} is a doubly

stochastic Poisson process, or Cox process, with conditional intensity given
by h{ = 6.

Model M;. Suppose that (i) 6 is as in model Mg above, but that (ii),
conditionally on (0,n1,72,...,Mn—1), the spacings n, are distributed
according to the exponential distribution with parameter 6/n,—1. The
conditional intensity is now given by h? = 0/nn,_. According to model
M7, long (short) spacings are typically followed by long (short) spacings,
and therefore the points Y,, tend to be clustered.
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Model Mpi. This model includes both Mgy and M as special cases and it in
principle permits consideration of model selection probabilities adapting to
the data, would have the following mixture form. Let g € [0, 1] be given
and let £ be a {0, 1}-valued random variable with Py 1(§ =0) =1 — gq,
Py,1(§£ =1) = q. Then define the probability Pp.1 on © x 2 x {0,1} by
specifying the conditional probability Py, 1(:|§) through
Po,1(:[§) = &P1(-) + (1 = §) Fo(-).

True Model: M;

A sample path segment of the process {Y,} consisting of 500 points was
generated by a computer from model My, with § = 0.6. The

hyperparameters were given the values a = 0.1 and g = 0.001. This prior
has a very large mean «/f = 100, compared to the true value of 0.6, but

it is also very flat, having variance a/3° = 10°.
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Results:

The prequential P-values of the generated data under these three
different models are shown in Table 4.7. Clearly, the values of these
statistics provide the strong evidence that the models M; and My fit
the data while the model My does not.

TABLE 4.7. Prequential P-values

M1 Mo MO,l
P(G1,500 > 91,500) 0.594 ~0 0.629
P(G2,500 S g2,500) 0.337 ~ ( 0.253
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The total-time-on-test plots displayed in Figure 4.5, where the S, are
plotted against n for n = 1,2,...,500 along with the bounds

n + v/2nloglog n arising from the law of the iterated logarithm. Again
one can see that, while the process {S,} has a nice random walk
behavior under M; and My 1 (graphically coinciding in the figure),
staying mostly in the region prescribed by the law of the iterated

logarithm, under model M it leaves this region abruptly.
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