L^{γ} Penalty Models Computation And Applications Part I

Wenjiang Fu

wfu@stat.tamu.edu

http://stat.tamu.edu/~wfu.

Department of Statistics, Texas A&M University

Motivation

Lecture 1. L^{γ} penalty: variable selection and computation for linear models

Lecture 2. Selection of tuning parameter and asymptotics

Lecture 3. Extension to non-Gaussian response and longitudinal studies

Lecture 4. Recent development in L^{γ} penalty models and related topics

MOTIVATION

Linear regression model

 $Y = X\beta + \varepsilon$,

where Y is *n*-vector of responses, β is *p*-vector of parameters, $X = (x_1 \dots x_p)$ is $n \times p$ matrix with column vectors x_1, \dots, x_p , and ε is *n*-vector of random errors with $E(\varepsilon) = 0$ and $var(\varepsilon) = \sigma^2 I$.

Least-squares (LS) estimator $\hat{\beta}_{ols} = (X^T X)^{-1} X^T y$, if X is of full rank, is BLUE (best linear unbiased estimator). $var(\hat{\beta}_{ols}) = (X^T X)^{-1} \sigma^2$. If column vectors x_1, \ldots, x_p are close to (but not exactly) linearly dependent, the vectors are said to be collinear.

The determinant det $(X^T X)$ is close to 0. Then $var(\hat{\beta}) \uparrow$.

MOTIVATION

Problems of LS estimator $\widehat{\boldsymbol{\beta}}$ with collinearity

- Large variance and mean squared error. $MSE = bias^2 + var.$
- Poor estimation and prediction.
- Three major phenomena (Land et al.1990, AJS):
- Large changes in parameter estimate when adding or deleting variables;
- Wide confidence interval, nonsignificant test statistics, and opposite signs to expected values of important independent variables;
- Our of the second se

MOTIVATION

Diagnosis: condition number

Let $\lambda_1 \leq \ldots \leq \lambda_p$ be ordered eigenvalues of matrix $X^T X$. The condition number is defined as $\sqrt{\lambda_p/\lambda_1}$. Cutoff: 30.

Q: How to improve performance?

James – Stein estimator.

If $\widehat{\theta} = x$ is an unbiased estimator for θ and $p \ge 3$, then $J_x = \left(1 - \frac{p-2}{\|x\|_2^2}\right) x$ is called James – Stein estimator.

Shrinkage estimators.

Idea: Shrink parameters towards the origin to reduce variance (bias-variance trade-off). Recall: $MSE = bias^2 + var$.

Ridge estimator (Hoerl and Kennard 1971)

$$\widehat{eta}_{\mathrm{rdg}} = (X^T X + \lambda I)^{-1} X^T y,$$

where I is identity matrix, $\lambda \ge 0$ is tuning parameter.

$$\widehat{eta}_{\mathrm{rdg}} = rgmin_{eta} \{ (y - Xeta)^T (y - Xeta) + \lambdaeta^Teta \} \, .$$

Equivalently, $\hat{\beta}_{rdg} = \underset{\beta}{\arg\min}\{(y - X\beta)^T(y - X\beta)\}$ subject to $\beta^T\beta \leq t$, with $t \geq 0$.

$$\operatorname{var}(\widehat{eta}_{\mathrm{rdg}}) \leq \operatorname{var}(\widehat{eta}_{\mathrm{ols}})$$

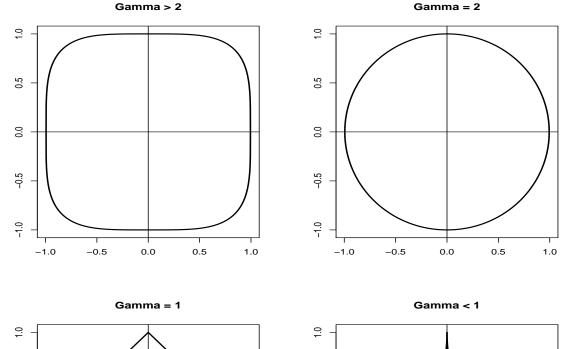
Bridge estimator (Frank and Friedman 1993) $\hat{\beta}_{brdg} = \underset{\beta}{\arg\min}\{(y - X\beta)^T(y - X\beta) + \lambda \sum_{j=1}^p |\beta_j|^{\gamma}\}.$ Equivalently, $\hat{\beta}_{brdg} = \underset{\beta}{\arg\min}\{(y - X\beta)^T(y - X\beta)\}$ subject to $\sum_{j=1}^p |\beta_j|^{\gamma} \le t$, with $t \ge 0$.

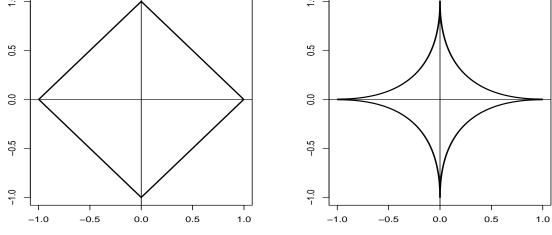
 $\operatorname{var}(\widehat{\beta}_{\operatorname{brdg}}) \leq \operatorname{var}(\widehat{\beta}_{\operatorname{ols}})$

Bridge – generalization of ridge

$$\circ \gamma = 2$$
, ridge;
 $\diamond \gamma = 1$, lasso (Tibshirani 1996).

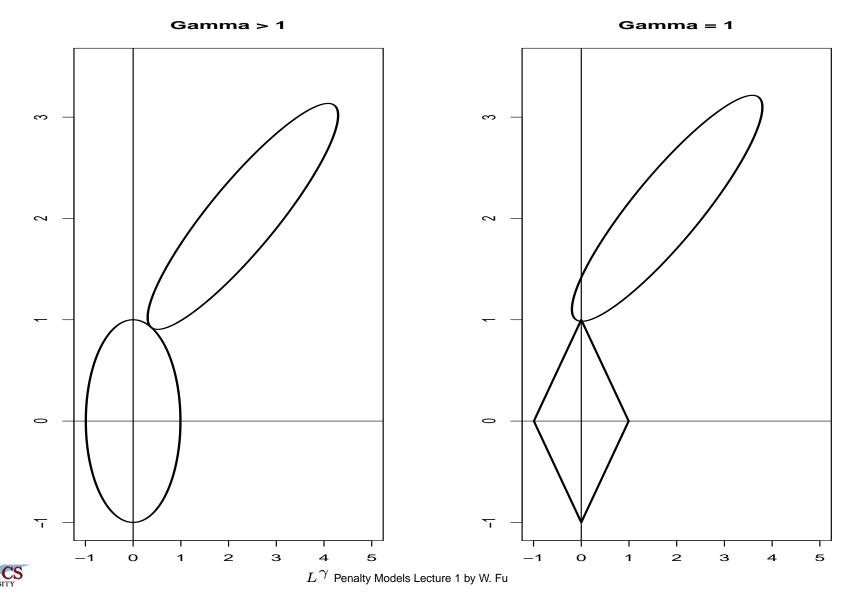
Constraint area for different values of $\gamma > 0$.





 L^{γ} Penalty Models Lecture 1 by W. Fu

Variable selection property of lasso $\widehat{eta}_j=0$.



Computation for bridge $\gamma > 1$

- $\gamma=2$: closed form.
- $\gamma > 1$: modified Newton-Raphson (Fu 1998), complex!

Notations:

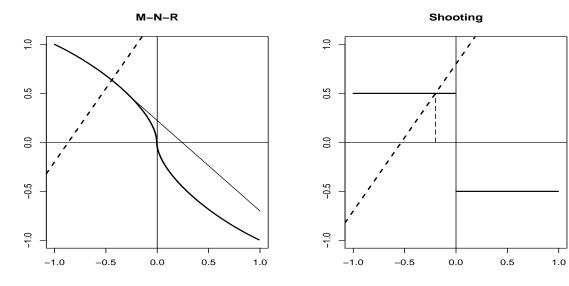
 $RSS = (y - X\beta)^T (y - X\beta), S_j = \partial RSS / \partial \beta_j,$ $d(\beta_j, \lambda, \gamma) = \lambda \gamma |\beta_j|^{\gamma - 1} \operatorname{sign}(\beta_j), l_j = S_j + d(\beta_j, \lambda, \gamma).$ Solve system of equations:

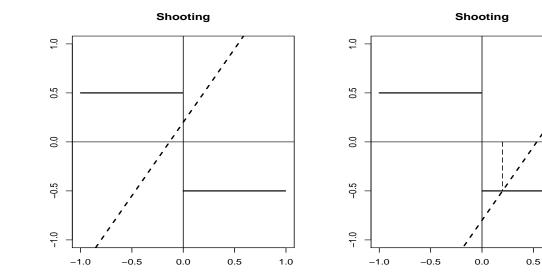
$$\left\{egin{array}{ll} l_1(eta,X,y,\lambda,\gamma)=0,\ &\ldots & (1)\ l_p(eta,X,y,\lambda,\gamma)=0. \end{array}
ight.$$

No closed form. Use N–R. $\beta_j^{new} = \beta_j^{old} - [\partial l_j / \partial \beta_j]^{-1} l_j$ Modify N-R since convexity changes at $\beta_j = 0$ for $1 < \gamma < 2$.

$L^{\gamma} \; {\rm Penalty}$

M-N-R ($\gamma > 1$) and shooting algorithm ($\gamma = 1$).





1.0

Computation for lasso $\gamma=1$

• Combined quadratic programming (Tibshirani 1996). Quadratic programming:

 $\min(y - X\beta)^T (y - X\beta)$ subject to $v^T\beta \ge 0$. Constraint $\sum_{j=1}^p |\beta_j| \le t$ is equivalent to $\sum_{j=1}^p w_j\beta_j \le t$ with $w_j = \pm 1$. Total combinations of 2^p weights w_j . Complicated!

• Shooting algorithm (Fu 1998). Take limit $\gamma \rightarrow 1+$: not computationally – more complicated; but theoretically – iteration with simple closed form.

Theorem 1

If S_j is contin. diff., Jacobian $\partial S/\partial \beta$ pos-semi-def., then

- 1. $\widehat{\beta}(\lambda, \gamma)$ is unique and contin. in (λ, γ) .
- 2. $\lim_{\gamma \to 1+} \widehat{\beta}(\lambda, \gamma)$ exists for fixed $\lambda > 0$.
- 3. $\lim_{\gamma \to 1+} \widehat{\beta}(\lambda, \gamma) = \widehat{\beta}(\lambda, 1)$, the lasso estimator for L–S.

Implication

Penalty (shrinkage) models do not need joint likelihood.
 Only Jacobian ∂S/∂β condition (p.s.d.). Potential extension!
 If joint likelihood exists, the extension works perfectly.

Shooting algorithm for lasso

1). Start with $\widehat{\beta}^{(0)} = (\widehat{\beta}_1, \dots, \widehat{\beta}_p)$. 2). At step m, for $j = 1, \dots, p$, let $s_0 = S_j(0, \widehat{\beta}^{(-j)}, X, y)$ and x_j be the j-th column vector of X. Set

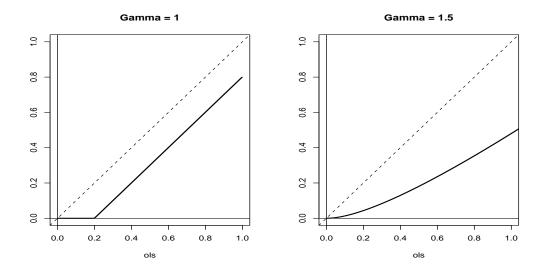
$$\widehat{eta}_j = \left\{egin{array}{ccc} rac{\lambda-s_0}{2x_j^T x_j} & ext{if} & s_0 > \lambda \ 0 & ext{if} & |s_0| \leq \lambda \ rac{-\lambda-s_0}{2x_j^T x_j} & ext{if} & s_0 < -\lambda \end{array}
ight.$$

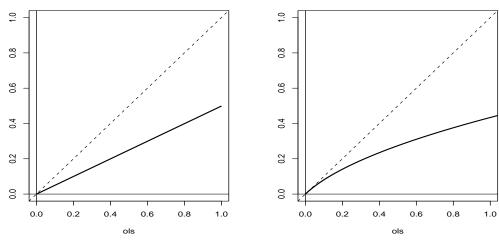
Form a new estimator $\widehat{\beta}^{(m)} = (\widehat{\beta}_1, \dots, \widehat{\beta}_p)$ after updating all $\widehat{\beta}_j$. 3). Repeat step 2) until convergence of $\widehat{\beta}^{(m)}$.

Convergence of algorithms

Let $G(\beta; \lambda, \gamma) = (y - X\beta)^T (y - X\beta) + \lambda \sum_j |\beta_j|^{\gamma}$ for given $\lambda > 0$ and $\gamma \ge 1$. $G(\beta; \lambda, \gamma)$ is convex and is minimized at finite $\beta = \beta_0$. Each step of updating $\hat{\beta}_j$ through either M-N-R algorithm or the shooting algorithm decreases the function $G(\beta; \lambda, \gamma)$. Thus the estimator $\hat{\beta}_m$ converges.

Orthonormal matrix $X: X^T X = I$ Coordinate: $\hat{\beta}_{brdg} = \hat{\beta}_{ols} - \lambda \gamma/2 |\hat{\beta}_{brdg}|^{\gamma-1} \operatorname{sign}(\hat{\beta}_{brdg})$





 L^{γ} Penalty Models Lecture 1 by W. Fu

Variance of bridge estimator

• $\gamma > 1$, complex closed form: no zero-valued coordinates. (Fu 1998).

 $\operatorname{var}(\widehat{\beta}) =$

$$(X^T X + D(\widehat{eta})|_{y_0})^{-1} X^T X (X^T X + D(\widehat{eta})|_{y_0})^{-1} \sigma^2$$
, (2)
 $D(\widehat{eta}) = \lambda \gamma (\gamma - 1)/2 \operatorname{diag}(|eta_j|^{\gamma - 2})$.

 y_0 is some point in the sample space.

Difficult to use for lasso due to $\widehat{\beta}_j = 0$.

Variance of bridge estimator

• $\gamma = 1$, difficulty: zero-valued coordinates. Method in Tibshirani (1996):

 $\begin{aligned} \operatorname{var}(\widehat{\beta}) &= \\ (X^T X + \lambda W^-)^{-1} X^T X (X^T X + \lambda W^-)^{-1} \sigma^2, \end{aligned} (3) \\ \text{where } W &= \operatorname{diag}(|\beta_1|, \dots, |\beta_p|) \end{aligned}$

Method in Osborne (2000);

Let

$$W = \frac{X^T (y - X\hat{\beta})(y - X\hat{\beta})^T X}{\|\hat{\beta}\|_1 \|X^T (y - X\hat{\beta})\|_{\infty}}$$
$$\operatorname{var}(\hat{\beta}) = (X^T X + W)^{-1} X^T X (X^T X + W)^{-1} \sigma^2.$$
(4)

Comparison between two methods

• (3) is zero for $\hat{\beta}_j = 0$, while (4) is non-zero.

• However, if set tuning parameter $\lambda > 0$ large, all $\beta_j = 0$. Then no variability. Hence variance should be zero. (3) is acceptable, but (4) still non-zero.

- All the above methods are approximations. No exact results except for $\gamma = 2$.
- Bootstrap method usually yields good estimation.

$L^{\gamma} \; \mathbf{Penalty}$

Table 1. Analysis of prostate cancer data.

Predictor	$\widehat{oldsymbol{eta}}^{oldsymbol{a}}$	SE by (1)	SE by (2)	$\widehat{oldsymbol{eta}}^{oldsymbol{b}}$	SE by bootstrap
Intercept	2.478	0.072	0.072	2.478	0.072
Icavol	0.559	0.079	0.101	0.618	0.103
lweight	0.097	0.060	0.081	0.190	0.076
age	0	0	0.079	-0.048	0.046
lbph	0	0	0.080	0.103	0.066
svi	0.156	0.071	0.097	0.245	0.087
lcp	0	0	0.125	0	0.068
gleason	0	0	0.114	0	0.047
pgg45	0	0	0.123	0.063	0.056
a Osborne (2000) ($t=0.8114$). b Fu (1998) ($\lambda=7.2$).					

L^{γ} Penalty – Shrinkage Trace

Shrinkage trace

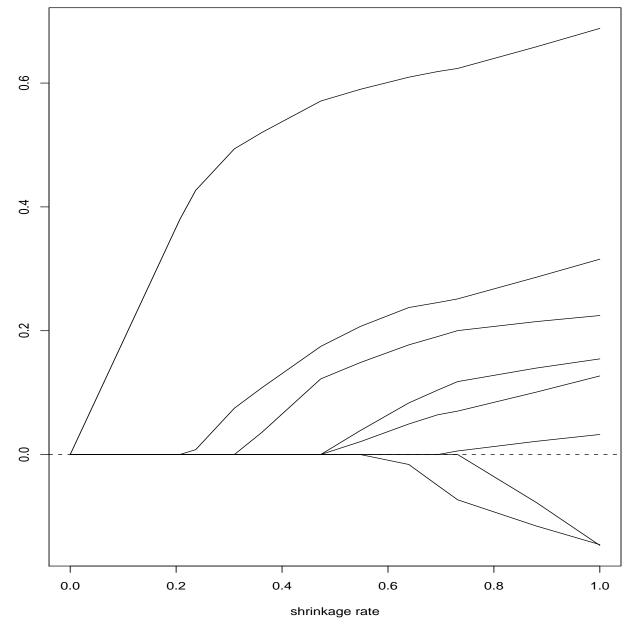
— Parameter estimates change with a special tuning parameter: standard shrinkage rate, $0 \le s \le 1$.

$$s = rac{\|eta_j(\lambda,\gamma)\|_\gamma}{\|eta_j(\lambda=0,\gamma)\|_\gamma},$$

where $\|\cdot\|_{\gamma}$ is the L^{γ} norm of a *p*-vector.

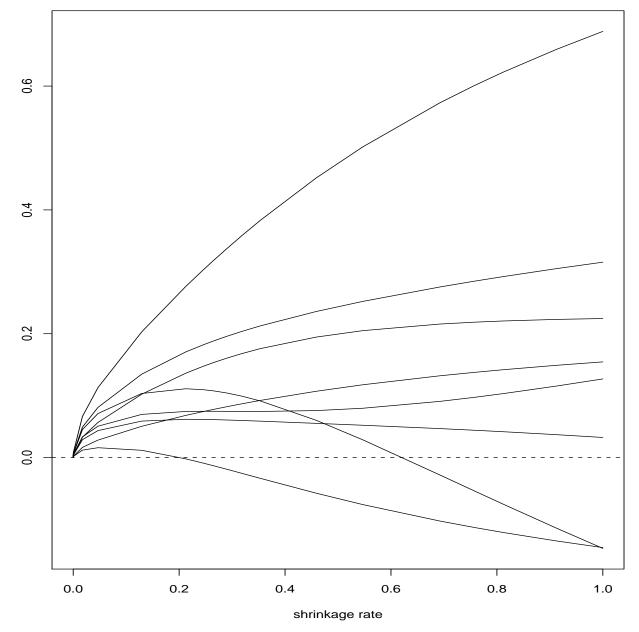
- s = 0, full shrinkage.
- s = 1, no shrinkage.

L^{γ} Penalty – Lasso Shrinkage Trace



 L^{γ} Penalty Models Lecture 1 by W. Fu

L^{γ} Penalty – Ridge Shrinkage Trace



PREDICTION WITH COLLINEARITY

Seemingly contradictory results:

Given data (X, y): $Y = X\beta + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$. Let (x, y) be an arbitrary point in sample space. \diamond Prediction error increases with collinearity. $PSE(x) = \sigma^2 + MSE(x) = \sigma^2[1 + x^T(X^TX)^{-1}x]$ $= \sigma^2 + x^T var(\hat{\beta})x.$

 $\begin{aligned} \diamond \mbox{ Prediction error at given data points is constant.} \\ & \frac{1}{n} \sum_{1}^{n} \mbox{PSE}(x_i) = \sigma^2 [1 + \frac{1}{n} \sum_{1}^{n} x_i^T (X^T X)^{-1} x_i] \\ & = \sigma^2 [1 + \frac{1}{n} \sum_{1}^{n} \mbox{tr} \{ (X^T X)^{-1} x_i x_i^T \} = \sigma^2 (1 + \frac{p}{n}), \\ & \mbox{where } x_i \mbox{ are row vectors of matrix } X. \end{aligned}$

$$\diamond$$
 In fact, $\mathrm{E}[\mathrm{PSE}(x)] = \sigma^2(1+rac{p}{n}).$

Collinearity increases variability of PSE:

Proposition (Fu 2005)

Assume existence of two moments $E(xx^T)$ and $E(xx^Txx^T)$. The expectation $E\{PSE(x)\}$ is independent of the collinearity for large samples with $E\{PSE(x)\} \sim \sigma^2(1 + p/n)$. The variance $var\{PSE(x)\}$ increases with the collinearity as the smallest eigenvalue of matrix $X^T X$ decreases to 0.

$$egin{aligned} & ext{var}\{ ext{PSE}(x)\} = ext{E}[\{ ext{PSE}(x)\}^2] - [ext{E}\{ ext{PSE}(x)\}]^2 \ &\sim rac{\sigma^4}{n^2}[ext{tr}\{V^{-1} ext{E}(xx^TV^{-1}xx^T)\} - p^2], \ & ext{where } V = X^TX/n. \end{aligned}$$

PREDICTION WITH COLLINEARITY

Collinearity increases variability of PSE:

Assume $V = \text{diag}(\lambda_1, \dots, \lambda_p)$ with $\lambda_1 \ge \dots \ge \lambda_p > 0$, without loss of generality.

Let $U = \mathrm{E}(xx^TV^{-1}xx^T) - \mathrm{E}(\lambda_1^{-1}xx^Txx^T)$, psd.

U and V can be diagonalized simultaneously. $V^{-1}U$ is psd.

$$\begin{split} \operatorname{tr} \{ V^{-1} \mathrm{E} (x x^T V^{-1} x x^T) \} &\geq \operatorname{tr} \{ V^{-1} \lambda_1^{-1} \mathrm{E} (x x^T x x^T) \} \\ &= \lambda_1^{-1} [\lambda_1^{-1} c_1 + \dots + \lambda_p^{-1} c_p] \\ &> \lambda_1^{-1} \lambda_p^{-1} c_p \to \infty \text{ as } \lambda_p \to 0, \end{split}$$

where $c_1, \dots, c_p > 0$ are the elements on the main diagonal of matrix $E(xx^Txx^T)$ and are independent of matrix V.

REFERENCES

- Frank, I.E. and Friedman, J.H. (1993). A statistical view of some chemometrics regression tools, *Technometrics* 35:109-148.
- Fu, W.J. (1998). Penalized regressions: the Bridge versus the Lasso, *J. Comp. Grap. Statist.* 7: 397-416.
- Fu, W.J. (2005). Prediction error with collinearity, Comm. Statist. Theor. Meth., in press.
- Gruber, M.H.J. (1990). Regression Estimators: A Comparative Study, Academic Press, Boston.
- Hoerl, A.E. and Kennard, R.W. (1970a). Ridge regression: biased estimation for nonorthogonal problems, *Technometrics*, 12:55-67.
- Hoerl, A.E. and Kennard, R.W. (1970b). Ridge regression: applications to nonorthogonal problems, *Technometrics*, 12:69-82.
- James, W. and Stein, C (1961). Estimation with quadratic loss, *Proc. Fourth Berkeley Symp. Math. Statist Prob.* 1, 311-319.
- Land, K.C. McCall, P.L. and Cohen, L.E. (1990). Structural covariates of homicide rates: are there any invariances across time and social space? *American Journal of Sociology*, 95, 922-963.
- Miller, A.J. (1990). Subset Selection in Regression, Chapman and Hall, New York.
- Osborne, M. R., Presnell, B. and Turlach, B. A. (2000). On the LASSO and its dual. *Journal of Computational and Graphical Statistics* **9**, 319-337.
- Sen, A. and Srivastava, M. (1990). *Regression Analysis: Theory, Methods, and Applications,* Springer, New York.
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. B 58:267-288.

