L^{γ} Penalty Models

 Computation And Applications

 Computation And Applications Part I

Wenjiang Fu
wfu@stat.tamu.edu
http://stat.tamu.edu/~wfu.

Department of Statistics, Texas A\&M University

Outline

Motivation

Lecture 1. L^{γ} penalty: variable selection and computation for linear models

Lecture 2. Selection of tuning parameter and asymptotics

Lecture 3. Extension to non-Gaussian response and longitudinal studies

Lecture 4. Recent development in L^{γ} penalty models and related topics

Motivation

Linear regression model

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon
$$

where \boldsymbol{Y} is n-vector of responses, β is p-vector of parameters, $X=\left(x_{1} \ldots x_{p}\right)$ is $n \times p$ matrix with column vectors x_{1}, \ldots, x_{p}, and ε is n-vector of random errors with $\mathrm{E}(\varepsilon)=0$ and $\operatorname{var}(\varepsilon)=\sigma^{2} I$.

Least-squares (LS) estimator $\widehat{\boldsymbol{\beta}}_{\text {ols }}=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{y}$, if X is of full rank, is BLUE (best linear unbiased estimator). $\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{\text {ols }}\right)=\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{\sigma}^{2}$.
If column vectors x_{1}, \ldots, x_{p} are close to (but not exactly) linearly dependent, the vectors are said to be collinear.
The determinant $\operatorname{det}\left(\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{X}\right)$ is close to 0 . Then $\operatorname{var}(\widehat{\boldsymbol{\beta}}) \uparrow$.

Motivation

Problems of LS estimator $\widehat{\boldsymbol{\beta}}$ with collinearity

- Large variance and mean squared error.

$$
\mathrm{MSE}=\mathrm{bias}^{2}+\mathrm{var} .
$$

- Poor estimation and prediction.
- Three major phenomena (Land et al.1990, AJS):
\diamond Large changes in parameter estimate when adding or deleting variables;
\diamond Wide confidence interval, nonsignificant test statistics, and opposite signs to expected values of important independent variables;
\diamond Unstable regression parameters from sample to sample.

Motivation

Diagnosis: condition number

 Let $\lambda_{1} \leq \ldots \leq \lambda_{p}$ be ordered eigenvalues of matrix $\boldsymbol{X}^{T} \boldsymbol{X}$. The condition number is defined as $\sqrt{\lambda_{p} / \lambda_{1}}$. Cutoff: 30.Q: How to improve performance? James - Stein estimator.
If $\widehat{\theta}=x$ is an unbiased estimator for θ and $p \geq 3$, then $J_{x}=\left(1-\frac{p-2}{\|x\|_{2}^{2}}\right) x$ is called James - Stein estimator.

Shrinkage estimators.
Idea: Shrink parameters towards the origin to reduce variance (bias-variance trade-off).
Recall: $\mathrm{MSE}=$ bias $^{2}+$ var.

L^{γ} Penalty

Ridge estimator (Hoerl and Kennard 1971)

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{rdg}}=\left(X^{T} X+\lambda I\right)^{-1} X^{T} y
$$

where I is identity matrix, $\lambda \geq 0$ is tuning parameter.

$$
\widehat{\boldsymbol{\beta}}_{\mathrm{rdg}}=\underset{\beta}{\arg \min }\left\{(y-X \boldsymbol{\beta})^{T}(y-X \boldsymbol{\beta})+\lambda \beta^{T} \boldsymbol{\beta}\right\}
$$

Equivalently,
$\widehat{\boldsymbol{\beta}}_{\mathrm{rdg}}=\underset{\boldsymbol{\beta}}{\arg \min }\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\boldsymbol{T}}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right\}$ subject to $\boldsymbol{\beta}^{\boldsymbol{T}} \boldsymbol{\beta} \leq \boldsymbol{t}$, with $t \geq 0$.

$$
\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{\mathrm{rdg}}\right) \leq \operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{\mathrm{ols}}\right)
$$

L^{γ} Penalty

Bridge estimator (Frank and Friedman 1993)

 $\widehat{\boldsymbol{\beta}}_{\text {brdg }}=\underset{\boldsymbol{\beta}}{\arg \min }\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \sum_{j=1}^{p}\left|\boldsymbol{\beta}_{j}\right|^{\gamma}\right\}$.Equivalently,
$\widehat{\boldsymbol{\beta}}_{\text {brdg }}=\underset{\boldsymbol{\beta}}{\arg \min }\left\{(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})\right\}$ subject to
$\sum_{j=1}^{p}\left|\beta_{j}\right|^{\gamma} \leq t$, with $t \geq 0$.
$\operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{\text {brdg }}\right) \leq \operatorname{var}\left(\widehat{\boldsymbol{\beta}}_{\text {ols }}\right)$
Bridge - generalization of ridge
$\diamond \gamma=2$, ridge;
$\diamond \gamma=1$, lasso (Tibshirani 1996).

L^{γ} Penalty

Constraint area for different values of $\gamma>0$

Gamma $=1$

L^{γ} Penalty

Variable selection property of lasso $\widehat{\boldsymbol{\beta}}_{\boldsymbol{j}}=0$.

L^{γ} Penalty Models Lecture 1 by W. Fu

L^{γ} Penalty

Computation for bridge $\gamma>1$

- $\gamma=2$: closed form.
- $\gamma>1$: modified Newton-Raphson (Fu 1998), complex!

Notations:

$R S S=(y-X \beta)^{T}(y-X \beta), S_{j}=\partial R S S / \partial \beta_{j}$,
$d\left(\beta_{j}, \lambda, \gamma\right)=\lambda \gamma\left|\beta_{j}\right|^{\gamma-1} \operatorname{sign}\left(\beta_{j}\right), l_{j}=S_{j}+d\left(\beta_{j}, \lambda, \gamma\right)$.
Solve system of equations:

$$
\left\{\begin{array}{c}
l_{1}(\beta, X, y, \lambda, \gamma)=0 \tag{1}\\
\ldots \\
l_{p}(\beta, X, y, \lambda, \gamma)=0
\end{array}\right.
$$

No closed form. Use N-R. $\beta_{j}^{\text {new }}=\beta_{j}^{\text {old }}-\left[\partial l_{j} / \partial \beta_{j}\right]^{-1} l_{j}$
Modify N-R since convexity changes at $\boldsymbol{\beta}_{j}=0$ for $1<\gamma<2$.

L^{γ} Penalty

M-N-R $(\gamma>1)$ and shooting algorithm $(\gamma=1)$.

L^{γ} Penalty

Computation for lasso $\gamma=1$

- Combined quadratic programming (Tibshirani 1996).

Quadratic programming:

$$
\min (y-X \beta)^{T}(y-X \beta) \text { subject to } v^{T} \boldsymbol{\beta} \geq 0 .
$$

Constraint $\sum_{j=1}^{p}\left|\boldsymbol{\beta}_{j}\right| \leq t$ is equivalent to
$\sum_{j=1}^{p} w_{j} \beta_{j} \leq t$ with $w_{j}= \pm 1$.
Total combinations of 2^{p} weights w_{j}. Complicated!

- Shooting algorithm (Fu 1998).

Take limit $\gamma \rightarrow 1+$:
not computationally - more complicated; but theoretically - iteration with simple closed form.

L^{γ} Penalty

Theorem 1

If S_{j} is contin. diff., Jacobian $\partial S / \partial \beta$ pos-semi-def., then

1. $\widehat{\beta}(\lambda, \gamma)$ is unique and contin. in (λ, γ).
2. $\lim _{\gamma \rightarrow 1+} \widehat{\beta}(\lambda, \gamma)$ exists for fixed $\lambda>0$.
3. $\lim _{\gamma \rightarrow 1+} \widehat{\boldsymbol{\beta}}(\lambda, \gamma)=\widehat{\boldsymbol{\beta}}(\lambda, 1)$, the lasso estimator for $\mathrm{L}-\mathrm{S}$.

Implication

1. Penalty (shrinkage) models do not need joint likelihood. Only Jacobian $\partial S / \partial \boldsymbol{\beta}$ condition (p.s.d.). Potential extension!
2. If joint likelihood exists, the extension works perfectly.

L^{γ} Penalty

Shooting algorithm for lasso

1). Start with $\widehat{\boldsymbol{\beta}}^{(0)}=\left(\widehat{\boldsymbol{\beta}}_{1}, \ldots, \widehat{\boldsymbol{\beta}}_{p}\right)$.
2). At step m, for $j=1, \ldots, p$, let $s_{0}=S_{j}\left(0, \widehat{\boldsymbol{\beta}}^{(-j)}, X, y\right)$ and x_{j} be the j-th column vector of \boldsymbol{X}. Set

$$
\widehat{\boldsymbol{\beta}}_{j}=\left\{\begin{array}{llc}
\frac{\lambda-s_{0}}{2 x_{j}^{T} x_{j}} & \text { if } & s_{0}>\boldsymbol{\lambda} \\
0 & \text { if } & \left|s_{0}\right| \leq \lambda \\
\frac{-\lambda-\lambda}{2 x_{j}^{T} x_{j}} & \text { if } & s_{0}<-\lambda
\end{array}\right.
$$

Form a new estimator $\widehat{\boldsymbol{\beta}}^{(m)}=\left(\widehat{\boldsymbol{\beta}}_{1}, \ldots, \widehat{\boldsymbol{\beta}}_{p}\right)$ after updating all $\widehat{\boldsymbol{\beta}}_{j}$.
3). Repeat step 2) until convergence of $\widehat{\boldsymbol{\beta}}^{(m)}$.

L^{γ} Penalty

Convergence of algorithms

Let $G(\boldsymbol{\beta} ; \boldsymbol{\lambda}, \gamma)=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\boldsymbol{\lambda} \sum_{j}\left|\boldsymbol{\beta}_{j}\right|^{\gamma}$ for given $\lambda>0$ and $\gamma \geq 1 . \boldsymbol{G}(\boldsymbol{\beta} ; \boldsymbol{\lambda}, \gamma)$ is convex and is minimized at finite $\boldsymbol{\beta}=\boldsymbol{\beta}_{0}$. Each step of updating $\widehat{\boldsymbol{\beta}}_{\boldsymbol{j}}$ through either M-N-R algorithm or the shooting algorithm decreases the function $\boldsymbol{G}(\boldsymbol{\beta} ; \boldsymbol{\lambda}, \gamma)$. Thus the estimator $\widehat{\boldsymbol{\beta}}_{\boldsymbol{m}}$ converges.

L^{γ} Penalty

Orthonormal matrix $X: X^{T} X=I$ Coordinate: $\widehat{\boldsymbol{\beta}}_{\text {brdg }}=\widehat{\beta}_{\text {ols }}-\lambda \gamma / 2\left|\widehat{\widehat{\beta}}_{\text {brdg }}\right|^{\gamma-1} \operatorname{sign}\left(\widehat{\boldsymbol{\beta}}_{\text {brdg }}\right)$

L^{γ} Penalty

Variance of bridge estimator

- $\gamma>1$, complex closed form: no zero-valued coordinates.
(Fu 1998).
$\operatorname{var}(\widehat{\boldsymbol{\beta}})=$

$$
\begin{equation*}
\left(X^{T} X+\left.D(\widehat{\beta})\right|_{y_{0}}\right)^{-1} X^{T} X\left(X^{T} X+\left.D(\widehat{\beta})\right|_{y_{0}}\right)^{-1} \sigma^{2}, \tag{2}
\end{equation*}
$$

$D(\widehat{\beta})=\lambda \gamma(\gamma-1) / 2 \operatorname{diag}\left(\left|\boldsymbol{\beta}_{j}\right|^{\gamma-2}\right)$.
y_{0} is some point in the sample space.
Difficult to use for lasso due to $\widehat{\boldsymbol{\beta}}_{\boldsymbol{j}}=\mathbf{0}$.

L^{γ} Penalty

Variance of bridge estimator

- $\gamma=1$, difficulty: zero-valued coordinates.

Method in Tibshirani (1996):
$\operatorname{var}(\widehat{\boldsymbol{\beta}})=$
$\left(X^{T} X+\lambda W^{-}\right)^{-1} X^{T} X\left(X^{T} X+\lambda W^{-}\right)^{-1} \sigma^{2}$,
where $W=\operatorname{diag}\left(\left|\boldsymbol{\beta}_{1}\right|, \ldots,\left|\boldsymbol{\beta}_{p}\right|\right)$
Method in Osborne (2000);
Let

$$
\begin{equation*}
W=\frac{X^{T}(y-X \widehat{\boldsymbol{\beta}})(y-X \widehat{\boldsymbol{\beta}})^{T} X}{\|\widehat{\boldsymbol{\beta}}\|_{1}\left\|X^{T}(y-X \widehat{\boldsymbol{\beta}})\right\|_{\infty}} \tag{4}
\end{equation*}
$$

$\operatorname{var}(\widehat{\beta})=\left(X^{T} X+W\right)^{-1} X^{T} X\left(X^{T} X+W\right)^{-1} \sigma^{2}$.

L^{γ} Penalty

Comparison between two methods

- (3) is zero for $\widehat{\boldsymbol{\beta}}_{\boldsymbol{j}}=\mathbf{0}$, while (4) is non-zero.
- However, if set tuning parameter $\boldsymbol{\lambda}>0$ large, all $\boldsymbol{\beta}_{\boldsymbol{j}}=\mathbf{0}$. Then no variability. Hence variance should be zero.
(3) is acceptable, but (4) still non-zero.
- All the above methods are approximations. No exact results except for $\gamma=\mathbf{2}$.
- Bootstrap method usually yields good estimation.

L^{γ} Penalty

Table 1. Analysis of prostate cancer data.

Predictor	$\widehat{\boldsymbol{\beta}}^{a}$	SE by (1)	SE by (2)	$\widehat{\boldsymbol{\beta}}^{b}$	SE by bootstrap
Intercept	2.478	0.072	0.072	2.478	0.072
Icavol	0.559	0.079	0.101	0.618	0.103
Iweight	0.097	0.060	0.081	0.190	0.076
age	0	0	0.079	-0.048	0.046
lbph	0	0	0.080	0.103	0.066
svi	0.156	0.071	0.097	0.245	0.087
Icp	0	0	0.125	0	0.068
gleason	0	0	0.114	0	0.047
pgg45	0	0	0.123	0.063	0.056

${ }^{a}$ Osborne (2000) $(t=0.8114) .{ }^{b} \mathrm{Fu}(1998)(\lambda=7.2)$.

L^{γ} Penalty - Shrinkage Trace

Shrinkage trace

- Parameter estimates change with a special tuning parameter: standard shrinkage rate, $0 \leq s \leq 1$.

$$
s=\frac{\left\|\boldsymbol{\beta}_{j}(\lambda, \gamma)\right\|_{\gamma}}{\left\|\boldsymbol{\beta}_{j}(\lambda=0, \gamma)\right\|_{\gamma}},
$$

where $\|\cdot\|_{\gamma}$ is the L^{γ} norm of a p-vector.
$s=0$, full shrinkage.
$s=1$, no shrinkage.

\boldsymbol{L}^{γ} Penalty - Lasso Shrinkage Trace

$L \gamma$ Penalty Models Lecture 1 by W. Fu

\boldsymbol{L}^{γ} Penalty - Ridge Shrinkage Trace

$L \gamma$ Penalty Models Lecture 1 by W. Fu

Prediction With Collinearity

Seemingly contradictory results:

Given data $(\boldsymbol{X}, \boldsymbol{y}): \quad \boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon, \quad \varepsilon \sim N\left(0, \sigma^{2}\right)$. Let $(\boldsymbol{x}, \boldsymbol{y})$ be an arbitrary point in sample space.
\diamond Prediction error increases with collinearity.

$$
\begin{aligned}
\operatorname{PSE}(x) & =\sigma^{2}+\operatorname{MSE}(x)=\sigma^{2}\left[1+x^{T}\left(X^{T} X\right)^{-1} x\right] \\
& =\sigma^{2}+x^{T} \operatorname{var}(\widehat{\beta}) x .
\end{aligned}
$$

\diamond Prediction error at given data points is constant. $\frac{1}{n} \sum_{1}^{n} \operatorname{PSE}\left(x_{i}\right)=\sigma^{2}\left[1+\frac{1}{n} \sum_{1}^{n} x_{i}^{T}\left(X^{T} X\right)^{-1} x_{i}\right]$ $=\sigma^{2}\left[1+\frac{1}{n} \sum_{1}^{n} \operatorname{tr}\left\{\left(X^{T} X\right)^{-1} x_{i} x_{i}^{T}\right\}=\sigma^{2}\left(1+\frac{p}{n}\right)\right.$, where x_{i} are row vectors of matrix \boldsymbol{X}.
\diamond In fact, $\mathrm{E}[\operatorname{PSE}(x)]=\sigma^{2}\left(1+\frac{p}{n}\right)$.

Prediction With Collinearity

Collinearity increases variability of PSE:

Proposition (Fu 2005)
Assume existence of two moments $\mathrm{E}\left(x x^{T}\right)$ and $\mathrm{E}\left(x x^{T} \boldsymbol{x} x^{T}\right)$. The expectation $\mathrm{E}\{\operatorname{PSE}(x)\}$ is independent of the collinearity for large samples with $\mathrm{E}\{\operatorname{PSE}(x)\} \sim \sigma^{2}(1+p / n)$. The variance $\operatorname{var}\{\operatorname{PSE}(x)\}$ increases with the collinearity as the smallest eigenvalue of matrix $\boldsymbol{X}^{T} \boldsymbol{X}$ decreases to 0 .
$\operatorname{var}\{\operatorname{PSE}(x)\}=\mathrm{E}\left[\{\operatorname{PSE}(x)\}^{2}\right]-[\mathrm{E}\{\operatorname{PSE}(x)\}]^{2}$
$\sim \frac{\sigma^{4}}{n^{2}}\left[\operatorname{tr}\left\{V^{-1} \mathrm{E}\left(x x^{T} V^{-1} x x^{T}\right)\right\}-p^{2}\right]$,
where $V=X^{T} X / n$.

Prediction With Collinearity

Collinearity increases variability of PSE:

 Assume $V=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ with $\lambda_{1} \geq \ldots \geq \lambda_{p}>0$, without loss of generality.Let $U=\mathrm{E}\left(x x^{T} V^{-1} x x^{T}\right)-\mathrm{E}\left(\lambda_{1}^{-1} x x^{T} x x^{T}\right)$, psd.
\boldsymbol{U} and \boldsymbol{V} can be diagonalized simultaneously. $\boldsymbol{V}^{-1} \boldsymbol{U}$ is psd.

$$
\begin{aligned}
\operatorname{tr}\left\{V^{-1} \mathrm{E}\left(x x^{T} V^{-1} x x^{T}\right)\right\} & \geq \operatorname{tr}\left\{V^{-1} \lambda_{1}^{-1} \mathrm{E}\left(x x^{T} x x^{T}\right)\right\} \\
& =\lambda_{1}^{-1}\left[\lambda_{1}^{-1} c_{1}+\cdots+\lambda_{p}^{-1} c_{p}\right] \\
& >\lambda_{1}^{-1} \lambda_{p}^{-1} c_{p} \rightarrow \infty \text { as } \lambda_{p} \rightarrow 0,
\end{aligned}
$$

where $c_{1}, \cdots, c_{p}>0$ are the elements on the main diagonal of matrix $\mathrm{E}\left(\boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{x} \boldsymbol{x}^{T}\right)$ and are independent of matrix V.

References

Frank, I.E. and Friedman, J.H. (1993). A statistical view of some chemometrics regression tools, Technometrics 35:109-148.
Fu, W.J. (1998). Penalized regressions: the Bridge versus the Lasso, J. Comp. Grap. Statist. 7: 397-416.
Fu, W.J. (2005). Prediction error with collinearity, Comm. Statist. - Theor. Meth., in press.
Gruber, M.H.J. (1990). Regression Estimators: A Comparative Study, Academic Press, Boston.
Hoerl, A.E. and Kennard, R.W. (1970a). Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12:55-67.
Hoerl, A.E. and Kennard, R.W. (1970b). Ridge regression: applications to nonorthogonal problems, Technometrics, 12:69-82.
James, W. and Stein, C (1961). Estimation with quadratic loss, Proc. Fourth Berkeley Symp. Math. Statist Prob. 1, 311-319.
Land, K.C. McCall, P.L. and Cohen, L.E. (1990). Structural covariates of homicide rates: are there any invariances across time and social space? American Journal of Sociology, 95, 922-963.
Miller, A.J. (1990). Subset Selection in Regression, Chapman and Hall, New York.
Osborne, M. R., Presnell, B. and Turlach, B. A. (2000). On the LASSO and its dual. Journal of Computational and Graphical Statistics 9, 319-337.
Sen, A. and Srivastava, M. (1990). Regression Analysis: Theory, Methods, and Applications, Springer, New York.
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso, J. Roy. Statist. Soc. B 58:267-288.

