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MOTIVATION

Linear regression model
Y = Xβ + ε,

where Y is n-vector of responses, β is p-vector of parameters,
X = (x1 . . . xp) is n × p matrix with column vectors
x1, . . . , xp, and ε is n-vector of random errors
with E(ε) = 0 and var(ε) = σ2I.

Least-squares (LS) estimator β̂ols = (XT X)−1XT y,
if X is of full rank, is BLUE (best linear unbiased estimator) .
var(β̂ols) = (XT X)−1σ2.
If column vectors x1, . . . , xp are close to (but not exactly)
linearly dependent, the vectors are said to be collinear.
The determinant det(XT X) is close to 0. Then var(β̂) ↑.
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MOTIVATION

Problems of LS estimator β̂ with
collinearity
• Large variance and mean squared error.

MSE = bias2 + var.
• Poor estimation and prediction.

• Three major phenomena (Land et al.1990, AJS):
⋄ Large changes in parameter estimate when adding or

deleting variables;
⋄ Wide confidence interval, nonsignificant test statistics,

and opposite signs to expected values of important
independent variables;

⋄ Unstable regression parameters from sample to sample.
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MOTIVATION

Diagnosis: condition number
Let λ1 ≤ . . . ≤ λp be ordered eigenvalues of matrix XT X.
The condition number is defined as

√
λp/λ1. Cutoff: 30.

Q: How to improve performance?
James – Stein estimator.

If θ̂ = x is an unbiased estimator for θ and p ≥ 3, then

Jx =
(
1 − p−2

‖x‖2

2

)
x is called James – Stein estimator.

Shrinkage estimators.
Idea: Shrink parameters towards the origin

to reduce variance (bias-variance trade-off).
Recall: MSE = bias2 + var.
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Lγ PENALTY

Ridge estimator (Hoerl and Kennard 1971)

β̂rdg = (XT X + λI)−1XT y,

where I is identity matrix, λ ≥ 0 is tuning parameter.

β̂rdg = arg min
β

{(y − Xβ)T (y − Xβ) + λβT β } .

Equivalently,
β̂rdg = arg min

β
{(y − Xβ)T (y − Xβ)} subject to βT β ≤ t ,

with t ≥ 0.

var(β̂rdg) ≤ var(β̂ols)
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Lγ PENALTY

Bridge estimator (Frank and Friedman 1993)
β̂brdg = arg min

β
{(y − Xβ)T (y − Xβ) + λ

∑p
j=1 |βj|

γ } .

Equivalently,
β̂brdg = arg min

β
{(y − Xβ)T (y − Xβ)} subject to

∑p
j=1 |βj|

γ ≤ t , with t ≥ 0.

var(β̂brdg) ≤ var(β̂ols)

Bridge – generalization of ridge
⋄ γ = 2, ridge;
⋄ γ = 1, lasso (Tibshirani 1996).
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Lγ PENALTY

Constraint area for different values of γ > 0 .
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Lγ PENALTY

Variable selection property of lasso β̂j = 0 .
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Lγ PENALTY

Computation for bridge γ > 1
• γ = 2: closed form.
• γ > 1: modified Newton-Raphson (Fu 1998), complex!

Notations :
RSS = (y − Xβ)T (y − Xβ), Sj = ∂RSS/∂βj ,
d(βj, λ, γ) = λγ|βj|

γ−1sign(βj), lj = Sj + d(βj, λ, γ).
Solve system of equations:






l1(β, X, y, λ, γ) = 0,

. . .
lp(β, X, y, λ, γ) = 0.

(1)

No closed form. Use N–R. βnew
j = βold

j − [∂lj/∂βj ]
−1lj

Modify N-R since convexity changes at βj = 0 for 1 < γ < 2.
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Lγ PENALTY

M-N-R (γ > 1) and shooting algorithm (γ = 1).
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Lγ PENALTY

Computation for lasso γ = 1
• Combined quadratic programming (Tibshirani 1996).
Quadratic programming:

min(y − Xβ)T (y − Xβ) subject to vT β ≥ 0.
Constraint

∑p
j=1 |βj| ≤ t is equivalent to

∑p
j=1 wjβj ≤ t with wj = ±1.

Total combinations of 2p weights wj . Complicated!

• Shooting algorithm (Fu 1998).
Take limit γ → 1+:
not computationally – more complicated;
but theoretically – iteration with simple closed form.
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Lγ PENALTY

Theorem 1
If Sj is contin. diff., Jacobian ∂S/∂β pos-semi-def., then

1. β̂(λ, γ) is unique and contin. in (λ, γ).
2. limγ→1+ β̂(λ, γ) exists for fixed λ > 0.
3. limγ→1+ β̂(λ, γ) = β̂(λ, 1), the lasso estimator for L–S.

Implication

1. Penalty (shrinkage) models do not need joint likelihood.
Only Jacobian ∂S/∂β condition (p.s.d.). Potential extension!
2. If joint likelihood exists, the extension works perfectly.
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Lγ PENALTY

Shooting algorithm for lasso

1). Start with β̂(0) = (β̂1, . . . , β̂p).
2). At step m, for j = 1, . . . , p, let s0 = Sj(0, β̂(−j), X, y)

and xj be the j–th column vector of X. Set

β̂j =






λ−s0

2xT
j xj

if s0 > λ

0 if |s0| ≤ λ
−λ−s0

2xT
j xj

if s0 < −λ

Form a new estimator β̂(m) = (β̂1, . . . , β̂p) after updating all
β̂j .

3). Repeat step 2) until convergence of β̂(m).
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Lγ PENALTY

Convergence of algorithms

Let G(β; λ, γ) = (y − Xβ)T (y − Xβ) + λ
∑

j |βj|
γ

for given λ > 0 and γ ≥ 1. G(β; λ, γ) is convex and
is minimized at finite β = β0. Each step of updating β̂j

through either M-N-R algorithm or the shooting algorithm
decreases the function G(β; λ, γ). Thus the estimator β̂m

converges.
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Lγ PENALTY

Orthonormal matrix X : XTX = I
Coordinate: β̂brdg = β̂ols − λγ/2|β̂brdg|γ−1sign(β̂brdg)
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Lγ PENALTY

Variance of bridge estimator
• γ > 1, complex closed form: no zero-valued coordinates.
(Fu 1998).
var(β̂) =

(XT X + D(β̂)|y0
)−1XT X(XT X + D(β̂)|y0

)−1σ2, (2)
D(β̂) = λγ(γ − 1)/2 diag(|βj|

γ−2) .
y0 is some point in the sample space.

Difficult to use for lasso due to β̂j = 0.
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Lγ PENALTY

Variance of bridge estimator
• γ = 1, difficulty: zero-valued coordinates.
Method in Tibshirani (1996):
var(β̂) =

(XT X + λW −)−1XT X(XT X + λW −)−1σ2, (3)
where W = diag(|β1|, . . . , |βp|)

Method in Osborne (2000);
Let

W =
XT (y − Xβ̂)(y − Xβ̂)T X

‖β̂‖1‖XT (y − Xβ̂)‖∞

var(β̂) = (XT X + W )−1XT X(XT X + W )−1σ2. (4)
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Lγ PENALTY

Comparison between two methods

• (3) is zero for β̂j = 0, while (4) is non-zero.

• However, if set tuning parameter λ > 0 large, all βj = 0.
Then no variability. Hence variance should be zero.
(3) is acceptable, but (4) still non-zero.

• All the above methods are approximations. No exact results
except for γ = 2.

• Bootstrap method usually yields good estimation.
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Lγ PENALTY

Table 1. Analysis of prostate cancer data.

Predictor β̂a SE by (1) SE by (2) β̂b SE by bootstrap

Intercept 2.478 0.072 0.072 2.478 0.072

lcavol 0.559 0.079 0.101 0.618 0.103

lweight 0.097 0.060 0.081 0.190 0.076

age 0 0 0.079 -0.048 0.046

lbph 0 0 0.080 0.103 0.066

svi 0.156 0.071 0.097 0.245 0.087

lcp 0 0 0.125 0 0.068

gleason 0 0 0.114 0 0.047

pgg45 0 0 0.123 0.063 0.056

a Osborne (2000) (t = 0.8114). b Fu (1998) (λ = 7.2).
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Lγ PENALTY – SHRINKAGE TRACE

Shrinkage trace
— Parameter estimates change with a special tuning
parameter: standard shrinkage rate, 0 ≤ s ≤ 1.

s =
‖βj(λ, γ)‖γ

‖βj(λ = 0, γ)‖γ
,

where ‖ · ‖γ is the Lγ norm of a p-vector.

s = 0, full shrinkage.
s = 1, no shrinkage.
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Lγ PENALTY – LASSO SHRINKAGE TRACE
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Lγ PENALTY – RIDGE SHRINKAGE TRACE
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PREDICTION WITH COLLINEARITY

Seemingly contradictory results :
Given data (X, y): Y = Xβ + ε, ε ∼ N(0, σ2).
Let (x, y) be an arbitrary point in sample space.
⋄ Prediction error increases with collinearity.

PSE(x) = σ2 + MSE(x) = σ2[1 + xT (XT X)−1x]

= σ2 + xT var(β̂)x.

⋄ Prediction error at given data points is constant.
1
n

∑n
1 PSE(xi) = σ2[1 + 1

n

∑n
1 xT

i (XT X)−1xi]

= σ2[1 + 1
n

∑n
1 tr{(XT X)−1xix

T
i } = σ2(1 + p

n),
where xi are row vectors of matrix X.

⋄ In fact, E[PSE(x)] = σ2(1 + p
n).
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PREDICTION WITH COLLINEARITY

Collinearity increases variability of PSE :

Proposition (Fu 2005)
Assume existence of two moments E(xxT ) and E(xxT xxT ).
The expectation E{PSE(x)}is independent of the collinearity
for large samples with E{PSE(x)} ∼ σ2(1 + p/n). The
variance var{PSE(x)} increases with the collinearity as the
smallest eigenvalue of matrix XT X decreases to 0.

var{PSE(x)} = E[{PSE(x)}2] − [E{PSE(x)}]2

∼ σ4

n2 [tr{V −1E(xxT V −1xxT )} − p2],
where V = XT X/n.
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PREDICTION WITH COLLINEARITY

Collinearity increases variability of PSE :
Assume V = diag(λ1, . . . , λp) with λ1 ≥ . . . ≥ λp > 0,
without loss of generality.
Let U = E(xxT V −1xxT ) − E(λ−1

1 xxT xxT ), psd.
U and V can be diagonalized simultaneously. V −1U is psd.

tr{V −1E(xxT V −1xxT )} ≥ tr{V −1λ−1
1 E(xxT xxT )}

= λ−1
1 [λ−1

1 c1 + · · · + λ−1
p cp]

> λ−1
1 λ−1

p cp → ∞ as λp → 0,

where c1, · · · , cp > 0 are the elements on the main
diagonal of matrix E(xxT xxT ) and are independent of

matrix V .
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