L^{γ} Penalty Models Computation And Applications Part II

Wenjiang Fu

wfu@stat.tamu.edu

http://stat.tamu.edu/~wfu.

Department of Statistics, Texas A&M University

Purpose: to achieve best estimation and prediction

Methods: leave—one—out cross—validation (CV), generalized cross-validation (GCV), etc.

Idea: to fit the model well while penalizing on the model size to prevent overfitting.

CV:

Given sample $S = [(x_1, y_1), \dots, (x_n, y_n)]$. Leave one obs. (x_i, y_i) out, and fit model f based on remaining sample $S^{(-i)}$. Predict y_i with $y_i^* = f_{S^{(-i)}}(x_i)$. Define $CV = n^{-1} \sum_{i=1}^n (y_i^* - y_i)^2$.

◊ CV is computationally expensive.

GCV (Craven and Wahba 1979)

For shrinkage model (Fu 1998, Tibshirani 1996)

$$GCV = \frac{(y - X\beta)^T (y - X\beta)}{n \left(1 - \frac{\operatorname{tr}(H) - n_0}{n}\right)^2},$$
 (5)

where $H = X(X^TX + \lambda W^-)^{-1}X^T$ is a projection matrix, W^- is generalized inverse of $W = \text{diag}\left(2|\hat{\beta}_j|^{2-\gamma}/\gamma\right)$ for $\gamma \ge 1$. Let $n_0 = \#\{\hat{\beta}_j = 0\}$ for lasso only.

Effective number of parameters $p(\lambda, \gamma) = \operatorname{tr}(H) - n_0$. $p(0, \gamma) = \operatorname{tr}(X(X^TX)^{-1}X^T) = p$, the number of parameters. $p(\infty, \gamma) = 0$ as $\lambda \to \infty$.

Select $\lambda \geq 0$ for fixed $\gamma \geq 1$

For each fixed $\gamma \ge 1$, compute GCV for each of a sequence of $\lambda \ge 0$ between 0 and a moderate number. Select the value of λ that minimizes GCV.

Select $\lambda \geq 0$ and $\gamma \geq 1$

Compute GCV for each point (λ, γ) on a lattice of $[0, \lambda_0] \times [1, 3]$ with a moderate number λ_0 . Select the values of (λ, γ) that minimize GCV surface.

Problem with GCV

GCV (5) favors lasso even if ridge performs better (Fu 1998).

Reason:

GCV (5) emphasizes linear part by taking tr(H),

performs well for linear estimators, such as ridge.

 $\widehat{eta}_{\mathrm{brdg}}$ is nonlinear except for $\gamma=2$.

For orthonormal X case, lasso is piece—wise linear.

GCV performs poorly in selecting λ for $\gamma \neq 2$.

By Taylor expansion,

 $X\widehat{eta} = H(y)y =$

 $H(y_0)y_0 + \{H(y_0) + H'(y_0)y_0\}(y - y_0) + o(y - y_0).$ Thus tr(H) is a linearization.

Account for nonlinearity

To account nonlinearity, modify GCV (5) through $p(\lambda, \gamma)$. RSS accounts the nonlinearity through the estimator $\hat{\beta}_{brdg}$. Instead of separating linear part from nonlinear part, we pool them together and consider the overall shrinkage effect through a standard shrinkage rate *s*.

$$s=rac{||\widehat{eta}(\lambda,\gamma)||_{\gamma}}{||\widehat{eta^0}||_{\gamma}},$$

where $|| \cdot ||_{\gamma}$ is the L^{γ} -norm of the shrinkage estimator $\widehat{\beta}(\lambda, \gamma)$ or the no-shrinkage estimator $\widehat{\beta^{0}}$ with $\gamma \geq 1$. Apparently $0 \leq s \leq 1$.

Nonlinear GCV

Modify the effective number of parameters

$$p(oldsymbol{\lambda},oldsymbol{\gamma})=ps$$

where p is the number parameters in the model, s is the standard shrinkage rate.

Define the nonlinear GCV as

$$NLGCV = \frac{RSS}{n(1 - ps/n)^2}.$$
 (6)

Refer GCV (5) as linear GCV (LGCV).

Comparison between LGCV and NLGCV for $\gamma = 1, 1.5, 2, 3$. Solid – NLGCV (6); Dotted – LGCV (5).

Table 2. MSE [*] in simulation studies with highly					
collinear X . $n=10, p=5$.					
model	eta^{**}	OLS	LGCV	NLGCV	
Lasso	eta_1	.1759(.0115)	.1468(.0099)	.0977(.0118)	
	eta_2	.0159(.0001)	.0149(.0001)	.0146(.0001)	
	eta_3	.0618(.0015)	.0534(.0014)	. <mark>0389</mark> (.0014)	
ridge	eta_1	.1679(.0111)	.0898(.0120)	.0821(.0114)	
	eta_2	.0162(.0001)	.0132(.0001)	.0125(.0001)	
	eta_3	.0613(.0015)	.0346(.0015)	.0314(.0013)	

* MSE =
$$(\hat{\beta} - \beta)^T (X^T X) (\hat{\beta} - \beta)$$
.
** $\beta_1 = (0.5, 1, -0.2, 0, 0), \beta_2 = (1, 0.2, -0.01, -0.5, 0.02)$
and $\beta_3 = (1, 0, 0, 0, 0)$.

Table 3. Comparison of minimum NLGCV by γ

for prostate cancer data

γ	NLGCV*	λ^{**}
1	0.5285	4.33
1.1	0.5300	4.51
2	0.5348	6.36
3	0.5346	9.15

* Value of the minimum NLGCV for fixed γ ; ** Value of λ that minimizes NLGCV for fixed γ .

Conclusion: no γ value dominates the NLGCV. No selection for $\gamma \geq 1.$

Why no selection for γ .

- Bayesian interpretation of L^{γ} penalty.
 - $\diamond \gamma = 2$: Gaussian prior.
 - $\diamond \gamma = 1$: Laplacian prior.
 - $\diamond \gamma >$ 1: complex prior.
- Selecting λ is to select window size for fixed γ .
- Selecting γ is to select prior distribution.
 - \diamond For given data, β may be generated from one prior, say $\gamma = 1.5$.
 - ◇ Prior distributions overlap largely.
 - \diamond Same β may be generated from different priors.
- Conclusion: no selection between priors unless using Bayesian hierarchical model.

Penalty function as Bayesian prior

$$egin{split} egin{split} eta & |y) \sim C \exp\left\{-rac{1}{2}\left(ext{RSS} + \sum \left|rac{eta_j}{\lambda^{-1/\gamma}}
ight|^\gamma
ight)
ight\} \end{split}$$

Gamma = 1

Computation of NLGCV

- \diamond Compute $\widehat{\beta}_{ols}$ with no penalty.
- \diamond Compute $\widehat{eta}_{\mathrm{brdg}}(\lambda,\gamma)$.
- \diamond Compute the ratio of their L^{γ} norms for *s*.
- ◊ Compute NLGCV (6).

$X_{\widehat{}}$ not of full rank

- $\diamond \widehat{\boldsymbol{\beta}}_{ols}$ is not unique.
- ♦ Compute the limit $\lim_{\lambda\to 0+} \widehat{\beta}_{rdg}(\lambda) = \widehat{\beta}_{rdg}(0+)$. Existence of the limit is guaranteed (Fu 2000).
- \diamond Define standard shrinkage rate s similarly.

Ridge estimator with orthonormal X

For ridge estimator with orthonormal matrix, $X^T X = I$.

$$tr(H)=tr\{X^T(X^TX+\lambda I)^{-1}X\}=p/(1+\lambda).$$

$$||\widehat{eta}_{\mathrm{rdg}}||_2=(1+\lambda)^{-1}\sqrt{y^Ty},$$
 $||\widehat{eta}^0||_2=\sqrt{y^Ty}.$ Hence

$$ps=prac{||\widehat{eta}_{rdg}||_2}{||\widehat{eta}^0||_2}=rac{p}{1+\lambda}=tr(H).$$

Therefore, LGCV = NLGCV.

Large sample behavior of $\widehat{oldsymbol{eta}}_{\mathrm{brdg}}$

Finite samples, $\hat{\beta}_{brdg}$ is biased and performs well in estimation and prediction.

Large samples, is $\widehat{\beta}_{brdg}$ consistent?

Need to study the asymptotics under penalized least squares criterion: to minimize

$$\sum_{i=1}^n (Y_i - x_i^T \phi)^2 + \lambda_n \sum_{j=1}^p |\phi_j|^\gamma.$$

for given λ_n and $\gamma > 0$ fixed.

Regularity conditions

Design
$$X=(x_1,\ldots,x_n).$$
 x_i are row vectors. $C_n=rac{1}{n}\sum_{i=1}^n x_i x_i^T o C,$

nonnegative definite constant matrix.

$$rac{1}{n} \max_{1 \leq i \leq n} x_i^T x_i o 0.$$

$$egin{array}{lll} \lambda_n/n &
ightarrow \lambda_0 \geq 0 & (S1) \ \lambda_n/\sqrt{n} &
ightarrow \lambda_0 \geq 0 & (S2) \end{array}$$

(S1): λ_n grows fast but not faster than n. (S2): λ_n grows slowly and not faster than \sqrt{n} .

Limiting distributions $Z(\phi) = (\phi - \beta)^T C(\phi - \beta) + \lambda_0 \sum_{j=1}^p |\phi_j|^{\gamma}.$ For $\gamma > 1$:

$$V(u) = -2u^TW + u^TCu + \lambda_0\sum_{j=1}^p u_j ext{sgn}(eta_j)|eta_j|^{\gamma-1}.$$

$$\begin{split} & \text{For } \gamma = 1: \\ & V(u) = -2u^T W + u^T C u + \lambda_0 \sum_{j=1}^p \left[u_j \text{sgn}(\beta_j) I(\beta_j \neq 0) \right. \\ & + |u_j| I(\beta_j = 0) \right]. \\ & W \sim N(0, C\sigma^2). \end{split}$$

Consistency

Theorem 2. (Knight and Fu 2000) If C is nonsingular and (S1) is satisfied, then

$$\widehat{eta}_n o_p \operatorname{argmin}(Z).$$

So if
$$\lambda_n = o(n)$$
, $\widehat{\beta}_n$ is consistent.

Theorem 3. (Knight and Fu 2000) If C is nonsingular and (S2) is satisfied, then

$$\sqrt{n}(\widehat{eta}_n - eta)
ightarrow_d \operatorname{argmin}(V).$$

Consistency

Theorem 4. (Knight and Fu 2000) If *C* is nonsingular and $\lambda_n/n^{\gamma/2} \rightarrow \lambda_0 \ge 0$ for $\gamma < 1$, then

$$\sqrt{n}(\widehat{\beta}_n - \beta) \rightarrow_d \operatorname{argmin}(V),$$

where

$$V(u)=-2u^TW+u^TCu+\lambda_0\sum_{j=1}^p|u_j|^\gamma I(eta_j=0)$$

with $W \sim N(0, C\sigma^2)$.

Asymptotic bias

For $\lambda_0 > 0$, asymptotic bias exists for $\gamma \ge 1$. For example, ridge ($\gamma = 2$),

$$\sqrt{n}(\widehat{eta}_n-eta)
ightarrow_d C^{-1}(W-\lambda_0eta)\sim N(-\lambda_0C^{-1}eta,\sigma^2C^{-1}).$$

But for $\gamma < 1$, it is very different. Non-zero β_j can be estimated without asymptotic bias, meanwhile there is a positive mass to shrink $\beta_j = 0$ to 0.

REFERENCES

- Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. *Numerische Mathematik* 31, 377-403.
- Fu, W.J. (1998) Penalized regressions: the Bridge versus the Lasso, J. *Comp. Grap. Statist.* 7: 397-416.
- Fu, W.J. (2000) Ridge estimator in singular design with application to age-period-cohort analysis of disease rates, *Comm. Statist. Theor. Meth.*, 29:263-278.
- Fu, W.J. (2005) Nonlinear GCV and quasi–GCV for shrinkage models, *Statist. Plann. Infer.*, in press.
- Knight, K. and Fu, W.J. (2000). Asymptotics for Lasso-type estimators, *Ann. Statist.*, 28:1356-1378.
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso, *J. Roy. Statist. Soc. B* 58:267-288.

