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SELECTION OF TUNING PARAMETER

Purpose : to achieve best estimation and
prediction

Methods : leave–one–out cross–validation
(CV), generalized cross-validation (GCV),
etc.

Idea: to fit the model well while penalizing
on the model size to prevent overfitting.
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SELECTION OF TUNING PARAMETER

CV:
Given sample S = [(x1, y1), . . . , (xn, yn)]. Leave one obs.
(xi, yi) out, and fit model f based on remaining sample S(−i).
Predict yi with y∗

i = fS(−i)(xi).
Define CV = n−1

∑n
i=1(y

∗
i − yi)

2.

⋄ CV is computationally expensive.
⋄ CV is numerically unstable due to outliers, etc.
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SELECTION OF TUNING PARAMETER

GCV (Craven and Wahba 1979)
For shrinkage model (Fu 1998, Tibshirani 1996)

GCV =
(y − Xβ)T (y − Xβ)

n
(
1 − tr(H)−n0

n

)2 , (5)

where H = X(XT X + λW −)−1XT is a projection matrix,

W − is generalized inverse of W = diag
(
2|β̂j|2−γ/γ

)
for

γ ≥ 1. Let n0 = #{β̂j = 0} for lasso only.

Effective number of parameters p(λ, γ) = tr(H) − n0.
p(0, γ) = tr(X(XT X)−1XT ) = p, the number of parameters.
p(∞, γ) = 0 as λ → ∞.
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SELECTION OF TUNING PARAMETER

Select λ ≥ 0 for fixed γ ≥ 1
For each fixed γ ≥ 1, compute GCV for each of a sequence
of λ ≥ 0 between 0 and a moderate number. Select the value
of λ that minimizes GCV.

Select λ ≥ 0 and γ ≥ 1
Compute GCV for each point (λ, γ) on a lattice of
[0, λ0] × [1, 3] with a moderate number λ0. Select the values
of (λ, γ) that minimize GCV surface.
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SELECTION OF TUNING PARAMETER

Problem with GCV
GCV (5) favors lasso even if ridge performs better (Fu 1998).

Reason:
GCV (5) emphasizes linear part by taking tr(H),
performs well for linear estimators, such as ridge.
β̂brdg is nonlinear except for γ = 2.
For orthonormal X case, lasso is piece–wise linear.
GCV performs poorly in selecting λ for γ 6= 2.
By Taylor expansion,
Xβ̂ = H(y)y =

H(y0)y0 + {H(y0) + H ′(y0)y0}(y − y0) + o(y − y0).

Thus tr(H) is a linearization.
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SELECTION OF TUNING PARAMETER

Account for nonlinearity
To account nonlinearity, modify GCV (5) through p(λ, γ).
RSS accounts the nonlinearity through the estimator β̂brdg.
Instead of separating linear part from nonlinear part, we pool
them together and consider the overall shrinkage effect
through a standard shrinkage rate s.

s =
||β̂(λ, γ)||γ

||β̂0||γ
,

where || · ||γ is the Lγ–norm of the shrinkage estimator

β̂(λ, γ) or the no-shrinkage estimator β̂0 with γ ≥ 1.
Apparently 0 ≤ s ≤ 1.
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SELECTION OF TUNING PARAMETER

Nonlinear GCV
Modify the effective number of parameters

p(λ, γ) = ps

where p is the number parameters in the model, s is the
standard shrinkage rate.
Define the nonlinear GCV as

NLGCV =
RSS

n(1 − ps/n)2
. (6)

Refer GCV (5) as linear GCV (LGCV).

Lγ Penalty Models Lecture 2 by W. Fu 8



SELECTION OF TUNING PARAMETER

Comparison between LGCV and NLGCV for γ = 1, 1.5, 2, 3.
Solid – NLGCV (6); Dotted – LGCV (5).
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SELECTION OF TUNING PARAMETER

Table 2. MSE∗ in simulation studies with highly
collinear X . n = 10, p = 5.

model β∗∗ OLS LGCV NLGCV

Lasso β1 .1759(.0115) .1468(.0099) .0977(.0118)

β2 .0159(.0001) .0149(.0001) .0146(.0001)

β3 .0618(.0015) .0534(.0014) .0389(.0014)

ridge β1 .1679(.0111) .0898(.0120) .0821(.0114)

β2 .0162(.0001) .0132(.0001) .0125(.0001)

β3 .0613(.0015) .0346(.0015) .0314(.0013)

* MSE = (β̂ − β)T (XT X)(β̂ − β).
** β1 = (0.5, 1,−0.2, 0, 0), β2 = (1, 0.2,−0.01,−0.5, 0.02)
and β3 = (1, 0, 0, 0, 0).
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SELECTION OF TUNING PARAMETER

Table 3. Comparison of minimum NLGCV by γ
for prostate cancer data

γ NLGCV∗ λ∗∗

1 0.5285 4.33

1.1 0.5300 4.51

2 0.5348 6.36

3 0.5346 9.15
∗ Value of the minimum NLGCV for fixed γ;
∗∗ Value of λ that minimizes NLGCV for fixed γ.

Conclusion: no γ value dominates the NLGCV. No selection
for γ ≥ 1.
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SELECTION OF TUNING PARAMETER

Why no selection for γ.
• Bayesian interpretation of Lγ penalty.

⋄ γ = 2: Gaussian prior.
⋄ γ = 1: Laplacian prior.
⋄ γ > 1: complex prior.

• Selecting λ is to select window size for fixed γ.
• Selecting γ is to select prior distribution.

⋄ For given data, β may be generated from one prior, say
γ = 1.5.

⋄ Prior distributions overlap largely.
⋄ Same β may be generated from different priors.

• Conclusion: no selection between priors unless using
Bayesian hierarchical model.
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SELECTION OF TUNING PARAMETER

Penalty function as Bayesian prior

(β|y) ∼ C exp

{
−1

2

(
RSS +

∑ ∣∣∣∣
βj

λ−1/γ
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γ)}
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SELECTION OF TUNING PARAMETER

Computation of NLGCV
⋄ Compute β̂ols with no penalty.
⋄ Compute β̂brdg(λ, γ).
⋄ Compute the ratio of their Lγ norms for s.
⋄ Compute NLGCV (6).

X not of full rank
⋄ β̂ols is not unique.
⋄ Compute the limit limλ→0+ β̂rdg(λ) = β̂rdg(0+).

Existence of the limit is guaranteed (Fu 2000).
⋄ Define standard shrinkage rate s similarly.
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SELECTION OF TUNING PARAMETER

Ridge estimator with orthonormal X

For ridge estimator with orthonormal matrix, XT X = I.

tr(H) = tr{XT (XT X + λI)−1X} = p/(1 + λ).

||β̂rdg||2 = (1 + λ)−1
√

yT y, ||β̂0||2 =
√

yT y.
Hence

ps = p
||β̂rdg||2
||β̂0||2

=
p

1 + λ
= tr(H).

Therefore, LGCV = NLGCV.
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ASYMPTOTICS

Large sample behavior of β̂brdg

Finite samples, β̂brdg is biased and performs well in estimation
and prediction.

Large samples, is β̂brdg consistent?

Need to study the asymptotics under penalized least squares
criterion: to minimize

n∑

i=1

(Yi − xT
i φ)2 + λn

p∑

j=1

|φj|γ .

for given λn and γ > 0 fixed.
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ASYMPTOTICS

Regularity conditions

Design X = (x1, . . . , xn). xi are row vectors.

Cn =
1

n

n∑

i=1

xix
T
i → C,

nonnegative definite constant matrix.
1

n
max

1≤i≤n
xT

i xi → 0.

λn/n → λ0 ≥ 0 (S1)

λn/
√

n → λ0 ≥ 0 (S2)

(S1): λn grows fast but not faster than n.
(S2): λn grows slowly and not faster than

√
n.
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ASYMPTOTICS

Limiting distributions

Z(φ) = (φ − β)T C(φ − β) + λ0

p∑

j=1

|φj|γ .

For γ > 1:

V (u) = −2uT W + uT Cu + λ0

p∑

j=1

ujsgn(βj)|βj|γ−1.

For γ = 1:
V (u) = −2uT W + uT Cu + λ0

∑p
j=1

[
ujsgn(βj)I(βj 6= 0)

+|uj|I(βj = 0)
]
.

W ∼ N(0, Cσ2).
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ASYMPTOTICS

Consistency

Theorem 2. (Knight and Fu 2000)
If C is nonsingular and (S1) is satisfied, then

β̂n →p argmin(Z).

So if λn = o(n), β̂n is consistent.

Theorem 3. (Knight and Fu 2000)
If C is nonsingular and (S2) is satisfied, then

√
n(β̂n − β) →d argmin(V ).

Lγ Penalty Models Lecture 2 by W. Fu 19



ASYMPTOTICS

Consistency

Theorem 4. (Knight and Fu 2000)
If C is nonsingular and λn/nγ/2 → λ0 ≥ 0 for γ < 1, then

√
n(β̂n − β) →d argmin(V ),

where

V (u) = −2uT W + uT Cu + λ0

p∑

j=1

|uj|γI(βj = 0)

with W ∼ N(0, Cσ2).
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ASYMPTOTICS

Asymptotic bias

For λ0 > 0, asymptotic bias exists for γ ≥ 1.
For example, ridge (γ = 2),

√
n(β̂n − β) →d C−1(W − λ0β) ∼ N(−λ0C

−1β, σ2C−1).

But for γ < 1, it is very different. Non-zero βj can be
estimated without asymptotic bias, meanwhile there is a
positive mass to shrink βj = 0 to 0.
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