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BAYESIAN APPROACH

Bayesian interpretation
Linear model Y = Xβ + ε,
where Y : n–vector of responses, X: regression matrix,
β = (β1, . . . , βp)

T p–vector of parameters, ε: n–vector
of random errors with mean E(ε) = 0 and var(ε)σ2

0.

Lγ penalty has a Bayesian prior interpretation (Lectures 1–2).
Assume ε ∼ N(0, σ2

0). Let βj ∼ Lγ prior, j = 1, . . . , p.
Study posterior π(β|y) for given data y.

However, it is difficult to compute the posterior due to lack of
conjugate property in general.

Notice that two members of the Lγ family are special and play
a major role: lasso (γ = 1) and ridge (γ = 2), which
correspond to Laplacian and Gaussian priors, respectively.
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BAYESIAN APPROACH

Laplacian prior
We study a novel family of priors including Laplacian and
Gaussian as special cases.

Why Laplacian prior?
⋄ Achieve variable selection. Same idea for Lasso.

⋄ Representation by simple distributions.

Lap(1) d
= N(0, 2Λ) with Λ ∼ Exp(1) (Kotz et al. 2000).

⋄ Studied for variable selection with applications to microarray
studies (Bae and Mallick 2004).
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BAYESIAN APPROACH

Extension to a Bayesian prior family
Special properties of Gamma(λ, k):

Mean µ = λ/k and variance σ2 = λ/k2.

How to achieve N(0, 2C)?

Consider Gamma(1 + Ct, 1 + t) with t ≥ 0 and constant
C > 0.

Two special cases:

⋄ t = 0. βj ∼ Lap(1)
d
= Gamma(1, 1).

⋄ t → ∞, Gamma(1 + Ct, 1 + t)
p→ C. βj ∼ N(0, 2C).

For Gamma(λ, k), µ = λ/k, σ2 = λ/k2.
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BAYESIAN APPROACH

Laplacian – Gaussian mixture (LGM) prior
For given t ≥ 0 and constant C > 0.

Consider βj ∼ N(0, 2Λ) · Gamma(1 + Ct, 1 + t),

the Laplacian–Gaussian mixture prior.

⋄ LGM is a natural extension of Laplacian to a family including
Gaussian.

⋄ Posterior computation will take the advantage of
βj ∼ N(0, 2Λ).

⋄ Lγ is another one, but the posterior is difficult to handle. If
use βj ∼ exp(−λ|β|γ), it will involve stable distribution,
complicated and difficult.
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BAYESIAN APPROACH

Laplacian – Gaussian mixture (LGM) prior
LGM behaves like a Gaussian for t ≥ 300.
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BAYESIAN APPROACH

Advantages of LGM prior

• Prior on hyperparameter t ≥ 0: π(t).

⋄ π(t): point mass at t = 0, Laplacian prior.

⋄ π(t): point mass at t = t0 large (t0 ≥ 300), Gaussian prior.

⋄ π(t): point mass at t = 0 and t = t0 > 0 large.
Combines Lasso and ridge, Elastic Net (Zou and Hastie
2004).

⋄ π(t): continuous t ≥ 0, Bayesian model averaging.
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BAYESIAN APPROACH

Posterior with LGM prior

Denote Λ−1 = diag(Λ−1
1 , . . . , Λ−1

p ), the inverse of the
diagonal matrix of elements (Λ1, . . . , Λp).

π(β, Λ|y, t) ∝ exp[− 1

2σ2
0

(y − Xβ)T(y − Xβ)]

× exp(−1

4
βTΛ−1β)

(1 + t)p(1+ct)

[Γ(1 + ct)]p

× Λt
1 . . . Λt

p
exp[−(1 + t)(Λ1 + . . . + Λp)].

π(β|y, t) =
∫
Λ

π(β, Λ|y, t) dΛ

Lγ Penalty Models Lecture 4 by W. Fu 8



BAYESIAN APPROACH

Bayesian variable selection (SSVS)

SSVS (Stochastic search variable selection) (George and
McCulloch 1993)

For given γj Bernoulli (0 or 1) – index for variable selection.
βj|γj ∼ (1 − γj)N(0, τ 2

j ) + γjN(0, c2
jτ 2

j ) , cj > 0 large,
P (γj = 1) = 1 − P (γj = 0) = pj .

Priors : β|γ ∼ Np(0, DγRDγ),
Variance component: σ2|γ ∼ IG(νγ/2, νγλγ/2),

γ ∼ f(γ) = Π p
γj

j (1 − pj)
(1−γj).
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BAYESIAN APPROACH

Computational Methods for SSVS

Gibbs sampling for best subset:
β0, σ0, γ0, β1, σ1, γ1, . . . , βm, σm, γm, . . . ,

Variable selection by determining posterior distribution of γ.

Computationally intensive !

Metropolis – Hastings search .
Brown, Vannucci and Fearn (1998, 2002),
Brown, Fearn and Vannucci (1999),
Vannucci, Brown and Fearn (2001),
Lee, Sha, Dougherty, Vannucci and Mallick (2003).
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BAYESIAN APPROACH

Representation of Laplace Distribution
Theorem 7 (Kotz 2000)
A standard classical Laplace r.v. X has the representation

X
d
=

√
2WZ, where the r.v.s W and Z have the standard

exponential and normal distributions, respectively.

The moment generating function of exponential W is
Mw(t) = (1 − t)−1, t < 1. Characteristic function of normal
Z is exp(−t2/2). The characteristic function of

√
2WZ

E[exp(it
√

2WZ)] = E{E[exp(it
√

2WZ)|W ]}
= E[φz(t

√
2W )] = E[exp(−t2W )]

= MW (−t2) = (1 + t2)−1,
where φz(t) = exp(−t2/2) is the characteristic function of
standard normal.
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BAYESIAN APPROACH

Representation of Laplace Distribution

The density of X =
√

2WZ is given by

∫ ∞

0

1

2
√

πw
exp[−1

2
(

x2

2w
+ 2w)]dw.

Consider transformation Y1 = W, Y2 =
√

2WZ. Calculate
joint density and the marginal of Y2 by integrating out Y1.
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FUSED LASSO

Fused Lasso (Tibshirani, Saunders, Rosset and Zhu 2005)
Consider linear model

yi =
∑

Xijβj + εi,

where xj = (x1j, . . . , xnj) are standardized and ordered
variables (Protein mass spectroscopy data: time of flight with
mass/charge m/z).
Idea Penalize both the parameters |βj| and their differences
|βj − βj−1|.

Min RSS subject to
∑ |βj| ≤ s1 and

∑ |βj − βj−1| ≤ s2.
Goal Achieve sparsity and smoothness.

Two special cases:
1). Lasso: s2 is large; 2). Fusion: s1 is large (Land and
Friedman 1996).
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FUSED LASSO

Performance using prostate cancer protein mass

spectroscopy data with random split of training 216 + test 108
samples (total 157 healthy + 167 cancer) (Tibshirani 2005)

Model test err df sites s1 s2

Lasso 6/108 116 116 144 262

Fusion 19/108 168 171 175 200

Fused Lasso 6/108 122 344 184 222
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FUSED LASSO

Comparison with leukemia classification using microarrays

(training: 27+11; test: 34) (Tibshirani 2005)

Method s1 s2 10-FdCV Test err genes

Golub (50 genes) 3/38 4/34 50

Lasso 37 df 0.65 1.32 1/38 1/34 37

Fused Lasso 38 df 1.08 0.71 1/38 2/34 135

Fused Lasso 20 df 1.35 1.01 1/38 4/34 737
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ELASTIC NET MODEL

Elastic Net (ENet) (Zou and Hastie 2004)

L(β, λ1, λ2) = (y − Xβ)T (y − Xβ) + λ1|β|1 + λ2|β|22,
where |β|1 =

∑ |βj|, |β|22 =
∑

β2
j .

Naive elastic net estimator is defined as
β̂ = argmin

β
L(β, λ1, λ2).

It’s equivalent to
β̂ = argmin

β
(y − Xβ)T (y − Xβ) subject to

(1 − α)|β|1 + α|β|22 ≤ t for some t.

ENet combines Lasso penalty and ridge penalty.
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ELASTIC NET MODEL

Algorithm for Naive ENet
Given data (y, X) and fixed (λ1, λ2). Define artificial data set
(y∗, X∗) by

X∗
(n+p)×p = (1 + λ2)

−1/2

(
X√
λ2I

)
, y∗

(n+p) =

(
y

0

)
.

Let γ = λ1/
√

1 + λ2 and β∗ =
√

1 + λ2β.

L∗(β∗, γ) = (y∗ − X∗β∗)T (y∗ − X∗β∗) + γ|β∗|1.
Let β̂∗ = argmin

β∗

L(β∗, γ), then the ENat estimator

β̂ =
1

√
1 + λ2

β̂∗.
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ELASTIC NET MODEL

Relationship with Lasso estimator
For orthonormal design matrix X,

β̂j(NENet) =
(|β̂j(ols)| − λ1/2)+

1 + λ2
sign(β̂j(ols)).

Two special cases:
1) λ1 = 0, ridge estimator β̂(ridge) = 1/(1 + λ2)β̂(ols);
2) λ2 = 0, lasso estimator

β̂j(lasso) = (|β̂j(ols)| − λ1/2)+sign(β̂j(ols)).
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ELASTIC NET MODEL

Grouping effect of ENet
Given data (y, X) and (λ1, λ2) with centered y and
standardized X. Let β̂(λ1, λ2) be the NENet estimator.
Suppose β̂i(λ1, λ2)β̂j(λ1, λ2) > 0. Define

Dλ1,λ2
(i, j) =

1

|y|1
|β̂i(λ1, λ2) − β̂j(λ1, λ2)|,

then Dλ1,λ2
(i, j) ≤ [

√
2(1 − ρ)]/λ2,

where ρ = xT
i xj , the sample correlation.

Highly correlated covariates tend to be selected together.
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ELASTIC NET MODEL

ENet estimator
Given data (y, X) and (λ1, λ2), and augmented data (y∗, X∗).
Naive ENet estimator

β̂∗ = argmin
β∗

(y∗ − X∗β∗)T (y∗ − X∗β∗) +
λ1√

1 + λ2
|β∗|1.

β̂(ENet) =
√

1 + λ2 β̂∗.

So
β̂(ENet) = (1 + λ2) β̂(NENet)

possesses all properties of the Lasso.
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ELASTIC NET MODEL

ENet estimator

β̂(ENet) = argmin
β

βT

(
XT X + λ2I

1 + λ2

)
β − 2yT Xβ + λ1|β|1.

β̂(lasso) = argmin
β

βT (XT X)β − 2yT Xβ + λ1|β|1.
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ELASTIC NET MODEL

Comparison with leukemia classification using microarrays

(training: 27+11; test: 34) (Zou and Hastie 2004)

Method 10-FdCV Test err genes

Golub 3/38 4/34 50

SVM 1/38 1/34 31

PenLogitReg 1/38 2/34 26

NSC(PAM) 2/38 2/34 21

ENet 3/38 0/34 45
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