L^{γ} Penalty Models Computation And Applications Part IV

Wenjiang Fu

wfu@stat.tamu.edu

http://stat.tamu.edu/~wfu.

Department of Statistics, Texas A&M University

Bayesian interpretation

Linear model $Y = X\beta + \varepsilon$, where Y: *n*-vector of responses, X: regression matrix, $\beta = (\beta_1, \dots, \beta_p)^T p$ -vector of parameters, ε : *n*-vector of random errors with mean $E(\varepsilon) = 0$ and $var(\varepsilon)\sigma_0^2$.

 L^{γ} penalty has a Bayesian prior interpretation (Lectures 1–2). Assume $\varepsilon \sim N(0, \sigma_0^2)$. Let $\beta_j \sim L^{\gamma}$ prior, $j = 1, \ldots, p$. Study posterior $\pi(\beta|y)$ for given data y.

However, it is difficult to compute the posterior due to lack of conjugate property in general.

Notice that two members of the L^{γ} family are special and play a major role: lasso ($\gamma = 1$) and ridge ($\gamma = 2$), which correspond to Laplacian and Gaussian priors, respectively.

Laplacian prior

We study a novel family of priors including Laplacian and Gaussian as special cases.

Why Laplacian prior?

◊ Achieve variable selection. Same idea for Lasso.

Representation by simple distributions.

Lap(1) $\stackrel{d}{=} N(0, 2\Lambda)$ with $\Lambda \sim \text{Exp}(1)$ (Kotz et al. 2000).

 Studied for variable selection with applications to microarray studies (Bae and Mallick 2004).

Extension to a Bayesian prior family

Special properties of $Gamma(\lambda, k)$:

Mean $\mu = \lambda/k$ and variance $\sigma^2 = \lambda/k^2$.

How to achieve N(0, 2C)?

Consider Gamma(1 + Ct, 1 + t) with $t \ge 0$ and constant C > 0.

Two special cases:

$$egin{aligned} &\diamond t = 0. \ eta_j \sim ext{Lap}(1) \stackrel{d}{=} ext{Gamma}(1,1). \ &\diamond t
ightarrow \infty, ext{Gamma}(1+Ct,1+t) \stackrel{p}{
ightarrow} C. \ eta_j \sim N(0,2C). \ & ext{For Gamma}(\lambda,k), \ \mu = \lambda/k, \ \sigma^2 = \lambda/k^2. \end{aligned}$$

BAYESIAN APPROACH

Laplacian – Gaussian mixture (LGM) prior

For given $t \ge 0$ and constant C > 0.

Consider $\beta_j \sim N(0, 2\Lambda) \cdot \text{Gamma}(1 + Ct, 1 + t)$,

the Laplacian–Gaussian mixture prior.

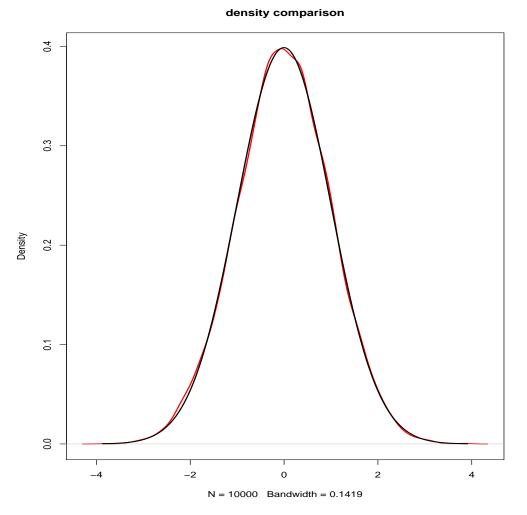
◊ LGM is a natural extension of Laplacian to a family including Gaussian.

 \diamond Posterior computation will take the advantage of $eta_j \sim N(0, 2\Lambda).$

 $\diamond L^{\gamma}$ is another one, but the posterior is difficult to handle. If use $\beta_j \sim \exp(-\lambda |\beta|^{\gamma})$, it will involve stable distribution, complicated and difficult.

BAYESIAN APPROACH

Laplacian – Gaussian mixture (LGM) prior LGM behaves like a Gaussian for $t \ge 300$.



Black curve: N(0, 1); Red curve: LGM t = 300

Advantages of LGM prior

- Prior on hyperparameter $t \geq 0$: $\pi(t)$.
- $\circ \pi(t)$: point mass at t = 0, Laplacian prior.
- $\circ \pi(t)$: point mass at $t = t_0$ large ($t_0 \ge 300$), Gaussian prior.
- $\Rightarrow \pi(t)$: point mass at t = 0 and $t = t_0 > 0$ large. Combines Lasso and ridge, Elastic Net (Zou and Hastie 2004).
- $\circ \pi(t)$: continuous $t \ge 0$, Bayesian model averaging.

Posterior with LGM prior

Denote $\Lambda^{-1} = \text{diag}(\Lambda_1^{-1}, \dots, \Lambda_p^{-1})$, the inverse of the diagonal matrix of elements $(\Lambda_1, \dots, \Lambda_p)$.

$$egin{aligned} \pi(eta,\Lambda|y,t) &\propto & \exp[-rac{1}{2\sigma_0^2}(y-Xeta)^T(y-Xeta)] \ & imes & \exp(-rac{1}{4}eta^T\Lambda^{-1}eta)rac{(1+t)^{p(1+ct)}}{[\Gamma(1+ct)]^p} \ & imes & \Lambda_1^t\dots\Lambda_p^t \, \exp[-(1+t)(\Lambda_1+\dots+\Lambda_p)]. \end{aligned}$$

$$\pi(eta|y,t) = \int_{\Lambda} \ \pi(eta,\Lambda|y,t) \, d\Lambda$$

Bayesian variable selection (SSVS)

SSVS (Stochastic search variable selection) (George and McCulloch 1993)

For given γ_j Bernoulli (0 or 1) – index for variable selection. $\beta_j | \gamma_j \sim (1 - \gamma_j) N(0, \tau_j^2) + \gamma_j N(0, c_j^2 \tau_j^2)$, $c_j > 0$ large, $P(\gamma_j = 1) = 1 - P(\gamma_j = 0) = p_j$.

 $\begin{array}{l} \textbf{Priors: } \beta|\gamma \sim N_p(0, D_\gamma R D_\gamma),\\ \text{Variance component: } \quad \sigma^2|\gamma \sim \mathrm{IG}(\nu_\gamma/2, \nu_\gamma \lambda_\gamma/2),\\ \gamma \sim f(\gamma) = \Pi \; p_j^{\gamma_j}(1-p_j)^{(1-\gamma_j)}. \end{array}$

Computational Methods for SSVS

Gibbs sampling for best subset:

 $\beta^0, \sigma^0, \gamma^0, \beta^1, \sigma^1, \gamma^1, \dots, \beta^m, \sigma^m, \gamma^m, \dots,$

Variable selection by determining posterior distribution of γ . Computationally intensive !

Metropolis – Hastings search.

Brown, Vannucci and Fearn (1998, 2002), Brown, Fearn and Vannucci (1999), Vannucci, Brown and Fearn (2001), Lee, Sha, Dougherty, Vannucci and Mallick (2003).

Representation of Laplace Distribution

Theorem 7 (Kotz 2000)

A standard classical Laplace r.v. X has the representation

 $X \stackrel{d}{=} \sqrt{2W}Z$, where the r.v.s W and Z have the standard exponential and normal distributions, respectively.

The moment generating function of exponential W is $M_w(t) = (1 - t)^{-1}, t < 1$. Characteristic function of normal Z is $\exp(-t^2/2)$. The characteristic function of $\sqrt{2W}Z$ $E[\exp(it\sqrt{2W}Z)] = E\{E[\exp(it\sqrt{2W}Z)|W]\}$ $= E[\phi_z(t\sqrt{2W})] = E[\exp(-t^2W)]$ $= M_W(-t^2) = (1 + t^2)^{-1},$ where $\phi_z(t) = \exp(-t^2/2)$ is the characteristic function of

where $\phi_z(t) = \exp(-t^2/2)$ is the characteristic function of standard normal.

BAYESIAN APPROACH

Representation of Laplace Distribution

The density of $X=\sqrt{2W}Z$ is given by

$$\int_0^\infty rac{1}{2\sqrt{\pi w}} \exp[-rac{1}{2}(rac{x^2}{2w}+2w)]dw.$$

Consider transformation $Y_1 = W, Y_2 = \sqrt{2WZ}$. Calculate joint density and the marginal of Y_2 by integrating out Y_1 .

FUSED LASSO

Fused Lasso (Tibshirani, Saunders, Rosset and Zhu 2005) Consider linear model

 $y_i = \sum X_{ij}eta_j + arepsilon_i$,

where $x_j = (x_{1j}, \ldots, x_{nj})$ are standardized and ordered variables (Protein mass spectroscopy data: time of flight with mass/charge m/z).

Idea Penalize both the parameters $|\beta_j|$ and their differences $|\beta_j - \beta_{j-1}|$.

Min RSS subject to $\sum |\beta_j| \le s_1$ and $\sum |\beta_j - \beta_{j-1}| \le s_2$. **Goal** Achieve sparsity and smoothness.

Two special cases:

1). Lasso: s_2 is large; 2). Fusion: s_1 is large (Land and Friedman 1996).

FUSED LASSO

Performance using prostate cancer protein mass

spectroscopy data with random split of training 216 + test 108 samples (total 157 healthy + 167 cancer) (Tibshirani 2005)

Model	test err	df	sites	s_1	s_2
Lasso	6/108	116	116	144	262
Fusion	19/108	168	171	175	200
Fused Lasso	6/108	122	344	184	222

FUSED LASSO

Comparison with leukemia classification using microarrays

(training: 27+11; test: 34) (Tibshirani 2005)

Method	s_1	s_2	10-FdCV	Test err	genes
Golub (50 genes)			3/38	4/34	50
Lasso 37 df	0.65	1.32	1/38	1/34	37
Fused Lasso 38 df	1.08	0.71	1/38	2/34	135
Fused Lasso 20 df	1.35	1.01	1/38	4/34	737

Elastic Net (ENet) (Zou and Hastie 2004)

 $egin{aligned} L(eta,\lambda_1,\lambda_2) &= (y-Xeta)^T(y-Xeta) + \lambda_1 |eta|_1 + \lambda_2 |eta|_2^2, \ ext{where} \ |eta|_1 &= \sum |eta_j|, \ |eta|_2^2 &= \sum eta_j^2. \end{aligned}$

Naive elastic net estimator is defined as

$$eta = rgmin_{eta} L(eta, \lambda_1, \lambda_2).$$

It's equivalent to

$$\widehat{eta} = rgmin_{eta}(y - Xeta)^T(y - Xeta)$$
 subject to

$$(1-\alpha)|\beta|_1 + \alpha|\beta|_2^2 \leq t$$
 for some t .

ENet combines Lasso penalty and ridge penalty.

Algorithm for Naive ENet

Given data (y,X) and fixed (λ_1,λ_2) . Define artificial data set (y^*,X^*) by

$$X^*_{(n+p) imes p} = (1+\lambda_2)^{-1/2} \left(egin{array}{c} X \ \sqrt{\lambda_2} I \end{array}
ight), \ \ y^*_{(n+p)} = \left(egin{array}{c} y \ 0 \end{array}
ight).$$

Let
$$\gamma = \lambda_1/\sqrt{1 + \lambda_2}$$
 and $\beta^* = \sqrt{1 + \lambda_2}\beta$.
 $L^*(\beta^*, \gamma) = (y^* - X^*\beta^*)^T(y^* - X^*\beta^*) + \gamma|\beta^*|_1$.
Let $\hat{\beta}^* = \operatorname*{argmin}_{\beta^*} L(\beta^*, \gamma)$, then the ENat estimator
 $\hat{\beta} = \frac{1}{\sqrt{1 + \lambda_2}}\hat{\beta}^*$.

 $\sqrt{1+\lambda_2}$

Relationship with Lasso estimator

For orthonormal design matrix X,

$$\widehat{eta}_j(ext{NENet}) = rac{(|\widehat{eta}_j(ext{ols})| - \lambda_1/2)_+}{1+\lambda_2} ext{sign}(\widehat{eta}_j(ext{ols})).$$

Two special cases:

1) $\lambda_1 = 0$, ridge estimator $\widehat{\beta}(\text{ridge}) = 1/(1 + \lambda_2)\widehat{\beta}(\text{ols});$ 2) $\lambda_2 = 0$, lasso estimator $\widehat{\beta}_j(\text{lasso}) = (|\widehat{\beta}_j(\text{ols})| - \lambda_1/2)_+ \text{sign}(\widehat{\beta}_j(\text{ols})).$

Grouping effect of ENet

Given data (y, X) and (λ_1, λ_2) with centered y and standardized X. Let $\hat{\beta}(\lambda_1, \lambda_2)$ be the NENet estimator. Suppose $\hat{\beta}_i(\lambda_1, \lambda_2)\hat{\beta}_j(\lambda_1, \lambda_2) > 0$. Define

$$D_{\lambda_1,\lambda_2}(i,j) = rac{1}{|y|_1} |\widehateta_i(\lambda_1,\lambda_2) - \widehateta_j(\lambda_1,\lambda_2)|,$$

then $D_{\lambda_1,\lambda_2}(i,j) \leq [\sqrt{2(1-\rho)}]/\lambda_2$, where $\rho = x_i^T x_j$, the sample correlation. Highly correlated covariates tend to be selected together.

ENet estimator

Given data (y, X) and (λ_1, λ_2) , and augmented data (y^*, X^*) . Naive ENet estimator

$$\widehat{eta}^* = rgmin_{eta^*}(y^* - X^*eta^*)^T(y^* - X^*eta^*) + rac{\lambda_1}{\sqrt{1+\lambda_2}}|eta^*|_1.$$

$$\widehat{oldsymbol{eta}}(\mathrm{ENet}) = \sqrt{1+\lambda_2}\,\widehat{oldsymbol{eta}}^*.$$

So

$$\widehat{eta}(\mathrm{ENet}) = (1 + \lambda_2) \, \widehat{eta}(\mathrm{NENet})$$

possesses all properties of the Lasso.

ENet estimator

$$\widehat{eta}(ext{ENet}) = \mathrm{argmin}_{eta}eta^T \left(rac{X^TX + \lambda_2 I}{1 + \lambda_2}
ight)eta - 2y^TXeta + \lambda_1|eta|_1.$$

$$\widehat{eta}(ext{lasso}) = \mathrm{argmin}_{eta}eta^T(X^TX)eta - 2y^TXeta + \lambda_1|eta|_1.$$

Comparison with leukemia classification using microarrays

(training: 27+11; test: 34) (Zou and Hastie 2004)

Method	10-FdCV	Test err	genes
Golub	3/38	4/34	50
SVM	1/38	1/34	31
PenLogitReg	1/38	2/34	26
NSC(PAM)	2/38	2/34	21
ENet	3/38	0/34	45

REFERENCES

Bae, and Mallick, B. (2004) Gene selection using a two-level hierarchical Bayesian model. *Bioinfo.* **20**, 18: 3423-3430.

- Brown, P. Vannucci, M. and Fearn (1998) Multivariate Bayesian variable selection and prediction, *JRSSB*, **60**, 627-641.
- Brown, P. Vannucci, M. and Fearn (2002) Bayesian model averaging with selection of regressors, *JRSSB*, **64**, 519-536.
- Fu, WJ. (1998) Penalized regressions: the Bridge versus the Lasso. J. Comp. Grap. Statist. 7, 3: 397-416.
- George, El. and McCulloch, R.E. (1993) Variable selection via Gibbs sampling. *J. Amer. Statist. Assoc.*, **88**, 881-889.
- Golub, T. et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, *Science*, **286**, 531-536.

Kotz, S. Kozubowski, TJ. and Podgorski, K. (2000) The Laplace Distribution

And Generalizations, Birkhauser, Boston.

REFERENCES

Land, S. and Friedman, J. (1996) Varible Fusion: a new method of adaptive signal regression, Technical report, Department of Statistics, Stanford University.

Lee, KE. Sha, N. Dougherty, E. Vannucci, M. and Mallick, B. (2003) Gene selection: a Bayesian variable selection approach. *Bioinfo.*, **19**, 90-97.

Tibshirani R, Saunders M, Rosset S, Zhu, J. (2005) Sparsity and smoothness via the fused lasso, *J. Roy. Statist. Soc. B.* 67: 91-108.

Vannucci, M. Brown, P. Fearn, T. and (2001) Predictor selection for model averaging. In *Bayesian Methods with Applications to Science, Policy and Official Statistics*, (eds E.I. George and P. Nanopoulos), pp.553-562.

Zou, H. and Hastie, T. (2004) Regularization and variable selection via the elastic net, *Technical report, Stanford University*.

