The central limit theorem for the independence number for minimal spanning trees on random points in the unit square

Sungchul Lee*and Zhonggen \mathbf{Su}^{\dagger}

Abstract

Let $\{X_i : i \ge 1\}$ be i.i.d. with uniform distribution on $[-\frac{1}{2}, \frac{1}{2}]^d$, $d \ge 2$, and let T_n be a minimal spanning tree (MST) on $\{X_1, \ldots, X_n\}$. For each strictly positive integer α , let $N(\{X_1, \ldots, X_n\}; \alpha)$ be the number of vertices of degree α in T_n . Then, for each α such that $P(N(\{X_1, \ldots, X_{\alpha+1}\}; \alpha) = 1) > 0$, we prove a central limit theorem for $N(\{X_1, \ldots, X_n\}; \alpha)$.

^{*}This work was supported by the BK21 project of the Department of Mathematics, Yonsei University, the interdisciplinary research program of KOSEF 1999-2-103-001-5 and Com²MaC in POSTECH. [†]This work was supported by NSFC 10071072.