The central limit theorem for the independence number for minimal spanning trees on random points in the unit square

Sungchul Lee*and Zhonggen Su †

Abstract

Let $\left\{X_{i}: i \geq 1\right\}$ be i.i.d. with uniform distribution on $\left[-\frac{1}{2}, \frac{1}{2}\right]^{d}, d \geq 2$, and let T_{n} be a minimal spanning tree (MST) on $\left\{X_{1}, \ldots, X_{n}\right\}$. For each strictly positive integer α, let $N\left(\left\{X_{1}, \ldots, X_{n}\right\} ; \alpha\right)$ be the number of vertices of degree α in T_{n}. Then, for each α such that $P\left(N\left(\left\{X_{1}, \ldots, X_{\alpha+1}\right\} ; \alpha\right)=1\right)>0$, we prove a central limit theorem for $N\left(\left\{X_{1}, \ldots, X_{n}\right\} ; \alpha\right)$.

[^0]
[^0]: *This work was supported by the BK21 project of the Department of Mathematics, Yonsei University, the interdisciplinary research program of KOSEF 1999-2-103-001-5 and $\mathrm{Com}^{2} \mathrm{MaC}$ in POSTECH.
 ${ }^{\dagger}$ This work was supported by NSFC 10071072.

