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Introduction

Goal: Illustrate how Stein’s method can be applied to a variety of distributions

General approaches

• Generator method (Torkel Erhardsson’s lectures)

• Coupling equations

• Densities

We shall certainly cover the first two approaches

Main examples to bear in mind

1. Normal N (0, 1)

Ef ′(X)− EXf(X) = 0

2. Poisson(λ)

λEf(X + 1)− EXf(X) = 0

General situation

Target distribution µ

1. Find characterization: operator A such that X ∼ µ if and only if for all smooth functions f , EAf(X) = 0

2. For each smooth function h find solution f = fh of the Stein equation

h(x)−
∫
hdµ = Af(x)

3. Then for any variable W ,

Eh(W )−
∫
hdµ = EAf(W )

Usually need to bound f, f ′, or ∆f

Here: h smooth test function; for nonsmooth functions: see techniques used by Shao, Chen, Rinott and Rotar,

Götze

The generator approach

Barbour 1989, 1990; Götze 1993

Choose A as generator of a Markov process with stationary distribution µ

That is:

Let (Xt)t≥0 be a homogeneous Markov process

Put Ttf(x) = E(f(Xt)|X(0) = x)

Generator Af(x) = limt↓0
1
t
(Ttf(x)− f(x))

Facts (see Ethier and Kurtz (1986), for example)

1



1. µ stationary distribution then X ∼ µ if and only if EAf(X) = 0 for f for which Af is defined

2. Tth− h = A
(∫ t

0
Tuhdu

)
and formally ∫

hdµ− h = A
(∫ ∞

0

Tuhdu

)
if the r.h.s. exists

Examples

1. Ah(x) = h′′(x)− xh′(x) generator of Ornstein-Uhlenbeck process, stationary distribution N (0, 1)

2. Ah(x) = λ(h(x+ 1)− h(x)) + x(h(x− 1)− h(x)) or

Af(x) = λf(x+ 1)− xf(x)

Immigration-death process, immigration rate λ, unit per capita death rate; stationary distribution Poisson(λ)

(see Torkel Erhardsson’s lectures)

Advantage: generalisations to multivariate, diffusions, measure space...

Careful: does not always work, see compound Poisson distribution

Heuristic to find generator

Assume: distribution based on the limit of Φn(X1, . . . , Xn) where X1, . . . , Xn i.i.d.; assume EXi = 0, EX2
i = 1

Construct reversible Markov chain (exchangeable pairs):

1. Start with Zn(0) = (X1, . . . , Xn)

2. Pick index I ∈ {1, . . . , n} independently uniformly at random; if I = i, replace Xi by independent copy X∗
i

3. Put Zn(1) = (X1, . . . , XI−1, X
∗
I , XI+1, . . . Xn)

4. Draw another index uniformly at random, throw out corresponding random variable and replace by independent

copy

5. Repeat

Make time continuous: Put N(t) Poisson process, rate 1, and

Wn(t) = Zn(N(t))

Then generator An, with x = (x1, . . . xn), f smooth,

Anf(Φn(x)) =
1

n

n∑
i=1

Ef(Φn(x1, . . . , xi−1, X
∗
i , xi+1, . . . xn))− f(Φn(x))

Taylor expansion:

Anf(Φn(x)) ≈ 1

n

n∑
i=1

E(X∗
i − xi)f

′(Φn(x))
∂

∂xi
Φn(x)

+
1

2n

n∑
i=1

E(X∗
i − xi)

2

{
f ′′(Φn(x))

(
∂

∂xi
Φn(x)

)2

+ f ′(Φn(x))
∂2

∂x2
i

Φn(x)

}
= − 1

n

n∑
i=1

xif
′(Φn(x))

∂

∂xi
Φn(x) +

1

2n

n∑
i=1

(1 + x2
i )

{
f ′′(Φn(x))

(
∂

∂xi
Φn(x)

)2

+f ′(Φn(x))
∂2

∂x2
i

Φn(x)

}
.
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Example: Put Φn(x) = 1√
n

∑n

i=1
xi

Then ∂
∂xi

Φn(x) = 1√
n

and

∂2

∂x2
i

Φn(x) = 0

and

Anf(Φn(x)) ≈ − 1

n3/2

n∑
i=1

xif
′(Φn(x)) +

1

2n2

n∑
i=1

(1 + x2
i )f

′′(Φn(x))

= − 1

n
Φn(x)f ′(Φn(x)) +

1

2n
f ′′(Φn(x))

(
1 +

1

n

n∑
i=1

x2
i

)
≈ 1

n

(
f ′′(Φn(x))− Φn(x)f ′(Φn(x))

)
by the law of large numbers

If Poisson process with rate n instead of 1: factor 1
n

vanishes

Suggests

Af(x) = f ′′(x)− xf ′(x)

1. Chisquare distributions

Find generator

X1, . . . ,Xp i.i.d. random vectors, Xi = (Xi,1, . . . Xi,n) i.i.d., mean zero, EX2
i,j = 1, finite fourth moment

Φn(x) =

p∑
i=1

(
1√
n

n∑
j=1

xi,j

)2

Choose index uniformly from {1, . . . , p} × {1, . . . , n}
We have

∂

∂xi,j
Φn(x) =

2

n

n∑
k=1

xi,k

and
∂2

∂x2
i,j

Φn(x) =
2

n

and

Anf(Φn(x)) ≈ − 2

pn
f ′(Φn(x))

p∑
i=1

n∑
j=1

xi,j
1

n

n∑
k=1

xi,k

+
1

2dn
f ′′(Φn(x))

p∑
i=1

n∑
j=1

(1 + x2
i,j)

4

n2

(
n∑

k=1

xi,k

)2

+
1

2dn
f ′(Φn(x))

p∑
i=1

n∑
j=1

(1 + x2
i,j)

2

n

≈ − 2

pn
f ′(Φn(x))Φn(x) +

4

pn
f ′′(Φn(x))Φn(x) +

2

n
f ′(Φn(x))

by the law of large numbers

Suggests

Af(x) =
4

p
xf ′′(x) + 2

(
1− x

p

)
f ′(x)

3



More convenient: Generator for χ2
p

Af(x) = xf ′′(x) +
1

2
(p− x)f ′(x)

Luk 1994: Stein operator for Gamma(r, λ) is

Af(x) = xf ′′(x) + (r − λx)f ′(x)

and χ2
p = Gamma(d/2, 1/2)

Luk also showed that, for χ2
p, A is the generator of a Markov process given by the solution of the stochastic

differential equation

Xt = x+
1

2

∫ t

0

(p−Xs)ds+

∫ t

0

√
2XsdBs

where Bs is standard Brownian motion

Luk found the transition semigroup, which can be used to solve the Stein equation

(χ2
p) h(x)− χ2

ph = xf ′′(x) +
1

2
(p− x)f ′(x)

where χ2
ph is the expectation of h under the χ2

p-distribution

Lemma 1 (Pickett 2002)

Suppose h : R → R is absolutely bounded, |h(x)| ≤ ceax for some c > 0 a ∈ R, and the first k derivatives of h are

bounded. Then the equation (χ2
p) has a solution f = fh such that

‖ f (j) ‖≤
√

2π
√
p
‖ h(j−1) ‖

with h(0) = h.

(Improvement over Luk 1994 in 1√
p
)

Example: squared sum (R. + Pickett)

Xi, i = 1, . . . , n, i.i.d. mean zero, variance one, exisiting 8th moment

S =
1√
n

n∑
i=1

Xi

and

W = S2

Want

2EWf ′′(W ) + E(1−W )f ′(W )

Put

g(s) = sf ′(s2)

then

g′(s) = f ′(s2) + 2s2f ′′(s2)

and

2EWf ′′(W ) + E(1−W )f ′(W ) = Eg′(S)− Ef ′(W ) + E(1−W )f ′(W )

= Eg′(S)− ESg(S)
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Now proceed as in N (0, 1):

Put

Si =
1√
n

∑
j 6=i

Xj

Then

ESg(S) =
1√
n

n∑
i=1

EXig(S)

=
1√
n

n∑
i=1

EXig(Si) +
1

n

n∑
i=1

EX2
i g
′(Si) +R1

where

R1 =
1

n3/2

∑
i

EX3
i g
′′(Si) +

1

2n2

∑
i

EX4
i g

(3)

(
Si + θ

Xi√
n

)
by Taylor expansion, some 0 < θ < 1

From independence

ESg(S) =
1

n

n∑
i=1

Eg′(Si) +R1

= Eg′(S) +R1 +R2

where

R2 =
1

n3/2

∑
i

EXig
′′(Si) +

1

2n2

∑
i

EX2
i g

(3)

(
Si + θ

Xi√
n

)
=

1

2n2

∑
i

EX2
i g

(3)

(
Si + θ

Xi√
n

)
by Taylor expansion, some 0 < θ < 1

Bounds on R1, R2

Calculate

g′′(s) = 6sf ′′(s2) + 4s3f (3)(s2)

and

g(3)(s) = 24s2f (3)(s2) + 6f ′′(s2) + 8s4f (4)(s2)

so with βi = EXi
1

1

2n2

∑
i

EX2
i

∣∣∣∣g(3)(Si + θ
Xi√
n

)

∣∣∣∣
≤ 24

n
‖ f (3) ‖

(
1 +

β4

n

)
+

6

n
‖ f ′′ ‖

+
8

n
‖ f (4) ‖

(
6 +

β4

n
+ 4

β2
3√
n

+ 6
β4

n
+
β6

n2

)
= c(f)

1

n
.

Similarly for 1
2n2

∑
i
EX4

i

∣∣∣g(3)(Si + θ Xi√
n
)

∣∣∣, employ β8
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For 1

n3/2

∑
i
EX3

i g
′′(Si) have, for some c(f)

1

n3/2

∑
i

EX3
i g
′′(Si) =

1√
n
β3Eg

′′(S) + c(f)
1

n

and

Eg′′(S) = 6ESf ′′(S2) + 4ES3f (3)(S2)

Note that g′′ is antisymmetric, g′′(−s) = −g′′(s), so for Z ∼ N (0, 1) we have

Eg′′(Z) = 0

(Almost) routine now to show that |Eg′′(S)| ≤ c(f)/
√
n for some c(f).

Combining these bounds show: the bound on the distance to Chisquare(1) for smooth test functions is of order 1
n

2. The weak law of large numbers

Using the generator method, we find for δ0, point mass at 0,

Af(x) = −xf ′(x)

and the corresponding transition semigroup is given by

Tth(x) = h
(
xe−t

)
Stein equation for point mass at 0

(δ0) h(x)− h(0) = −xf ′(x)

Lemma 2 If h ∈ C2
b (R), then the Stein equation (δ0) has solution f = fh ∈ C2

b such that

‖ f ′ ‖ ≤ ‖ h′ ‖

‖ f ′′ ‖ ≤ ‖ h′′ ‖

Proof

May assume h(0) = 0. Generator method gives

f(x) = −
∫ ∞

0

h
(
xe−t

)
dt

= −
∫ x

0

h(t)

t
dt

so for x 6= 0

|f ′(x)| =

∣∣∣∣h(x)x
∣∣∣∣ ≤‖ h′ ‖

and for x = 0 we have

f ′(0) = −h′(0)

giving the first assertion. For the second assertion, for x 6= 0

|f ′′(x)| =

∣∣∣∣h(x)x2
− h′(x)

x

∣∣∣∣ ≤‖ h′′ ‖
and for x = 0 we have

f ′′(0) = −h′′(0).
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Example:

X1, . . . , Xn mean zero

W = Wn =
1

n

n∑
i=1

Xi

Then, by Taylor, for some 0 < θ < 1,

EAf(W ) = −EWf ′(W )

= −EWf ′(0) + EW 2f ′′(θW )

= EW 2f ′′(θW )

and

|EAf(W )| ≤‖ f ′′ ‖ V ar(W ).

If V ar(Wn) → 0 as n→∞ then the weak law of large numbers holds.

Remarks

• For point mass at µ obtain Af(x) = (µ− x)f ′(x)

• Explicit bound, no need for n→∞

Empirical measures

E = R,Rd,R+, . . . (locally compact Hausdorff space with countable basis)

can define a metric on E, Borel sets B
for µ signed measure on E define

‖ µ ‖= sup
A∈B

|µ(A)|

Then

Mb(E) = {µ :‖ µ ‖≤M <∞}

is a linear space

Put

Cc(E) = {f : E → R continuous with compact support}

vague convergence

νn
v⇒ ν ⇐⇒ for all f ∈ Cc(E) :

∫
fdνn →

∫
fdν

Not equal to weak convergence: δn
v⇒ 0 but does not converge weakly

Class of test functions

(F ) F (ν) = f

(∫
φidν, i = 1, . . . ,m

)
for some m, f ∈ C∞b (Rm) and φi, . . . , φm ∈ Cc(E)

F = class of these F

Using Stone-Weierstrass we can show

Lemma 3 F is convergence-determining for vague convergence. So is the restricted class F0 that assumes that

‖ f ′ ‖≤ 1, ‖ f ′′ ‖≤ 1, ‖ φi ‖≤ 1 for i = 1, . . . ,m. Also, for E = Rd or connected open or closed subset of Rd, could

use C∞b instead of Cc.
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Here, ‖ f ′ ‖=
∑m

j=1
‖ f(j) ‖

Weak law of large numbers for empirical measures

X1, . . . , Xn values in E

µi law of Xi

µ̄n = 1
n

∑n

i=1
µi

ξn = 1
n

∑n

i=1
δXi empirical measure

Want to bound distance between L(ξn) and δµ, say

Distance here

ζ(µ, ν) = sup
g∈F0

∣∣∣∣∫ gdµ−
∫
gdν

∣∣∣∣
Generator for F of form (F )

AF (ν) = F ′(ν)[µ− ν] Gateaux derivative

=

m∑
j=1

f(j)

(∫
φidν, i = 1, . . . ,m

)(∫
φjdµ−

∫
φjdν

)

Lemma 4 For every H of the form (F ), with h and φi, i = 1, . . .m, the solution F = FH of the Stein equation is of

the form (F ) with the same φi’s. Furthermore, ‖f ′ ‖≤ ‖h′‖, and ‖f ′′‖ ≤ ‖h′′‖.

Proof like before.

Theorem 1 For all H ∈ F we have

|EH(ξn)−H(µ)| ≤
m∑

j=1

‖ h(j) ‖
∣∣∣∣∫ φjdµ̄−

∫
φjdµ

∣∣∣∣
+

m∑
j,k=1

‖ h(j,k) ‖

{
max

1≤j≤m

[∫
φjdµ̄−

∫
φjdµ

]2

+V ar

(
1

n

n∑
i=1

φj(Xi)

)}
.

Connection with mixing

Put

Bi,j = {A,B ∈ B : µi(A) 6= 0, µj(B) 6= 0}

and

ρn =
1

n2

m∑
i,j=1

sup
A,B∈Bi,j

|Corr(I(Xi ∈ A), I(Xj ∈ B))|

Then, if ‖ φj ‖≤ 1 for i = 1, . . . ,m,

V ar

(
1

n

n∑
i=1

φj(Xi)

)
≤ 4ρn.

Local approach

Assume that for all i ∈ I = {1, . . . , n} there is a set Γi ⊂ I not containing i such that Xi is independent of

(Xj , j 6∈ Γi). Then, if ‖ φj ‖≤ 1 for i = 1, . . . ,m,

V ar

(
1

n

n∑
i=1

φj(Xi)

)
≤ 1

n
+

2

n2

n∑
i=1

|Γi|.
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This could be extended to neighbourhoods of strong dependence.

Example: A dissociated family

Let (Yi)i∈N be a family of i.i.d. random elements on a space X , let k ∈ N be fixed, and set

Γ = {(j1, . . . , jk) ∈ Nk : jr 6= js for r 6= s};

Γ(n) = {(j1, . . . , jk) ∈ Γ : j1, . . . , jk ∈ {1, . . . , n}}.

Suppose ψ is a measurable functions X k → E, and put, for (j1, . . . , jk) ∈ Γ,

Xj1,...,jk = ψ(Yj1 , . . . , Yjk ).

Then, (Xj1,...,jk )(j1,...,jk)∈Γ is a dissociated family of identically distributed elements; put µ = L(Xj1,...,jk ).

That is, if J ∈ Γ(n) and K ∈ Γ(n) are disjoint multi-indices, then XJ and XK are independent.

For n ∈ N fixed, the set Γ(n) has n(n− 1) · · · (n− k + 1) elements.

Let r(n) = n(n− 1) · · · (n− k + 1), then

ξn =
1

r(n)

r(n)∑
i=1

δXi,n

Theorem 2 For the above dissociated family, we have for H ∈ F0

|EH(ξn)−H(µ)| ≤ 1

n

(
1 + 2

k

n− k + 1

)
.

Proof:

For J ∈ Γ(n) set

Γ(J) = {L ∈ Γ(n) : J 6= L,L ∩ J 6= ∅}

Then

|Γ(J)| = k

(
(n− 1)!

(n− k + 1)!
− 1

)
≤ r(n)

n
k2

and

1

r(n)2

∑
J∈Γ(n)

|Γ(J)| < k
(n− k)!(n− 1)!

n!(n− k + 1)!

≤ k

n(n− k + 1)
.

Note that the Xj1,...,jk ’s are identically distributed, and thus µ̄ = µ.

Can be extended to family of functions (ψj1,...,jk )(j1,...,jk)∈Γ (R. 1994)

Coupling approach

Excursion: size biasing for real-valued random variables

Let W ≥ 0 and assume EW > 0. Then W ∗ is said to have the W -size biased distribution if

EWg(W ) = EWEg(W ∗)

for all g for which the expectations exist.
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Example: If W ∼ Be(p) then

EWg(W ) = pg(1)

so W ∗ = 1

Example: If W ∼ Po(λ) then from the Stein-Chen equation

EWg(W ) = λEg(W + 1)

so W ∗ = W + 1 in distribution

In weak law of large numbers:

EAf(W ) = E(EW −W )f ′(W ) = EW (Ef ′(W )− Ef ′(W ∗))

Construction

(Goldstein + Rinott 1996) Suppose W =
∑n

i=1
Xi with Xi ≥ 0, EXi > 0, all i.

Choose index V according to

P (V = v) =
EXv

EW
If V = v: replace Xv by X∗

v having the Xv-size biased distribution, independent

If X∗
v = x: choose X̂u, u 6= v, such that

L(X̂u, u 6= v) = L(Xu, u 6= v|Xv = x)

Put W ∗ =
∑

u 6=V
X̂u +X∗

V

Example: Xi ∼ Be(pi) for i = 1, . . . , n

If V = v: choose X̂u, u 6= v, such that

L(X̂u, u 6= v) = L(Xu, u 6= v|Xv = 1)

Then W ∗ =
∑

u 6=V
X̂u + 1

See Poisson approximation, Barbour, Holst, Janson 1992

Size biasing for random measures

Let ξ be a random measure on E, E[ξ] = µ, let φ ∈ Cc be nonnegative with
∫
φdµ > 0.

We say that ξφ has the ξ size biased distribution in direction φ if

EG(ξ)

∫
φdξ =

∫
φdµEG(ξφ)

for all G for which the expectations exist.

Example: Suppose ξ = δX , and L(X) = µ, and φ is one-to-one. Then

EG(ξ)

∫
φdξ = Eφ(X)G(δφ−1(φ(X)))

=

∫
φdµEG(δφ−1(φ(X)∗))

Construction

Let ξn = 1
n

∑n

i=1
δXi , and E[ξn] = µ̄n
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Pick V ∈ {1, . . . , n} according to

P (V = v) =
Eφ(Xv)

n
∫
φdµ̄n

If V = v take δ∗Xv
to have the δXv -size bias distribution in direction φ

If δ∗Xv
= η then choose δ̂Xu , u 6= v according to

L(δ̂Xu , u 6= v) = L(δXu , u 6= v|δ∗Xv
= η)

In generator with F of form (F )

EAF [ξ] = EF ′(ξ)[µ− ξ]

=

m∑
j=1

∫
φjdµE

{
f(j)

(∫
φidξ

φj
n , i = 1, . . . , n

)
− f(j)

(∫
φidξn, i = 1, . . . , n

)}

Construction depends on φ, but when independent: need to adjust only one.

Remarks

1. Only gives vague/weak convergence; need additional argument for a.s. convergence

2. Could be viewed as a shorthand for multivariate law of large numbers

3. Will see a more involved example (epidemic) later

3. Discrete distributions from a Gibbs view point

joint work with Peter Eichelsbacher

Examples for Stein operators for discrete distributions

univariate case only

Poisson(λ): Af(k) = λf(k + 1)− kf(k)

Chen 1975

Binomial(n, p): Af(k) = (n− k)pf(k + 1)− k(1− p)f(k)

Ehm 1991

Hypergeometric (n, a, b):

pk =

(
a
k

)(
b

n−k

)(
a+b

n

)
Af(k) = (n− k)(a− k)f(k + 1)− k(b− n+ k)f(k)

Künsch; R. + Schoutens (1998) preprint

Geometric(p) with start at 0: for f(0) = 0

Af(k) = (1− p)f(k + 1)− f(k)

Peköz 1996

General pattern?

Connection with birth-death processes

See also Brown and Xia, Holmes, Weinberg

Discrete Gibbs measure µ:

Assume supp(µ) = {0, . . . , N}, where N ∈ N0 ∪ {∞},
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µ(k) =
1

Z
exp(V (k))

ωk

k!
, k = 0, 1, . . . , N,

with Z =
∑N

k=0
exp(V (k))ωk

k!
, where ω > 0 is fixed

Assume Z exists

Example: Po(λ)

ω = λ, V (k) = −λ, k ≥ 0, Z = 1

or V (k) = 0, ω = λ, Z = eλ

For a given probability distribution (µ(k))k∈N0

V (k) = logµ(k) + log k! + log Z− k logω, k = 0, 1, . . . , N,

with V (0) = logµ(0) + log Z

To each such Gibbs measure associate a birth-death process:

unit per-capita death rate dk = k

birth rate

bk = ω exp{V (k + 1)− V (k)} = (k + 1)
µ(k + 1)

µ(k)
,

for k, k + 1 ∈ supp(µ)

then invariant measure µ

generator

(Ah)(k) = (h(k + 1)− h(k)) exp{V (k + 1)− V (k)}ω + k(h(k − 1)− h(k))

or

(Af)(k) = f(k + 1) exp{V (k + 1)− V (k)}ω − kf(k)

Brown and Xia (2001) discuss many choices for birth and death rates. Holmes (2003) uses different birth and

death rates.

Examples

1. Poisson-distribution with parameter λ > 0: We use ω = λ, V (k) = −λ,Z = 1. The Stein-operator is

(Af)(k) = f(k + 1)λ− kf(k)

2. Binomial-distribution with parameters n and 0 < p < 1: We use ω = p
1−p

, V (k) = − log((n − k)!), and

Z = (n!(1− p)n)−1. The Stein-operator is

(Af)(k) = f(k + 1)
p(n− k)

(1− p)
− kf(k).

3. Hypergeometric distribution: The Stein-operator is

(Af)(k) = f(k + 1) (a− k)(n− k)− (b− n− x) kf(k).

4. Pascal distribution with parameter γ ∈ {1, 2, . . .} and 0 < p < 1: µ(k) =
(

k+γ−1
k

)
pγ(1 − p)k for k = 0, 1, . . ..

We obtain the Stein-operator

(Af)(k) = f(k + 1) (1− p)(k + γ)− kf(k).

12



5. Geometric distribution with parameter p, shifted by one: γ = n = 1 in Pascal; µ(k) = p(1−p)k for k = 0, 1, . . ..

The Stein-operator is

(Af)(k) = f(k + 1) (1− p)(k + 1)− kf(k).

Bounds

Solution of Stein equation f for h: f(0) = 0, f(k) = 0 for k 6∈ supp(µ), and

f(j + 1) =
j!

ωj+1
e−V (j+1)

j∑
k=0

eV (k)ω
k

k!
(h(k)− µ(h))

= − j!

ωj+1
e−V (j+1)

N∑
k=j+1

eV (k)ω
k

k!
(h(k)− µ(h)) .

Lemma 5 1. Put

M := sup
0≤k≤N−1

max
(
eV (k)−V (k+1), eV (k+1)−V (k)

)
.

Assume M <∞. Then for every j ∈ N0:

|f(j)| ≤ 2min

{
1,

√
M√
ω

}
.

2. Assume that the birth rates are non-increasing:

exp
(
V (k + 1)− V (k)

)
≤ exp

(
V (k)− V (k − 1)

)
,

and death rates are unit per capita. For every j ∈ N0

|∆f(j)| ≤ 1

j
∧ eV (j)

ωeV (j+1)
.

Examples

1. Poisson-distribution with parameter λ > 0: non-uniform bound

|∆f(k)| ≤ 1

k
∧ 1

λ
,

leads to 1 ∧ 1/λ, see Barbour, Holst, Janson 1992

does not compare favourably to 1/λ(1− e−λ)

‖ f ‖≤ 2min
(
1, 1√

λ

)
.

as in Barbour, Holst, Janson 1992

2. Pascal distribution with parameter γ ∈ {1, 2, . . .} and 0 < p < 1:

|∆f(k)| ≤ 1

k
∧ 1

(1− p)(k + γ)
,

leads to 1 ∧ 1
(1−p)γ

but M = ∞

13



Note that Brown and Xia (2001) give bounds for ∆f for a wide class of birth-death processes satisfying some

monotonicity condition on the rates.

Size-Bias coupling

Recall: W ≥ 0, EW > 0 then W ∗ has the W -size biased distribution if

EWg(W ) = EWEg(W ∗)

for all g for which both sides exist

so

E

{
exp{V (X + 1)− V (X)}ω g(X + 1)−X g(X)

}
= E

{
exp{V (X + 1)− V (X)}ω g(X + 1)− EXEg(X∗)

}
and

EX = ωEeV (X+1)−V (X),

so

Lemma 6 Let X ≥ 0 be such that 0 < E(X) <∞, let µ be a discrete Gibbs measure. Then X ∼ µ if and only if for

all bounded g

ω EeV (X+1)−V (X)g(X + 1) = ωEeV (X+1)−V (X)Eg(X∗).

Thus for any W ≥ 0 with 0 < EW <∞

Eh(W )− µ(h)

= ω{EeV (W+1)−V (W )f(W + 1)− EeV (W+1)−V (W )Ef(W ∗)}

where f is the solution of the Stein equation.

Can also compare two discrete Gibbs distributions by comparing their birth rates and their death rates (see also

Holmes)

Let µ have generator A and corresponding (ω, V ), and let µ2 have generator A2, and corresponding (ω2, V2), both

unit per-capita death rates. Then, for X ∼ µ2, f ∈ B, if the solution f of the Stein equation for µ is such that A2f

exists,

Eh(X)− µ(h)

= EAf(X)

= E(A−A2)f(X)

= Ef(X + 1)
(
ωeV (X+1)−V (X) − ω2e

V2(X+1)−V2(X)
)

= ωEf(X + 1)eV2(X+1)−V2(X)eV (X+1)−V (X)−(V2(X+1)−V2(X)) − E(X)Ef(X∗)

=
ω

ω2
E(X)Ef(X∗)e(V (X∗)−V (X∗−1))−(V2(X∗)−V2(X∗−1))

−E(X)Ef(X∗)

=
ω − ω2

ω2
E(X)Ef(X∗) +

ω

ω2
E(X)Ef(X∗)

{
e(V (X∗)−V (X∗−1))−(V2(X∗)−V2(X∗−1)) − 1

}

14



Thus ∣∣∣∣Eh(X)−
∫
hdµ

∣∣∣∣
≤ ‖ f ‖ E(X)

{
|ω − ω2|
ω2

+
ω

ω2
E

∣∣∣e(V (X∗)−V (X∗−1))−(V2(X∗)−V2(X∗−1)) − 1

∣∣∣}

Example: Poisson(λ1) and Poisson(λ2) gives

∣∣∣∣Eh(X)−
∫
hdµ

∣∣∣∣ ≤ ‖ f ‖ |λ1 − λ2|

Remarks:

1. The normalising constant Z in the Gibbs distribution is often difficult to calculate. Note that it is not needed

explicitly in the Stein approach.

2. Eichelsbacher and R. (2003) generalise the above to point processes.

4. An S-I-R epidemic

Bartlett (1949), Bailey (1975), Sellke (1983)

Population: total size K

susceptibles (S), infected (I), removed(R); an individual is infectious when infected

at time t = 0: aK infected, bK susceptible, a+ b = 1

(li, ri)i∈N positive i. i. d. random vectors

(r̂i)i∈N positive i. i. d.

Individual i:

if infected at time 0: stays infected for a period of length r̂i, then gets removed

if susceptible at time 0: gets infected at time AK
i = F−1

K (li), stays infected for a period of length ri, then gets

removed

li “resistance to infection”:

ZK(t) proportion infectives present at time t

λ(t, (x(s))s≤t) accumulation function

infectious pressure

FK(t) =

∫
(0,t]

λ(s, ZK)ds

AK
i = inf

{
t ∈ R+ :

∫
(0,t]

λ(s, ZK)ds = li

}

Classical case: Bartlett’s GSE

λ(t, x) = x(t)

15



(li)i i. i. d. exp(1); (ri)i, (r̂i)i i. i. d. exp(ρ)

for each i, li and ri are independent

results in a Markovian model

Wang (1975, 1977)

λ(t, x) = λ(x(t))

(li)i i. i. d. exp(1)

for each i, li and ri are independent

still Markovian structure

consider the vector of the proportion of S, I, R

Here

empirical measure

ξK =
1

K

aK∑
i=1

δ[0,r̂i) +
1

K

bK∑
i=1

δ[AK
i

,AK
i

+ri)

Note

ξK([0, t]× (t,∞)) =
1

K

aK∑
i=1

1[0,r̂i)(t) +
1

K

bK∑
i=1

1[AK
i

,AK
i

+ri)
(t)

= the proportion of infected at time t

ξK([0, s]× (t,∞]), t > s,

= the proportion of individuals: infected before time s, not removed before time t

Limiting behaviour as K →∞?

→ mean-field approximation (deterministic system)

Assumptions

1. λ : R+ × D+ → R+ is uniformly bounded by a constant γ, Lipschitz in x ∈ D+ with Lipschitz constant α,

non-anticipating, and for all t ∈ R+

λ(t, x) = 0 ⇐⇒ x(t) = 0.

2. There is a constant β > 0 such that, for each x ∈ R+, Ψx(t) := P[l1 ≤ t|r1 = x] has a density ψx(t) that is

uniformly bounded from above by β;

ψx(t) ≤ β for all x ∈ R+, t ∈ R+.

3. (li)i distribution function Ψ possessing a density ψ.

4. ri, r̂i distribution function Φ; Φ̂(0) = 0 and Φ(0) = 0, so that infected individuals do not immediately get

removed.
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Heuristics

FK(t) =

∫ t

0

λ(s, ZK)ds

ZK(t) =
1

K

aK∑
i=1

1(r̂i > t) +
1

K

bK∑
j=1

1(F−1
K (lj) ≤ t < F−1

K (lj) + rj)

Define, for f ∈ C(R+,R), t ∈ R+, operators

Zf(t) = a(1− Φ(t)) + bP(f(t− r1) ≤ l1 < f(t))

Lf(t) =

∫
(0,t]

λ(s,Zf)ds

Then

FK ≈ LFK

Results

Restrict everything to finite time interval [0, T ], T arbitrary (superscript T , subscript T )

Theorem 3 For T ∈ R+, the operator L is a contraction on [0, T ], and the equation

f(t) =

∫
(0,t]

λ(s,Zf)ds, 0 ≤ t ≤ T, (1)

has a unique solution GT .

For T ∈ R+, let GT be the solution of (1) and µ̃T be given for r, s ∈ (0, T ] by

µ̃T ([0, r]× [0, s]) = PT [l1 ≤ GT (r), l1 ≤ GT (s− r1)].

Put

µT = a(δ0 × dΦ)T + bµ̃T .

Theorem 4 For all T ∈ R+,

ζF0(L(ξT
n ), δµT ) ≤

√
a+

√
b√

K
+ αbβT (T + 2) exp(bd2αβT e)

{
(1 + b)

√
1

K
+

2

K

}
.

where dxe is the smallest integer larger than x.

Arguments:

Glivenko-Cantelli

Contraction theorem

FK and l1 are not independent, but if FK,1 denotes the similar quantity with individual 1 from the susceptible

population left out, then FK,1 and l1 are independent
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Sketch of Proof

Abbreviate

ζK =
1

bK

bK∑
i=1

δ(AK
i

,AK
i

+ri)

and

〈φ, ν〉 =

∫
φdν

Then we have

m∑
j=1

Ef(j)(〈ξK
T , φk〉, k = 1, . . . ,m)〈µT − ξK

T , φj〉

= a

m∑
j=1

Ef(j)(〈ξK
T , φk〉, k = 1, . . . ,m)

〈
(δ0 × µ̂)T − 1

aK

aK∑
i=1

δT
(0,r̂i)

, φj

〉

+b

m∑
j=1

Ef(j)(〈ξK
T , φk〉, k = 1, . . . ,m)〈µ̃T − ζT

K , φj〉.

First summand: Cauchy-Schwarz and form (F ) of functions

∣∣∣∣∣a
m∑

j=1

Ef(j)(〈ξK
T , φk〉, k = 1, . . . ,m)〈(δ0 × µ̂)T − 1

aK

aK∑
i=1

δT
(0,r̂i)

, φj〉

∣∣∣∣∣
≤ a

m∑
j=1

‖ f(j) ‖ E

∣∣∣∣∣ 1

aK

aK∑
i=1

(φj(0, r̂i)−Eφj(0, r̂i))

∣∣∣∣∣
≤ a

m∑
j=1

‖ f(j) ‖

Var

(
1

aK

aK∑
i=1

(φj(0, r̂i)−Eφj(0, r̂i))

) 1
2


≤
√
a√
K
,

Similarly

b

m∑
j=1

Ef(j)(〈ξK
T , φk〉, k = 1, . . . ,m)〈µ̃T − ζT

K , φj〉

= b

m∑
j=1

Ef(j)(〈a(δ0 × µ̂)T + bζT
K , φk〉, k = 1, . . . ,m)〈µ̃T − ζT

K , φj〉+R1,

where

|R1| ≤ 2b

√
a√
K
.

For the remaining summand

b

m∑
j=1

Ef(j)(〈a(δ0 × µ̂)T + bζT
K , φk〉, k = 1, . . . ,m)〈µ̃T − ζT

K , φj〉

≤ b

m∑
i=1

‖ f(j) ‖ E
∣∣〈µ̃T − ζT

K , φj〉
∣∣
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= b

m∑
j=1

‖ f(j) ‖ E

∣∣∣∣∣ 1

bK

bK∑
i=1

φi((F
T
K)−1(li), (F

T
K)−1(li) + ri)− φj(G

−1
T (li), G

−1
T (li) + ri)

∣∣∣∣∣
≤ b

m∑
j=1

‖ f(j) ‖‖ φ′j ‖ E
∣∣(FT

K)−1(l1)− (GT )−1(l1)
∣∣ .

Problem: FK and l1 are dependent

Introduce FK,1 like FK , with susceptible individual 1 omitted

Then F−1
K (l1) = F−1

K,1(l1) and

E
∣∣(FT

K)−1(l1)−G−1
T (l1)

∣∣ = E
∣∣(FT

K,1)
−1(l1)−G−1

T (l1)
∣∣

For h ∈ D([0, T ]), define operators

ZK,1h(t) =
1

K

aK∑
i=1

1(r̂i > t) +
1

K

bK∑
j=2

1(h(t− rj) < lj ≤ h(t))

LK,1h(t) =

∫
(0,t]

λ(s,ZK,1h) ds.

Note that F−1
K (l1) = F−1

K,1(l1) by construction, and, for all t ≤ T ,

‖ FK,1 −GT ‖t = ‖ Lk,1FK,1 − LGT ‖t

≤ sup
h

‖ Lk,1h− Lh ‖t + ‖ LFK,1 − LGT ‖t

For each h

‖ LK,1h− Lh ‖T ≤ α

∫ T

0

sup
s≤x

|ZK,1h(s)−Zh(s)|ds

≤ αT
(
aR1 + 2bR2 +

2

K

)
,

where

R1 = sup
s

∣∣∣∣∣ 1

aK

aK∑
i=1

1(r̂i ≤ s)− Φ(s)

∣∣∣∣∣
and

R2 = sup
s

∣∣∣∣∣ 1

bK − 1

bK∑
i=2

1(li ≤ s)−Ψ(s)

∣∣∣∣∣ .
Massart (1990)

ER1 ≤ 1√
aK

ER2 ≤ 1√
bK

Thus

E sup
h

‖ LK,1h− Lh ‖T ≤ αT

{
(1 + b)

1√
K

+
2

K

}
=: S(K).
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For E ‖ LFK,1 − LGT ‖t: Contraction argument

LFK,1(t)− LGT (t) ≤ αbβ

∫ t

0

‖ FK,1 −GT ‖x (1 + Φ(x))dx

where Φ(x) = P(r1 ≤ x).

Hence

E ‖ LFK,1 − LGT ‖t ≤ S(K) + αbβ

∫ t

0

‖ FK,1 −GT ‖x (1 + Φ(x))dx

Fix some c ≥ b, put

η =
1

2cαβ

then

E ‖ LFK,1 − LGT ‖η ≤ c

c− b
S(K).

Induction:

E ‖ LFK,1 − LGT ‖kη ≤
(

c

c− b

)k

S(K).

Now k = dT
η
e:

E ‖ LFK,1 − LGT ‖kη ≤ exp(d2cαβT e)(log c− log(c− b))S(K).

c→∞ gives the assertion.

Remarks

• First bound on distance at all, and explicit

• More realistic model than Markovian

• Factor 1√
K

seems optimal - Gaussian approximation

• Waiting time until epidemic dies out is, very roughly, logK, so deterministic approximation may not be good

for whole time course

• When considering only a time interval when there is a substantial proportion of infectives present, then the

bound on the approximation much improves, growing only linear in time. See R. 2001

• Initially infected: could assume that (r̂i)i are not identically distributed (and do not have distribution function

Φ)

• nonsmooth test functions

• spatial?

5. The density approach

Stein 2003?

Situation: Let p be a strictly positive density on the whole real line having a derivative p′ in the sense that, for

all x,

p(x) =

∫ x

−∞
p′(y)dy = −

∫ ∞

x

p′(y)dy,
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and assume that ∫ ∞

−∞
|p′(y)|dy <∞.

Let

ψ(x) =
p′(x)

p(x)
.

Proposition 1 Then, in order that a random variable Z be distributed according to the density p it is necessary and

sufficient that, for all functions f that have a derivative f ′ and for which∫ ∞

−∞

∣∣f ′(z)∣∣ p(z)dz <∞,

we have

E(f ′(Z) + ψ(Z)f(Z)) = 0.

Example: N(0, 1)

ψ(x) = −x, and the above condition is satisfied

gives classical Stein equation

Example: Gamma

pλ,a(x) = λae−λxxa−1

Γ(a)

ψ(x) = a−1−λx
x

the above condition is satisfied

This yields the characterization of type

Ef ′(X) +
a− 1− λX

X
f(X) = 0.

Compare with the Luk-characterization:

equivalent; putting g(x) = xf(x)

Let for convenience

φ(x) = −ψ(x). (2)

Theorem 5 Suppose Z has probability density function p satisfying the assumptions of the above proposition. Let

(W,W ′) be an exchangeable pair such that E(φ(W ))2 = σ2 <∞, and let

λ =
E(φ(W ′)− φ(W ))2

2σ2
.

Then, for all piecewise continuous functions h on R to R for which E|h(Z)| <∞,

Eh(W )−Eh(Z) = E(V h)(W )

− 1

λσ2
E(φ(W ′)− φ(W ))((Uh)(W ′)− (Uh)(W ))−EEW

(
φ(W ′)− (1− λ)φ(W )

λ

)
(Uh)(W ),

where Uh and V h are defined by

(Uh)(w) =

∫ z

−∞

(
h(x)−

∫∞
−∞ h(y)p(y)dy

)
p(x)dx

p(z)

and

(V h)(w) = (Uh)′(w).
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6. Distributional transformations

joint work with Larry Goldstein

The zero bias distributional transformation:

Definition 1 Let X be a mean zero random variable with finite, nonzero variance σ2. We say that X∗ has the

X-zero biased distribution if for all differentiable f for which EXf(X) exists,

EXf(X) = σ2Ef ′(X∗). (3)

The zero bias distribution X∗ exists for all X that have mean zero and finite variance.

Goldstein and R. 1997

General Biasing

Theorem 6 Let m ∈ {1, 2, . . .}, and P a function with exactly m sign changes, positive on its rightmost interval.

Then for every random variable X with EX2m <∞ such that for some α > 0,

1

m!
EXjP (X) = αδj,m j = 0, . . . ,m,

there exists a random variable X(m), such that

EP (X)G(X) = αEG(m)(X(m)) for all smooth G.

The X(m) distribution is named the X − P biased distribution.

Example: P (x) = x: for any variable X such that σ2 = EX2 < ∞ and so that EX = 0, there exists a random

variable X(1) such that, for all smooth G, we have EXG(X) = σ2EG′(X(1)): zero bias distribution

Biasing using orthogonal polynomials

Suppose P member of an orthogonal polynomial system

Consider infinitely divisible random variables {Zλ}λ>0 so that if Zλ and Zµ are independent, then their sum has

distribution Zλ+µ

Assume corresponding collection {Pλ
k }k≥1 of polynomials where Pλ

k has k distinct roots, is positive on its right-

most interval, and the collection is orthogonal with respect to the law of Zλ

Define

αλ
k =

1

k!
EZk

λP
λ
k (Zλ),

and

Mλ
k = {X : EX2k <∞, EXj = EZj

λ, 0 ≤ j ≤ 2k}.

For every X ∈Mλ
k , for j = 0, . . . , k,

1

k!
EXjPλ

k (X) =
1

k!
EZj

λP
λ
k (Zλ)

= αλ
kδj,k
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Corollary 1 For all X ∈Mλ
k there exists a random variable Xλ

k such that

EPλ
k (X)G(X) = αλ

kEG
(k)(Xλ

k ).

Hence, if Xi ∈Mλi
mi and are independent, then letting x = (x1, . . . , xn) and m = (m1, . . . ,mn) and defining

αλ
m =

n∏
i=1

αλi
mi
,

and

Pλ
m(x) =

n∏
i=1

Pλi
mi

(xi),

the vector

Xλ
m = ((X1)

λ1
m1 , . . . , (Xn)λn

mn
)

satisfies

EPλ
m(X)G(X) = αλ

mEG
(m)(Xλ

m),

where G : Rn → R and

G(m)(x) =
∂m1+m2...+mnG(x)

∂xm1
1 . . . ∂xmn

n
.

Construction

Theorem 7 Let m ∈ {0, 1, . . .}. Let X1, · · · , Xn be independent variables with

Xi ∈Mλi
m

for some λ1, . . . , λn, and let λ = λ1 + · · ·+ λn and

W =

n∑
i=1

Xi.

Suppose that there exists weights wm on non-negative integer sequences m = (m1, . . . ,mn) with m = m1+· · ·+mn

such that with w = x1 + · · ·+ xn we have (
αλ

m

)2
=

∑
m

wm

(
αλ

m

)2
and

αλ
mP

λ
m(w) =

∑
m

wmα
λ
mP

λ
m(x).

Then, if I is independent of all other variables, with distribution

P (I = m) =
wm(αλ

m)2

(αλ
m)2

,

we have

Wλ
m =

∑
m

(Xi)
(Ii)
λi

Examples

Hermite biasing:

For σ2 = λ > 0, define the collection of Hermite polynomials {Hλ
n}n≥0 through the generating function

ext− 1
2 λt2 =

∞∑
n=0

Hλ
n(x)

tn

n!
,
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Then Stein equation

h(x)−Nh = φ′(x)Hm−1(x)−Hm(x)φ(x)

or

h(x)−Nh = φ(m)(x)−Hm(x)φ(x)

This gives an infinite number of Stein characterisations for the standard normal distribution.

Charlier biasing: For λ > 0, let {Cλ
m}m≥0 be the collection of Charlier polynomials defined by the generating

function

e−
√

λt

(
1 +

t√
λ

)x

=

∞∑
m=0

Cλ
m(x)

tm

m!
.

Corresponds to Poisson distribution with parameter λ

Laguerre biasing: For λ > 0, let {Lλ
m}m≥0 be the collection of monic Laguerre polynomials defined by the

generating function

(1 + t)−λ exp
{

xt

1 + t

}
=

∞∑
m=0

Lλ
m(x)

tm

m!

corresponds to the Gamma distribution ∝ xλ−1e−x

see also Diaconis and Zabell 1991 for connections between distributions and orthogonal polynomials

Note that there are many other applications of Stein’s method to other distributions. Persi Diaconis’ work for

probabilities on groups and for rates of convergence of Markov chains would be a good starting point.
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