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Lecture 1. Poisson point processes

Poisson processes on the real line

Assume at time t = 0 we start recording the

random times of occurence 0 ≤ T1 ≤ T2 ≤
· · · ≤ Tn ≤ · · · of a sequence of events, e.g.

customers who join a queue or the sales of an

item.

• Nt = #{i : Ti ≤ t}: the number of events

that have occurred before and including time t

• {Nt}t≥0 is called a counting process.

• Nt − Ns: the number of events occurred in

time interval (s, t] and is called the increment

of the counting process over the interval (s, t]

Definition 1 The stationary Poisson process

{Nt}t≥0 is defined as a counting process which

has



(P1) independent increments on disjoint time

intervals and

(P2) for each t ≥ 0, Nt ∼ Pn(λt).

Equivalent ways to view a stationary Poisson

process:

Proposition 2 A counting process {Nt : t ≥ 0}
is a Poisson process iff

(a) N0 = 0,

(b) the process has stationary, independent in-

crements,

(c) IP(Nt ≥ 2) = o(t) as t → 0,

(d) IP(Nt = 1) = λt + o(t) as t → 0, λ is a

constant.

Define τ1 = T1 and τi = Ti −Ti−1 for i ≥ 2, the

following proposition can be shown easily.



Proposition 3 A counting process {Nt}t≥0 is a

Poisson process with rate λ iff {τi, i = 1,2, · · ·}
are independent and identically distributed with

mean 1/λ.

This observation is heavily dependent on the

structure of the real line.

Proposition 4 A counting process {Nt}t≥0 is

a stationary Poisson process with rate λ iff

(a) for each fixed t, Nt follows Poisson distri-

bution with parameter λt;

(b) given that Nt = n, the n arrival times

T1, T2, . . . , Tn have the same joint distri-

bution as the order statistics correspond-

ing to n independent uniform [0, t] random

variables.



Remark 5 The arrival times are naturally or-

dered; T1 < T2 < . . . < Tn. Thus, given that n

arrivals occurred in [0, t], the unordered arrival

times (a random permutation of T1, T2, . . . , Tn)

look like n independent uniform [0, t] random

variables.

Poisson point processes

• Γ: a locally compact complete separable met-

ric space. Such a space is necessarily σ−compact

• B: the Borel algebra

• Bb: the ring consisting of all bounded (note

that a set is bounded if its closure is compact)

Borel sets

• A measure µ on (Γ,B) is called locally finite

if µ(B) < ∞ for all B ∈ Bb.



• A locally finite measure ξ is called a point
measure if µ(B) ∈ N := {0,1,2, · · ·} for all B ∈
Bb

• δx: the Dirac measure at x ∈ Γ, namely,

δx(B) =

{
1 if x ∈ B
0 if x �∈ B

.

• Since Γ is σ−compact, it is possible to write
a point measure ξ as

ξ =
∞∑

i=1

δxi

with #{i : xi ∈ B} < ∞ for every B ∈ Bb

• H: the space of all point measures on (Γ,Bb)

• |ξ| or ξ(Γ): the total measure (the number
of points) of ξ

• we say that ξn converges to ξ ∈ H vaguely if∫
fdξn → ∫

fdξ for all continuous functions on
Γ with compact support.



Proposition 6 The following statements are

equivalent:

(i) ξn converges to ξ vaguely;

(ii) ξn(B) → ξ(B) for all Borel set B such that

its boundary ∂B satisfies ξ(∂B) = 0;

(iii) lim supn→∞ ξn(F ) ≤ ξ(F ) and

lim infn→∞ ξn(G) ≥ ξ(G) for all closed F ∈
B and open G ∈ B.

Proposition 7 The space H is Polish in the

vague topology.

• B(H): the Borel σ-algebra generated by the

vague topology.

Definition 8 [Kallenberg (1976), p. 5] A point

process Ξ is a measurable mapping from a



probability space (Ω,F , IP) to (H,B(H)). The

measure λ defined by λ(B) = IEΞ(B), B ∈ Bb

is called the mean measure of Ξ.

Definition 9 A point process Ξ with locally

finite mean measure λ is a Poisson point pro-

cess, denoted as Pn(λ), if

(PP1) for any bounded Borel set B, Ξ(B) is

Poisson distributed with mean λ(B);

(PP2) for any k ∈ N, B1, · · · , Bk, Ξ(B1), · · · ,
Ξ(Bk) are independent random variables.

The following Proposition is a generalization

of Proposition 4.

Proposition 10 A point process Ξ is a Pois-

son process with mean measure λ iff for each

bounded Borel set B, Ξ(B) ∼ Pn(λ(B)) and



(PP3) given Ξ(B) = k, Ξ restricted to B,

Ξ|B, has the same distribution as Xk =∑k
i=1 δθi

, where θi, 1 ≤ i ≤ k are indepen-

dent and identically distributed B-valued

random elements with the common distri-

bution λ(·)/λ(B).

Proof. Assume Ξ is a Poisson point process,

then for every bounded Borel set B and every

partition of B consisting (bounded) Borel sets

B1, · · · , Bm, and i1 + · · · + im = k,

IP
(
∩m

j=1

{
Ξ(Bj) = ij

}∣∣∣ Ξ(B) = k
)

=
IP

(⋂m
j=1

{
Ξ(Bj) = ij

})
IP(Ξ(B) = k)

=
k!∏m

j=1 ij!
·

∏m
j=1 λ(Bj)

ij

λ(B)k

= IP
(
∩m

j=1{X(Bj) = ij}
)

.

Conversely, assume (PP3) holds, then for any
m ∈ N, bounded Borel sets B1, · · ·, Bm, B :=



∪m
i=1Bi is also bounded, and, with k = i1 +

· · · + im, we have

IP
(
∩m

j=1 {Ξ(Bj) = ij}
)

= IP
(
∩m

j=1 {Ξ(Bj) = ij}
∣∣Ξ(B) = k

)
IP(Ξ(B) = k)

=
k!

i1! · · · im!
· λ(B1)i1 · · ·λ(Bm)im

λ(B)k
· e−λ(B)λ(B)k

k!

=
m∏

j=1

e−λ(Bj)λ(Bj)ij

ij!
.

• To construct a Poisson point process on Γ, since Γ is
σ−compact, one can partition the space Γ into at most
countably many bounded subsets Γi with λ(Γi) > 0.
For each i, one can then independently define a Poisson
process using Proposition 10, then the union of these
independent Poisson processes is the desired Poisson
process [see Reiss (1993)].

When the carrier space is compact

• Γ is compact with a metric d0 ≤ 1

• We say a sequence {ξn} ⊂ H converges to ξ ∈ H weakly
if

∫
fdξn →

∫
fdξ for all bounded continuous functions

on Γ

• The vague topology is the same as weak topology

• Metrics to quantify the weak topology



• Wasserstein metric on H [Barbour and Brown (1992 A)]:
K =the set of functions k : Γ → [−1,1] such that

s1(k) = sup
y1 �=y2∈Γ

| k(y1) − k(y2) |
d0(y1, y2)

≤ 1,

d1(ξ1, ξ2)

=




1, if |ξ1| �= |ξ2|,
sup
k∈K

{|
∫

kdξ1−
∫

kdξ2|}

m
, if |ξ1| = |ξ2| = m > 0.

• By the Kantorovich-Rubinstein duality theorem, if ξ1 =∑m
i=1 δyi

, ξ2 =
∑m

i=1 δzi
, then d1(ξ1, ξ2) can be interpreted

as the average distance between a best coupling of the
points of ξ1 and ξ2 :

d1(ξ1, ξ2) = m−1 min
π

m∑
i=1

d0(yi, zπ(i)),

where π ranges over all permutations of (1, · · · , m).

• The Prohorov distance: if ξ1 =
∑n

i=1 δyi
, ξ2 =

∑m
i=1 δzi

,

ρ1(ξ1, ξ2)

=

{
1, if n �= m,
infπ max1≤i≤n d0(yi, zπ(i)), if n = m > 0,

The feature of maximum appeared here makes the Pro-
horov metric behave in a similar fashion to the total
variation metric.



• d′
1: if ξ1 =

∑n
i=1 δyi

, ξ2 =
∑m

i=1 δzi
with n ≤ m,

d′
1(ξ1, ξ2) = (m − n) + min

π

n∑
i=1

d0(yi, zπ(i)),

where π ranges over all permutations of (1, · · · , m).

Example 11 Γ = [0,1] with metric d(x, y) = |x − y|. If
ξ1 =

∑n
i=1 δti

with 0 ≤ t1 ≤ · · · ≤ tn ≤ 1 and ξ2 =
∑n

i=1 δsi

with 0 ≤ s1 ≤ · · · ≤ sn ≤ 1, then

n∑
i=1

|ti − si| ≤
n∑

i=1

|ti − sπ(i)|

for all permutations π of (1, · · · , n), and hence

d1(ξ1, ξ2) =
1

n

n∑
i=1

|ti − si|.

Proof Mathematical induction on n.

For n = 2, wlog, t1 = min{t1, t2, s1, s2}. Three cases.

(i) t2 ≥ s2, then

|t1 − s1| + |t2 − s2| = s1 − t1 + t2 − s2

≤ |t1 − s2| + |t2 − s1|

(ii) s1 ≤ t2 < s2, then

|t1 − s1| + |t2 − s2| = s1 − t1 + s2 − t2
≤ |t1 − s2| + |t2 − s1|



(iii) t2 < s1, then

|t1 − s1| + |t2 − s2| = s1 − t1 + s2 − t2
= |t1 − s2| + |t2 − s1|

Suppose claim holds for n ≤ k with k ≥ 2, we shall
prove it holds for n = k + 1 and all permutations π of
(1, · · · , k + 1).

If π(k + 1) = k + 1, obvious.

Assume π(k + 1) �= k + 1, then it follows that

k+1∑
i=1

|ti − sπ(i)|

=
∑

i�=k+1,i�=π−1(k+1)

|ti − sπ(i)|

+[|tk+1 − sπ(k+1)| + |tπ−1(k+1) − sk+1|]
≥

∑
i�=k+1,i�=π−1(k+1)

|ti − sπ(i)|

+|tπ−1(k+1) − sπ(k+1)| + |tk+1 − sk+1|

≥
k∑

i=1

|ti − si| + |tk+1 − sk+1|.

Proposition 12 The following statements are equiva-
lent:

(i) ξn converges to ξ vaguely;



(ii) ξn(B) → ξ(B) for all Borel set B such that its
boundary ∂B satisfies ξ(∂B) = 0;

(iii) lim supn→∞ ξn(F ) ≤ ξ(F ) and
lim infn→∞ ξn(G) ≥ ξ(G) for all closed F ∈ B and
open G ∈ B;

(iv) ξn converges to ξ weakly;

(v) d1(ξn, ξ) → 0.

(vi) ρ1(ξn, ξ) → 0.

(vii) d′
1(ξn, ξ) → 0.

Proof. The equivalence of (i)-(iv) is well-known.

(vi) is equivalent to (v): if ξ(Γ) �= 0,

d1(ξn, ξ) ≤ ρ1(ξn, ξ) ≤ ξ(Γ)d1(ξn, ξ).

(v) is equivalent of (vii): similarly.

(iv) is equivalent to (v): Assume first that d1(ξn, ξ) → 0,
then there exists an n0 such that ξn(Γ) = ξ(Γ) for all
n ≥ n0. For any bounded continuous function f , as Γ is
compact, f is uniformly continuous and for n ≥ n0,∣∣∣∣

∫
fdξn −

∫
fdξ

∣∣∣∣
≤ |ξ| sup

d0(x,y)≤|ξ|d1(ξn,ξ)
|f(x) − f(y)| → 0



Conversely, choose f ≡ 1, we have ξn(Γ) → ξ(Γ) := m,
so when n is sufficiently large, say, n ≥ m0, ξn(Γ) =
ξ(Γ). Let ξ =

∑m
i=1 δzi

, and relabel if necessary, for
n ≥ m0, we may write ξn =

∑m
i=1 δyn

i
so that d1(ξn, ξ) =

[
∑m

i=1 d0(yn
i , zi)]/m. Since Γ is compact, for any se-

quence {nk} ⊂ N, there exists a subsequence {nkj
} and

z̃i such that d0(y
nkj

i , z̃i) → 0 for all i = 1, · · · , m. Set
ξ̃ =

∑m
i=1 δz̃i

, then
∫

fdξ̃ =
∫

fdξ for all bounded function

f , so ξ̃ = ξ and
∑m

i=1 d0(y
nkj

i , zi) ≤
∑m

i=1 d0(y
nkj

i , z̃i) → 0.
This implies d1(ξn, ξ) → 0.

Proposition 13 H is a locally compact separable metric
space.

Proof. By Proposition 7, it suffices to show H is locally
compact. In fact, define Uk = {ξ ∈ H : ξ(Γ) = k},
H = ∪∞

k=0Uk and for each k, Uk is a compact, open and
as well as closed set.

Characterization of Poisson point processes

• Palm theory

For a non-negative integer-valued random variable X,
X ∼ Pn(λ) iff

IEg(X)X

λ
= IEg(X + 1) ∀bounded g on Z+

The equation completely characterizes the Poisson dis-
tribution and is the starting point for Stein’s identity.



• Palm theory was developed after the work of Palm (1943)

Heuristicly, since a Poisson process is a point process
with independent increments and one dimensional dis-
tribution is Poisson, we may imagine that a Poisson pro-
cess is pieced together by lots of independent “Poisson
components” (if the location is an atom, the “compo-
nent” will be Poisson, but if the location is diffuse, then
the “component” is either 0 or 1). Hence, to specify a
Poisson process, one needs to check that “each compo-
nent” is Poisson and also independent of the rest. This
can be intuitively done by

IEg(Ξ)Ξ(dα)

IEΞ(dα)
= IEg(Ξ + δα),

for all bounded function g on H and all α ∈ Γ.

• To make the argument rigorous, one needs the tools
of Campbell measures and Radon-Nikodym derivatives
[Kallenberg (1976), p. 69].

• For each point process Ξ with locally finite mean mea-
sure λ, we may define probability measures {Pα, α ∈ Γ}
on B(H) [Kallenberg (1976), p. 69]:

Pα(B) =
IE

[
1[Ξ∈B]Ξ(dα)

]
λ(dα)

, α ∈ Γ λ − a.s., B ∈ B(H).

• A point process Ξα on Γ is called a Palm process of
Ξ at location α if it has the Palm distribution Pα of Ξ
at α.



• The Palm process of a Poisson process has the same
distribution as the original process except one additional
point is added

• Ξα − δα: the reduced Palm process

• For any measurable function f : Γ ×H → [0,∞),

IE

(∫
B

f(α,Ξ)Ξ(dα)

)

= IE

(∫
B

f(α,Ξα)λ(dα)

)

IE

(∫
B

f(α,Ξ − δα)Ξ(dα)

)

= IE

(∫
B

f(α,Ξα − δα)λ(dα)

)
for all Borel set B ⊂ Γ.

• One can use Palm equation to establish the Stein
identity for Poisson process approximation

Theorem 14 A point process Ξ with locally finite mean
measure λ is a Poisson process iff its reduced Palm pro-
cesses have the same distribution as that of the original
process.

• Janossy densities



Suppose Ξ is a Poisson process on Γ with a finite mean
measure λ, let ν(dα) = λ(dα)/λ, then by Proposition 10,
for each bounded measurable function f on H,

IEf(Ξ) =
∞∑

n=0

eλλn

n!

∫
Γn

f


 n∑

j=1

δαj


 νn(dα1, · · · , dαn).

General point processes: Janossy densities after its first
introduction in Janossy (1950)

• A few assumptions:

(JA1) the point process Ξ is finite with distribution
Rn = IP(|Ξ| = n),

∑∞
n=0 Rn = 1.

(JA2) Given the total number of points equals n ≥ 1,
there is a probability distribution Πn(·) on Γn which
determines the joint distribution of the positions of
the points of the point process Ξ.

From these assumptions, we have

IEf(Ξ) =
∞∑

n=0

IE[f(Ξ)||Ξ| = n]Rn

=
∞∑

n=0

∫
Γn

f


 n∑

j=1

δαj


Πn(dα1, · · · , dαn)Rn.



• Πs
n = 1

n!

∑
π Πn(dαπ(1), · · · , dαπ(n)), where the sum ranges

over all permutations π of (1, · · · , n), then

Jn(dα1, · · · , dαn) = Rn

∑
π

Πn(dαπ(1), · · · , dαπ(n))

= n!RnΠ
s
n

• The measures {Jn} are called Janossy measures.

• We can find a reference measure ν such that Jn is
absolutely continuous w.r.t. νn and denote its Radon-
Nikodym derivative as jn.

• For any non-negative measurable function f : H → R,

IE(f(Ξ)) =∑
n≥0

∫
Γn

1

n!
f

(
n∑

i=0

δαi

)
jn(α1, ·, αn)ν

n(dα1, ·, dαn)

• The density of the first moment measure λ of the
point process Ξ with respect to ν:

µ(α) =
∑
n≥0

∫
Γn

1

n!
jn+1(α, α1, ·, αn)ν

n(dα1, ·, dαn).



• The density of a point being at α, given the config-
uration Ξα of Ξ outside Nα: Let m ∈ N be fixed and
β = (β1, · · · , βm) ∈ (Nc

α)
m, define

g(α, β) :=

∑
r≥0

∫
Nr

α

jm+r+1(α, β, γ)(r!)−1νr(dγ)∑
s≥0

∫
Ns

α

jm+s(β, η)(s!)−1νs(dη)
,

where the term with r = 0 is interpreted as jm+1(α, β)
and the term with s = 0 similarly. Then g(α, β) is the
density of a point being near α given that Ξα is

∑m
i=1 δβi

.

Theorem 15 Ξ is a Poisson point process with finite
mean measure λ iff, with respect to λ, its Janossy den-
sities jn ≡ e−λ.

• Compensator

F = (Fs)s≥0: right-continuous filtration

(Ns)s≥0: an F−adapted nonnegative integer-valued in-
creasing right continuous process

A point process (N,F) is called simple if ∆Ns := Ns −
Ns− = 0 or 1, ∀s ≥ 0, almost surely.

The compensator A of (N,F) is the unique previsible
right-continuous increasing process such that N − A is
an (F)s≥0 local martingale [Jacod and Shiryaev (1987)
or Dellacherie and Meyer (1982)]

• The compensator of a Poisson process with respect
to its intrinsic filtration is a deterministic function, and



in this case the Poisson process is simple iff its compen-
sator is continuous.

• Any simple point process with continuous compensator
is locally Poisson in character, in the sense that there
exists a time transformation that converts the process
into a Poisson process. More precisely, the transforma-
tion is given by the inverse of the compensator A of the
simple point process (Nt)t≥0:

σ(t) := inf{s : As > t}.
The continuity of A ensures that σ(t) is an (Ft)t≥0 stop-
ping time, and if limt↑∞ At = ∞ almost surely, then the
transformed process N̄t := Nσ(t) is a Poisson process
with unit rate with respect to filtration (F̄t)t≥0, where
F̄t = Fσ(t)

• If M is a Poisson process with compensator Bt =
t,0 ≤ t < ∞, then (N, N̄) is a natural coupling of the
distributions of M and N .

Immigration-death point processes

Immigration-death processes

• Xt: the number of objects in a system at time t

• Suppose that arrivals and departures occur indepen-
dently of one another, but at rates depending on the
state of the process. Thus, when there are n objects in
the system, new arrivals enter at an exponential rate λn

and the n objects leave at an exponential rate µn; that



is, when there are n objects in the system the time to
the next arrival (departure) is exponentially distributed
with mean 1/λn (1/µn).

• {Xt; t ≥ 0}: an immigration-death process and the pa-
rameters {λn} and {µn} are the arrival (or immigration)
rates and departure (or death) rates.

It is a continuous time Markov chain with states 0, 1,
2, . . .

• If
∞∑

j=1

λ0λ1 · · ·λj−1

µ1µ2 · · ·µj
< ∞,

then the Markov chain is ergodic with equilibrium dis-
tribution

π0 =


1 +

∞∑
j=1

λ0λ1 · · ·λj−1

µ1µ2 · · ·µj




−1

πj =
λ0λ1 · · ·λj−1

µ1µ2 · · ·µj
π0, j = 1,2, · · ·

• If λj = λ and µj = j for all j ≥ 0, then the equilibrium
distribution is a Pn(λ).

The idea of using Markov immigration-death process
to interpret Stein-Chen method was initiated by Bar-
bour (1988).



From now on, all immigration-death processes will be
assumed to be ergodic.

• Zi is an immigration-death process with immigration
rates {λn} and death rates {µn} and started in state i

Lemma 16 If λn = λ and µn = n for all n, then

Zn(t) = Dn(t) + Z0(t),

where Dn(t) is a pure death process with unit per capita
death rate and Dn(t) and Z0(t) are independent.

Proof.

• [Barbour (1988)] For an immigration-death process,
if the initial distribution is the equilibrium distribution,
then the immigation-death process has equilibrium dis-
tribution for all time; if the process starts from a dis-
tribution close to equilibrium distribution, then it takes
little time to stablize and if the initial distribution is far
away from equilibrium distribuition, then it will need a
lot of time to reach stationarity.

Spatial immigration-death processes

For Poisson process approximation, instead of integer-
valued Markov immigration-death process, we need to
run a spatial immigration-death process [Preston (1977)].

• Γ: compact; λ: finite measure on Γ

There are infinitely many spatial immigration-death pro-
cesses with equilibrium distribution Pn(λ). The one we



use is as follows. Given the process takes a configuration
ξ ∈ H, the process stays in state ξ for an exponentially
distributed random sojourn time with mean 1/(n + λ)
where ξ(Γ) = n, then with probability λ/(n+λ), it takes
an immigration point and the point distributes on Γ
according to λ/λ, independent of the existing configu-
ration; and with probability n/(n + λ), a point is cho-
sen equally likely from the existing configuration ξ and
deleted from the system. This is equivalent to say that
each point in ξ has an exponentially distributed lifetime
with mean 1 and it is called unit per capita death rate.

Such a spatial immigration-death process, denoted as
Zξ(t), can be defined by its generator on H as follows

Ah(ξ) =

∫
α∈Γ

[h(ξ + δα) − h(ξ)]λ(dα)

+

∫
α∈Γ

[h(ξ − δα) − h(ξ)]dξ(α), ∀ξ ∈ H

for suitable function h on H.

Strictly speaking, we need to prove that the spatial
immigration-death process constructed is the unique
spatial Markov process

Proposition 17 The spatial immigration-death process
has a unique equilibrium distribution Pn(λ) to which it
converges in distribution from any initial state.

Proof. Need to add a proof here.



Poisson process approximation by coupling

The metrics for point process approximation

For any two probability measures Q1 and Q2 on (H,B(H)),
the total variation distance, dTV , between Q1 and Q1 is
defined as

dTV (Q1,Q1) = sup
D∈B(H)

|Q1(D) −Q1(D)|

= inf IP(X �= Y ),

where the infimum is taken over all couplings of (X, Y )
such that X ∼ Q1 and Y ∼ Q2. This equality follows
from the duality theorem [Rachev (1991)].

However, although the total variation metric for ran-
dom variable approximation is a natural choice, it is too
strong to use for process approximation.

Example. Let Ii, 1 ≤ i ≤ n be independent indica-
tors with IP(Ii = 1) = 1 − IP(Ii = 0) = 1 − pi. Define
the Bernoulli process Ξ =

∑n
i=1 Iiδi/n, and set λ =

∑
i pi,

µ =
∑n

i=1 piδi/n and λ(dx) = npidx, for x ∈ ((i−1)/n, i/n].
What is the total variation distance between the distri-
bution of Ξ and Pn(µ)? Pn(λ)?

This inspired people to look for weaker metrics which
would be small in such situations. The metric d1 and
the metric d2 derived from d1 serve the purpose very
well.



• Ψ: the sets of functions f : H �→ [−1,1] such that

sup
ξ1 �=ξ2∈H

|f(ξ1) − f(ξ2)|
d1(ξ1, ξ2)

≤ 1.

• The second Wasserstein metric d2 between probability
measures Q1 and Q2 over H with respect to d1 is defined
as

d2(Q1,Q2) = sup
f∈Ψ

∣∣∣∣
∫

fdQ1 −
∫

fdQ2

∣∣∣∣
= inf IEd1(X, Y )
= inf

{
IP(|X| �= |Y |) + IEd1(X, Y )1[|X|=|Y |]

}
where, again, the infimum is taken over all couplings

of (X, Y ) with X ∼ Q1 and Y ∼ Q2 due to the duality
theorem.

• Interpretation of d2 metric: it is the total variation
distance between the distributions of the total number
of points, and given the two distributions have the same
number of points, it then measures the average distance
of mismatched pairs.

Poisson process approximation using stochastic cal-
culus

Brown (1983):



Theorem 18 If (M,F) is a simple point process with
compensator A, µ is a measure on [0,∞) and t ≥ 0 is
non-random, then

dTV (L(Mt),Pn(µt)) ≤ IE|A − µ|t + IE




∑
s≤t

∆A2
s


 ,

where L(Mt) is the distribution of M confined to [0, t],
Pn(µt) is the distribution of a Poisson process on [0, t]
with mean measure µ and |A−µ|t is the pathwise varia-
tion of the signed measure of A−µ on [0, t], i.e. |A−µ|t =∫ t

0 |dA(s) − µ(ds)|.
Example 19 Bernoulli process Ξ by Pn(µ).

Theorem 20 Suppose M is a simple point process with
arbitrary compensator A, and B is a continuous increas-
ing function with B(0) = 0. Let p, q ∈ [1,∞] satisfying
1/p + 1/q = 1. Then, for any fixed δ > 0, we have

d2(L(MT),Pn(BT)) ≤ Cq(λ)‖(B, A)‖p

+IEδ ∧ |AT − − BT |
+IP(|AT − − BT | ≥ δ) + IE∆AT

+IE

{∑
s<T

∆A2
s

}
,

where λ = BT, Cq(λ) =
[∑∞

i=0
1

(i+1)q

e−λλi

i!

]1/q
,

‖(B, A)‖p

=

{
IE

[∫
[0,T )

1 ∧ (|B−1 ◦ At − t| ∨ |B−1 ◦ At− − t|)dAt

]p}1/p



Example 21 Cox Process. We say that M is a Cox
process with compensator A if, conditional on A, it is
a Poisson process with mean measure A. If we let Fs =
σ(Mz, z ≤ s)∨σ(A), then the compensator of (M, (Fs)s≥0)
is A. For a Cox process M to be simple, A is necessarily
continuous so it follows that

d2(L(MT),Pn(BT)) ≤ Cq(λ)‖(B, A)‖p

+IEδ∧ | AT − BT | +IP(|AT − BT | ≥ δ)

Example 22 If T = 1, Bt = at, At = bt with a ≥ b > 0,
and p = ∞, q = 1, then

d2(Pn(AT),Pn(BT)) ≤ C1(a)
b|b − a|

2a
+ |b − a|

� |b − a|.
On the other hand,

d2(Pn(AT),Pn(BT)) ≤ (1 ∧ 1.65b−
1

2)|b − a|,
by Stein’s method

Poisson process approximation via Stein’s method

Stein’s equation

• Ξ ∼ Pn(λ) iff IEAh(Ξ) = 0

• To investigate how close a point process is from Pn(λ),
estimate IEAh(Ξ)

• For a bounded function f , Stein equation is

Ah(ξ) = f(ξ) − Pn(λ)(f).



• |IE(f(Ξ)) − Pn(λ)(f)| = |IEAh(Ξ)|

Example 23 Bernoulli process by Pn(µ)

• Solution? The resolvent of A at ρ > 0 is given by

(ρ −A)−1g(ξ) =

∫ ∞

0
e−ρtIEg(Zξ(t))dt

What we need to do is to argue that when ρ = 0 the
equation still holds for suitable functions g.

Lemma 24 For bounded function f , the integral∫ ∞

0
[IEf(Zξ(t)) − Pn(λ)(f)]dt

is well-defined and the solution to Stein equation is

h(ξ) = −
∫ ∞

0
[IEf(Zξ(t)) − Pn(λ)(f)]dt.

Proof. 0 ≤ f ≤ 1. Set |ξ| = n, τ n0 = inf{t : Zξ(t) =
0} = inf{t : |Zξ(t)| = 0} = τn0, and τ couple = inf{t >
τ n0 : |ZP(t)| = |Zξ(t)|}, where ZP is the immigration-
death process with initial distribution the same as Pn(λ).
Then we can couple in such a way that ZP(t) = Zξ(t)
for t > τ couple, which implies∫ ∞

0
|IEf(Zξ(t)) − Po(λ)(f)|dt ≤ IE(τ n0 + τ couple) < ∞.



Since the integral is absolutely convergent, we may split
it at the first time of jump
τ = inf{t : Zξ(t) �= ξ}:

−(λ + n)h(ξ)
= [f(ξ) − Pn(λ)(f)]

+(λ + n)IE

∫ ∞

τ
[f(Zξ(t)) − Pn(λ)(f)]dt

= [f(ξ) − Pn(λ)(f)] −
∫
Γ

h(ξ + δα)λ(dα)

−
∫
Γ

h(ξ − δα)ξ(dα),

and some reognization gives that h satisfies Stein equa-
tion.

Define

∆h(ξ) = sup
η−ξ∈H,x∈Γ

|h(η + δx) − h(η)|

∆2h(ξ)
= sup

η−ξ∈H,x,y∈Γ
|h(η + δx + δy) − h(η + δx) − h(η + δy) + h(η)|

ξ|B: ξ|B(C) = ξ(B ∩ C) for Borel sets C ⊂ Γ.

• Assume that, for each α, there is a Borel set Aα ⊂ Γ
such that the mapping

Γ ×H → Γ ×H : (α, ξ) �→ (α, ξ|Ac
α
)

is product measurable.



• It is ensured by A = {(x, y) : y ∈ Ax, x ∈ Γ} measurable
in Γ2

Now,

IE

∫
Γ

[h(Ξ − δα) − h(Ξ)]Ξ(dα)

= IE

∫
Γ

{[h(Ξ − δα) − h(Ξ)] − [h(Ξ|Ac
α
) − h(Ξ|Ac

α
+ δα)]}Ξ(dα)

+IE

∫
Γ

[h(Ξ|Ac
α
) − h(Ξ|Ac

α
+ δα)][Ξ(dα) − λ(dα)]

+IE

∫
Γ

{[h(Ξ|Ac
α
) − h(Ξ|Ac

α
+ δα)] − [h(Ξ) − h(Ξ + δα)]}λ(dα)

+IE

∫
Γ

[h(Ξ) − h(Ξ + δα)]λ(dα)

Theorem 25 For each bounded measurable function f on H,
|IEf(Ξ) − Pn(λ)(f)|

≤ IE

∫
α∈Γ

∆2h(Ξ|Ac
α
)(Ξ(Aα) − 1)Ξ(dα)

+min{ε1(f,Ξ), ε2(f,Ξ)}

+IE

∫
α∈Γ

∆2h(Ξ|Ac
α
)λ(dα)Ξ(Aα),

where

ε1(f,Ξ) = IE

∫
α∈Γ

∆h(Ξ|Ac
α
)|g(α,Ξ|Ac

α
) − µ(α)|ν(dα)

which is valid if Ξ is a simple point process, and
ε2(f,Ξ)

= IE

∫
α∈Γ

|[h(Ξ|Ac
α
) − h(Ξ|Ac

α
+ δα)] − [h(Ξα|Ac

α
) − h(Ξα|Ac

α
+ δα)]|λ(dα).



Remark How judicious (Aα;α ∈ Γ) are chosen is reflected in the
upper bound.

Poisson process approximation: total variation

Lemma 26 If f = 1A, A ∈ B(H), then
(i) ∆h(ξ) ≤ 1 for all ξ.
(ii) ∆2h(ξ) ≤ 1 for all ξ.

Proof.

Theorem 27 We have

dTV (LΞ,Pn(λ)) ≤ IE

∫
α∈Γ

(Ξ(Aα) − 1)Ξ(dα)

+min{ε1(f,Ξ), ε2(f,Ξ)} + IE

∫
α∈Γ

λ(dα)Ξ(Aα),

where

ε1(f,Ξ) =

∫
α∈Γ

IE|g(α,Ξ|Ac
α
) − µ(α)|ν(dα)

which is valid if Ξ is a simple point process, and

ε2(f,Ξ) = IE

∫
α∈Γ

∆2h(Ξ|Ac
α
∧ Ξα)‖Ξ|Ac

α
− Ξα|Ac

α
‖λ(dα).

Poisson process approximation: Wasserstein metric

• Uniform bounds

Lemma 28 If f ∈ Ψ, then
(i) ∆h(ξ) ≤ 1 ∧ (1.65λ−0.5) := c1(λ) for all ξ

(ii) ∆2h(ξ) ≤ 1 ∧ 2[1+2 ln+(λ/2)]
λ

:= c2(λ) for all ξ
(iii) |[h(ξ + δα) − h(ξ)] − [h(η + δα) − h(η)]| ≤ c2(λ)d′

1(ξ, η)

Proof.



Remark. The bounds are of the right order.

Theorem 29 We have

d2(LΞ,Pn(λ)) ≤ IEc2(λ)

∫
α∈Γ

(Ξ(Aα) − 1)Ξ(dα)

+min{ε1(f,Ξ), ε2(f,Ξ)} + IEc2(λ)

∫
α∈Γ

λ(dα)Ξ(Aα),

where

ε1(f,Ξ) = IEc1(λ)

∫
α∈Γ

|g(α,Ξ|Ac
α
) − µ(α)|ν(dα)

which is valid if Ξ is a simple point process, and

ε2(f,Ξ) = IEc2(λ)

∫
α∈Γ

d′
1(Ξ|Ac

α
,Ξα|Ac

α
)λ(dα).

• Non-uniform bounds

Lemma 30 For each f ∈ Ψ and ξ ∈ H with |ξ| = n, the solution h
satisfies
(i) |∆2h(ξ)| ≤ 5

λ
+ 3

n+1
.

(ii) For ξ, η ∈ H and x ∈ Γ,

|[h(ξ + δx) − h(ξ)] − [h(η + δx) − h(η)]|

≤
(
5

λ
+

3

|η| ∧ |ξ| + 1

)
d′′
1(ξ, η).

• There is a parallel theorem with constants c2(λ) replaced by the
non-uniform bound.

Applications

• Bernoulli process

• Matérn hard core process

• Rare words in biomolecular sequences

• 2-runs

• From Poisson process to compound Poisson approximation


