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The Diamond Lattice: Three Scales

Properties (e.g. conductance) at level 2 depend on
properties at level 1, . . .

X2 = F (X1), X1 = F (X0) . . .
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Hierarchical Models

Xn+1 = F (Xn) where Xn = (Xn,1, . . . , Xn,k)T

with Xn,i independent, each with distribution Xn.

Conditions on F , due to Shneiberg, Li and Rogers, and
Wehr, imply the weak law (here assumed)

Xn →p c,

and by Woo and Wehr which imply

Wn →d N (0, 1), for Wn =
Xn − EXn√

Var(Xn)
.
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Classical Central Limit Theorem as
Hierarchical Model

Taking F to give the average

F (x1, x2) =
x1 + x2

2

gives in distribution

Xn =
X0,1 + · · ·+ X0,2n

2n
.

At stage n there are N = 2n variables, would expect a
bound to the normal Z of the form

d(Wn, Z) ≤ Cγn where γn = N−1/2 = (1/
√

2)n.
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Averaging Functions

We say F is (strictly) averaging

1. mini xi ≤ F (x) ≤ maxi xi, and strictly when
mini xi < maxi xi.

2. F (x) ≤ F (y) whenever xi ≤ yi, and strictly when
xj < yj for some j.

Say F is scaled averaging when F (x)/F (1k) is averaging.
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Diamond Lattice Conductivity Function

Parallel and series resistor combination rules

L1(x1, x2) = x1 + x2, L−1(x1, x2) = (x−1
1 + x−1

2 )−1

gives the weighted wi > 0 diamond lattice conductivity
function

F (x) =
(

1
w1x1

+
1

w2x2

)−1

+
(

1
w3x3

+
1

w4x4

)−1

,

a scaled averaging function.
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Approximate Linear Recursion

Approximate Xn+1 = F (Xn) by a linear recursion around
the mean cn = EXn with small perturbation Rn,

Xn+1 = αn ·Xn + Rn, n ≥ 0,

where αn = F ′(cn), cn = (cn, . . . , cn)T ∈ Rk, and F ′ the
gradient of F .

Assuming the gradient α = F ′(c) at limit c is not a scalar
multiple of a unit vector rules out trivial cases such as
F (x1, x2) = x1 and makes λ = ||α|| < 1.
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Zero Bias Transformation

Goldstein and Reinert 1997: For W a mean zero variance
σ2 random variable, there exists W ∗ such that for all
absolutely continuous f for which expectation E|Wf(W )|
exists,

EWf(W ) = σ2Ef ′(W ∗).

From Stein’s equation,

EZf(Z) = σ2Ef ′(Z) if and only if Z ∼ N (0, σ2).

Hence:

W ∗ =d W if and only if W ∼ N (0, σ2).
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Zero and Size Biasing

For W ≥ 0 with EW < ∞, we say W s has the W -size bias
distribution if for all f for which E|Wf(W )| < ∞,

EWf(W ) = EWEf(W s).

To zero (size) bias a sum

W =
k∑

i=1

Xi

of mean zero (non-negative) independent variables, pick
one proportional to its variance (mean) and replace with
biased version. See Goldstein and Rinott, 1996.
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Wasserstein distance d

With L = {g : R → R : |g(y)− g(x)| ≤ |y − x|} and,

F = {f : f absolutely continuous, f(0) = f ′(0) = 0, f ′ ∈ L},

d(Y, X) = sup
g∈L

|E(g(Y )− g(X))| = sup
f∈F

|E(f ′(Y )− f ′(X))|.

Dual form, minimal L1 distance

d(Y,X) = inf E|Y −X|.
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Zero Bias and distance d

Lemma 1 Let W be a mean zero, finite variance random
variable, and let W ∗ have the W -zero bias distribution.
Then with d the Wasserstein distance, and Z a normal
variable with the same variance as W ,

d(W,Z) ≤ 2d(W,W ∗).

Take σ2 = 1. For ||h′|| ≤ 1, ||f ′′|| ≤ 2,

|Eh(W )−Nh| = |E[f ′(W )−Wf(W )]|
= |[Ef ′(W )− Ef ′(W ∗)]|
≤ ||f ′′||E|W −W ∗|
≤ 2d(W,W ∗).
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Zero Bias and distance δ

The L1 distance E|W ∗ −W | gives a bound on the
Wasserstein distance between W ∗ and W , and therefore
between W and Z, for Lipschitz functions (smooth). For
EW = 0, EW 2 = 1, we can bound δ

δ = sup
−∞<x<∞

|P (W ≤ x)− P (Z ≤ x)| ≤ γ (86 + 12γ)

by a quantity which depends on the distribution of W only
through the L2 distance

γ2 = E(W ∗ −W )2.
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Contraction Mapping in d

Lemma 2 For α ∈ Rk with λ = ||α|| 6= 0, let

Y =
k∑

i=1

αi

λ
Wi,

where Wi are mean zero, variance one, independent
random variables distributed as W . Then

d(Y, Y ∗) ≤ ϕ d(W,W ∗),

and ϕ =
∑

i |αi|3/(
∑

i α2
i )

3/2 < 1 if and only if α is not a
scalar multiple of a unit vector.

13



Contraction:Proof

With P (I = i) =
α2

i

λ2
, |Y − Y ∗| = |αI |

λ
|WI −W ∗

I |.

Since Wi =d W , we may take (Wi,W
∗
i ) =d (W,W ∗)

E|Y − Y ∗| =
k∑

i=1

|αi|3

λ3
E|Wi −W ∗

i | = ϕE|W −W ∗|.

Choosing the pair W,W ∗ to achieve the infimum, we obtain

d(Y, Y ∗) ≤ E|Y − Y ∗| = ϕE|W −W ∗| = ϕ d(W,W ∗).
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Pause: The Classical CLT and d

Take Wi iid mean zero variance σ2 and

Y = n−1/2
n∑

i=1

Wi.

Setting αi = n−1/2 gives ϕ = n−1/2, and

d(Y, Z) ≤ 2d(Y, Y ∗) ≤ 2n−1/2d(W,W ∗) → 0

as n →∞, proof of the CLT with a bound in d and
constant depending on E|W ∗ −W | = ||W ∗ −W ||1.
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Pause (Protracted): The Classical CLT and δ

For any Y with EY = 0, EY 2 = 1 and γ2 = E(Y ∗ − Y )2,

sup
−∞<x<∞

|P (Y ≤ x)− P (Z ≤ x)| ≤ γ (86 + 12γ) .

Hence, for

Y = n−1/2
n∑

i=1

Wi, we have Y ∗−Y = n−1/2(W ∗
i −Wi).

In this case,

γ = n−1/2
√

E(W ∗ −W )2 when Wi =d W,

a proof of the CLT with bound in δ and constant depending
on ||W ∗ −W ||2.
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Linear Iteration

Normalizing Xn+1 = αn ·Xn, with λn = ||αn|| and
σ2

n = Var(Xn) we have

Wn+1 =
k∑

i=1

αn,i

λn
Wn,i with Wn =

Xn − cn

σn
.

Iterated contraction gives

d(Wn, Z) ≤ 2d(Wn,W ∗
n) ≤ 2

(
n−1∏
i=0

ϕi

)
d(W0,W

∗
0 ).
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Non-linear Iteration

Let Xn+1 = αn ·Xn + Rn, where Xn is a vector of iid
variables distributed as Xn, EXn = cn, Var(Xn) = σ2

n, and
λn = ||αn|| 6= 0. Set

Yn =
k∑

i=1

αn,i

λn
Wn,i where Wn =

Xn − cn

σn

and (to measure the discrepancy from linearity)

βn = E|Wn+1 − Yn|+
1
2
E|W 3

n+1 − Y 3
n |.
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Theorem 1 If there exist (β, ϕ) ∈ (0, 1)2 such that

lim sup
n→∞

βn

βn
< ∞ and lim sup

n→∞
ϕn = ϕ,

then with γ = β when ϕ < β, and for any γ ∈ (ϕ, 1) when
β ≤ ϕ, there exists C such that

d(Wn, Z) ≤ Cγn.

Apply Theorem 1 to hierarchical Xn.
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Glimpse at Proof of Theorem 1

With f ′ − wf = h−Nh, f ∈ F implies

|h′(w)| ≤ (1 + 3w2/2).

Usual role of h and f reversed:

|Ef ′(Wn+1)− Ef ′(W ∗
n+1)|

= |Eh(Wn+1)−Nh|
= |E (h(Wn+1)− h(Yn) + h(Yn)−Nh) |
≤ βn + |Eh(Yn)−Nh|
≤ βn + |E(f ′(Yn)− f ′(Y ∗

n ))|
≤ βn + d(Yn, Y ∗

n )
≤ βn + ϕnd(Wn,W ∗

n).
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Theorem 2 Let X0 be a non constant random variable
with P (X0 ∈ [a, b]) = 1 and Xn+1 = F (Xn) with
F : [a, b]k → [a, b], twice continuously differentiable.
Suppose F is averaging and that Xn →p c, with α = F ′(c)
not a scalar multiple of a unit vector. Then with Z a
standard normal variable, for all γ ∈ (ϕ, 1) there exists C
such that

d(Wn, Z) ≤ Cγn where ϕ =
∑k

i=1 |αi|3

(
∑k

i=1 |αi|2)3/2
,

is a positive number strictly less than 1. The value ϕ
achieves a minimum of 1/

√
k if and only if the components

of α are equal.
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Averaging Networks

(V, E ,w) is a weighted network with vertex set V , edge set
E and non-negative weights w, if V has two distinguished
vertices, the source a and the sink b,
E ⊂ (V × V ) \

⋃
v∈V (v, v). Without loss of generality the

graph (V, E) is connected and wi ∈ (0,∞).

Theorem 3 Let (V, E ,w) be a weighted network with
effective weight between any two components determined
by scaled averaging and homogeneous parallel and series
combination rules P (x1, x2) and S(x1, x2). Then the
effective weight F (x) between source and sink is a scaled
averaging function.
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Special Case: Resistor Networks

Woo and Wehr show the conductance function of a resistor
network, with the series and parallel combination rules,

L1(x1, x2) = x1 + x2 and L−1(x1, x2) = (x−1
1 + x−1

2 )−1

is scaled averaging. This is a special case of the above
result for the weighted Lp norm functions, which are scaled
averaging and homogeneous.
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Fast Rates for the Diamond Lattice

Define the ‘side equally weighted network’ to be the one
with w = (w,w, 2− w, 2− w)T for w ∈ (1, 2); such
weights are positive and satisfy F (w) = 1.

For w = 1 all weights are equal, and we have α = 4−114,
and hence ϕ achieves its minimum value 1/2 = 1/

√
k

corresponding to the rate N−1/2+ε.

For 1 ≤ w < 2 we have 1/2 ≤ ϕ < 1/
√

2, the case w ↑ 2
corresponding to the least favorable rate for the side equally
weighted network of N−1/4+ε.
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Slow Rates for the Diamond Lattice

With only the restriction that the weights are positive and
satisfy F (w) = 1 consider for t > 0,

w = (1 + 1/t, s, t, 1/t)T where

s = [(1− (1/t + t)−1)−1 − (1 + 1/t)−1]−1.

When t = 1 we have s = 1 and ϕ = 11
√

2/27.

As t →∞, s/t → 1/2 and α tends to the unit vector
(1, 0, 0, 0), so ϕ → 1.

Since 11
√

2/27 < 1/
√

2, the diamond lattice rate can
achieve any γ in the range (1/2, 1), corresponding to N−θ

for any θ ∈ (0, 1/2).
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