# Normal Approximation for Hierarchical Sequences

# Larry Goldstein

http://math.usc.edu/~larry

#### The Diamond Lattice: Three Scales



Properties (e.g. conductance) at level 2 depend on properties at level 1, ...

$$X_2 = F(\mathbf{X}_1), \qquad X_1 = F(\mathbf{X}_0) \dots$$

#### **Hierarchical Models**

$$X_{n+1} = F(\mathbf{X}_n) \quad where \quad \mathbf{X}_n = (X_{n,1}, \dots, X_{n,k})^\mathsf{T}$$

with  $X_{n,i}$  independent, each with distribution  $X_n$ .

Conditions on F, due to Shneiberg, Li and Rogers, and Wehr, imply the weak law (here assumed)

$$X_n \to_p c,$$

and by Woo and Wehr which imply

$$W_n \to_d \mathcal{N}(0,1), \quad \text{for} \quad W_n = \frac{X_n - EX_n}{\sqrt{\mathsf{Var}(X_n)}}.$$

## Classical Central Limit Theorem as Hierarchical Model

Taking F to give the *average* 

$$F(x_1, x_2) = \frac{x_1 + x_2}{2}$$

gives in distribution

$$X_n = \frac{X_{0,1} + \dots + X_{0,2^n}}{2^n}$$

At stage n there are  $N = 2^n$  variables, would expect a bound to the normal Z of the form

$$d(W_n,Z) \leq C\gamma^n \quad \text{where} \quad \gamma^n = N^{-1/2} = (1/\sqrt{2})^n.$$

## **Averaging Functions**

We say F is (strictly) averaging

- 1.  $\min_i x_i \le F(\mathbf{x}) \le \max_i x_i$ , and strictly when  $\min_i x_i < \max_i x_i$ .
- 2.  $F(\mathbf{x}) \leq F(\mathbf{y})$  whenever  $x_i \leq y_i$ , and strictly when  $x_j < y_j$  for some j.

Say F is scaled averaging when  $F(\mathbf{x})/F(\mathbf{1}_k)$  is averaging.

# Diamond Lattice Conductivity Function

Parallel and series resistor combination rules

$$L_1(x_1, x_2) = x_1 + x_2, \quad L_{-1}(x_1, x_2) = (x_1^{-1} + x_2^{-1})^{-1}$$

gives the weighted  $w_i > 0$  diamond lattice conductivity function

$$F(\mathbf{x}) = \left(\frac{1}{w_1 x_1} + \frac{1}{w_2 x_2}\right)^{-1} + \left(\frac{1}{w_3 x_3} + \frac{1}{w_4 x_4}\right)^{-1},$$

a scaled averaging function.

## Approximate Linear Recursion

Approximate  $X_{n+1} = F(\mathbf{X}_n)$  by a linear recursion around the mean  $c_n = EX_n$  with small perturbation  $R_n$ ,

$$X_{n+1} = \boldsymbol{\alpha}_n \cdot \mathbf{X}_n + R_n, \quad n \ge 0,$$

where  $\alpha_n = F'(\mathbf{c}_n)$ ,  $\mathbf{c}_n = (c_n, \dots, c_n)^{\mathsf{T}} \in \mathbb{R}^k$ , and F' the gradient of F.

Assuming the gradient  $\alpha = F'(\mathbf{c})$  at limit c is not a scalar multiple of a unit vector rules out trivial cases such as  $F(x_1, x_2) = x_1$  and makes  $\lambda = ||\boldsymbol{\alpha}|| < 1$ .

## Zero Bias Transformation

Goldstein and Reinert 1997: For W a mean zero variance  $\sigma^2$  random variable, there exists  $W^*$  such that for all absolutely continuous f for which expectation E|Wf(W)| exists,

$$EWf(W) = \sigma^2 Ef'(W^*).$$

From Stein's equation,

$$EZf(Z) = \sigma^2 Ef'(Z)$$
 if and only if  $Z \sim \mathcal{N}(0, \sigma^2)$ .

Hence:

$$W^* =_d W$$
 if and only if  $W \sim \mathcal{N}(0, \sigma^2)$ .

## Zero and Size Biasing

For  $W \ge 0$  with  $EW < \infty$ , we say  $W^s$  has the W-size bias distribution if for all f for which  $E|Wf(W)| < \infty$ ,

$$EWf(W) = EWEf(W^s).$$

To zero (size) bias a sum

$$W = \sum_{i=1}^{k} X_i$$

of mean zero (non-negative) independent variables, pick one proportional to its variance (mean) and replace with biased version. See Goldstein and Rinott, 1996.

#### Wasserstein distance d

With 
$$\mathcal{L} = \{g : \mathbb{R} \to \mathbb{R} : |g(y) - g(x)| \le |y - x|\}$$
 and,

 $\mathcal{F} = \{f: f \text{ absolutely continuous, } f(0) = f'(0) = 0, f' \in \mathcal{L}\},$ 

$$d(Y,X) = \sup_{g \in \mathcal{L}} |E(g(Y) - g(X))| = \sup_{f \in \mathcal{F}} |E(f'(Y) - f'(X))|.$$

Dual form, minimal  $L_1$  distance

$$d(Y,X) = \inf E|Y - X|.$$

#### Zero Bias and distance d

**Lemma 1** Let W be a mean zero, finite variance random variable, and let  $W^*$  have the W-zero bias distribution. Then with d the Wasserstein distance, and Z a normal variable with the same variance as W,

 $d(W,Z) \le 2d(W,W^*).$ 

Take  $\sigma^2 = 1$ . For  $||h'|| \le 1$ ,  $||f''|| \le 2$ , |Eh(W) - Nh| = |E[f'(W) - Wf(W)]|  $= |[Ef'(W) - Ef'(W^*)]|$   $\le ||f''||E|W - W^*|$  $\le 2d(W, W^*).$ 

## Zero Bias and distance $\delta$

The  $L_1$  distance  $E|W^* - W|$  gives a bound on the Wasserstein distance between  $W^*$  and W, and therefore between W and Z, for Lipschitz functions (smooth). For EW = 0,  $EW^2 = 1$ , we can bound  $\delta$ 

$$\delta = \sup_{-\infty < x < \infty} |P(W \le x) - P(Z \le x)| \le \gamma (86 + 12\gamma)$$

by a quantity which depends on the distribution of W only through the  ${\cal L}_2$  distance

$$\gamma^2 = E(W^* - W)^2.$$

## Contraction Mapping in d

**Lemma 2** For  $\alpha \in \mathbb{R}^k$  with  $\lambda = ||\alpha|| \neq 0$ , let

$$Y = \sum_{i=1}^{k} \frac{\alpha_i}{\lambda} W_i,$$

where  $W_i$  are mean zero, variance one, independent random variables distributed as W. Then

$$d(Y, Y^*) \le \varphi \, d(W, W^*),$$

and  $\varphi = \sum_i |\alpha_i|^3 / (\sum_i \alpha_i^2)^{3/2} < 1$  if and only if  $\alpha$  is not a scalar multiple of a unit vector.

#### **Contraction:Proof**

With 
$$P(I=i) = \frac{\alpha_i^2}{\lambda^2}, \quad |Y-Y^*| = \frac{|\alpha_I|}{\lambda}|W_I - W_I^*|.$$

Since  $W_i =_d W$  , we may take  $(W_i, W_i^\ast) =_d (W, W^\ast)$ 

$$E|Y - Y^*| = \sum_{i=1}^k \frac{|\alpha_i|^3}{\lambda^3} E|W_i - W_i^*| = \varphi E|W - W^*|.$$

Choosing the pair  $W, W^*$  to achieve the infimum, we obtain

$$d(Y, Y^*) \le E|Y - Y^*| = \varphi E|W - W^*| = \varphi d(W, W^*).$$

#### Pause: The Classical CLT and d

Take  $W_i$  iid mean zero variance  $\sigma^2$  and

$$Y = n^{-1/2} \sum_{i=1}^{n} W_i.$$

Setting  $\alpha_i = n^{-1/2}$  gives  $\varphi = n^{-1/2}$ , and  $d(Y,Z) \le 2d(Y,Y^*) \le 2n^{-1/2}d(W,W^*) \to 0$ 

as  $n \to \infty$ , proof of the CLT with a bound in d and constant depending on  $E|W^* - W| = ||W^* - W||_1$ .

Pause (Protracted): The Classical CLT and  $\delta$ 

For any 
$$Y$$
 with  $EY=0, EY^2=1$  and  $\gamma^2=E(Y^*-Y)^2,$ 

$$\sup_{-\infty < x < \infty} |P(Y \le x) - P(Z \le x)| \le \gamma \left(86 + 12\gamma\right).$$

Hence, for

$$Y = n^{-1/2} \sum_{i=1}^{n} W_i, \quad \text{we have} \quad Y^* - Y = n^{-1/2} (W_i^* - W_i).$$

In this case,

$$\gamma = n^{-1/2} \sqrt{E(W^*-W)^2} \quad \text{when} \quad W_i =_d W,$$

a proof of the CLT with bound in  $\delta$  and constant depending on  $||W^*-W||_2.$ 

#### Linear Iteration

Normalizing  $X_{n+1} = \alpha_n \cdot \mathbf{X}_n$ , with  $\lambda_n = ||\alpha_n||$  and  $\sigma_n^2 = \operatorname{Var}(X_n)$  we have

$$W_{n+1} = \sum_{i=1}^{k} \frac{\alpha_{n,i}}{\lambda_n} W_{n,i} \quad \text{with} \quad W_n = \frac{X_n - c_n}{\sigma_n}.$$

Iterated contraction gives

$$d(W_n, Z) \le 2d(W_n, W_n^*) \le 2\left(\prod_{i=0}^{n-1} \varphi_i\right) d(W_0, W_0^*).$$

#### **Non-linear Iteration**

Let  $X_{n+1} = \alpha_n \cdot \mathbf{X}_n + R_n$ , where  $\mathbf{X}_n$  is a vector of iid variables distributed as  $X_n$ ,  $EX_n = c_n$ ,  $Var(X_n) = \sigma_n^2$ , and  $\lambda_n = ||\alpha_n|| \neq 0$ . Set

$$Y_n = \sum_{i=1}^k \frac{lpha_{n,i}}{\lambda_n} W_{n,i}$$
 where  $W_n = rac{X_n - c_n}{\sigma_n}$ 

and (to measure the discrepancy from linearity)

$$\beta_n = E|W_{n+1} - Y_n| + \frac{1}{2}E|W_{n+1}^3 - Y_n^3|.$$

**Theorem 1** If there exist  $(\beta, \varphi) \in (0, 1)^2$  such that

$$\limsup_{n\to\infty}\frac{\beta_n}{\beta^n}<\infty\quad\text{and}\quad\limsup_{n\to\infty}\varphi_n=\varphi,$$

then with  $\gamma = \beta$  when  $\varphi < \beta$ , and for any  $\gamma \in (\varphi, 1)$  when  $\beta \leq \varphi$ , there exists C such that

$$d(W_n, Z) \le C\gamma^n.$$

Apply Theorem 1 to hierarchical  $X_n$ .

## Glimpse at Proof of Theorem 1

With 
$$f' - wf = h - Nh$$
,  $f \in \mathcal{F}$  implies  
 $|h'(w)| \le (1 + 3w^2/2).$ 

Usual role of h and f reversed:

$$|Ef'(W_{n+1}) - Ef'(W_{n+1}^*)|$$

$$= |Eh(W_{n+1}) - Nh|$$

$$= |E(h(W_{n+1}) - h(Y_n) + h(Y_n) - Nh)|$$

$$\leq \beta_n + |Eh(Y_n) - Nh|$$

$$\leq \beta_n + |E(f'(Y_n) - f'(Y_n^*))|$$

$$\leq \beta_n + d(Y_n, Y_n^*)$$

$$\leq \beta_n + \varphi_n d(W_n, W_n^*).$$

**Theorem 2** Let  $X_0$  be a non constant random variable with  $P(X_0 \in [a,b]) = 1$  and  $X_{n+1} = F(\mathbf{X}_n)$  with  $F : [a,b]^k \to [a,b]$ , twice continuously differentiable. Suppose F is averaging and that  $X_n \to_p c$ , with  $\alpha = F'(\mathbf{c})$ not a scalar multiple of a unit vector. Then with Z a standard normal variable, for all  $\gamma \in (\varphi, 1)$  there exists Csuch that

$$d(W_n,Z) \leq C\gamma^n \quad \textit{where} \quad \varphi = \frac{\sum_{i=1}^k |\alpha_i|^3}{(\sum_{i=1}^k |\alpha_i|^2)^{3/2}},$$

is a positive number strictly less than 1. The value  $\varphi$  achieves a minimum of  $1/\sqrt{k}$  if and only if the components of  $\alpha$  are equal.

## **Averaging Networks**

 $(V, \mathcal{E}, \mathbf{w})$  is a weighted network with vertex set V, edge set  $\mathcal{E}$  and non-negative weights  $\mathbf{w}$ , if V has two distinguished vertices, the *source* a and the *sink* b,  $\mathcal{E} \subset (V \times V) \setminus \bigcup_{v \in V} (v, v)$ . Without loss of generality the graph  $(V, \mathcal{E})$  is connected and  $w_i \in (0, \infty)$ .

**Theorem 3** Let  $(V, \mathcal{E}, \mathbf{w})$  be a weighted network with effective weight between any two components determined by scaled averaging and homogeneous parallel and series combination rules  $P(x_1, x_2)$  and  $S(x_1, x_2)$ . Then the effective weight  $F(\mathbf{x})$  between source and sink is a scaled averaging function.

## Special Case: Resistor Networks

Woo and Wehr show the conductance function of a resistor network, with the series and parallel combination rules,

$$L_1(x_1, x_2) = x_1 + x_2$$
 and  $L_{-1}(x_1, x_2) = (x_1^{-1} + x_2^{-1})^{-1}$ 

is scaled averaging. This is a special case of the above result for the weighted  $L_p$  norm functions, which are scaled averaging and homogeneous.

# Fast Rates for the Diamond Lattice

Define the 'side equally weighted network' to be the one with  $\mathbf{w} = (w, w, 2 - w, 2 - w)^{\mathsf{T}}$  for  $w \in (1, 2)$ ; such weights are positive and satisfy  $F(\mathbf{w}) = 1$ .

For w = 1 all weights are equal, and we have  $\alpha = 4^{-1}\mathbf{1}_4$ , and hence  $\varphi$  achieves its minimum value  $1/2 = 1/\sqrt{k}$ corresponding to the rate  $N^{-1/2+\epsilon}$ .

For  $1 \leq w < 2$  we have  $1/2 \leq \varphi < 1/\sqrt{2}$ , the case  $w \uparrow 2$  corresponding to the least favorable rate for the side equally weighted network of  $N^{-1/4+\epsilon}$ .

With only the restriction that the weights are positive and satisfy  $F(\mathbf{w}) = 1$  consider for t > 0,

$$\mathbf{w} = (1 + 1/t, s, t, 1/t)^{\mathsf{T}}$$
 where  
 $s = [(1 - (1/t + t)^{-1})^{-1} - (1 + 1/t)^{-1}]^{-1}$ 

When t = 1 we have s = 1 and  $\varphi = 11\sqrt{2}/27$ .

As  $t \to \infty$ ,  $s/t \to 1/2$  and  $\alpha$  tends to the unit vector (1,0,0,0), so  $\varphi \to 1$ .

Since  $11\sqrt{2}/27 < 1/\sqrt{2}$ , the diamond lattice rate can achieve any  $\gamma$  in the range (1/2, 1), corresponding to  $N^{-\theta}$  for any  $\theta \in (0, 1/2)$ .