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Zero Bias Transformation

Motivated by Stein’s Lemma

E[Zf(Z)] = σ2Ef ′(Z) if and only if Z ∼ N (0, σ2).

For every Y with mean zero and variance σ2, there exists a
unique law for Y ∗ such that

E[Y f(Y )] = σ2Ef ′(Y ∗)

for all smooth f . (Goldstein and Reinert, 1997)

Stein’s Lemma becomes: The distributional transformation
Y → Y ∗ has N (0, σ2) as its unique fixed point.
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L1 Bound

Principle: If L(Y ) and L(Y ∗) are close, then L(Y ) is close
to being a fixed point of the transformation, so is close to
the unique fixed point, the normal.

In L1 (Wasserstein, Dudley, Fortet-Mourier or Kantarovich)
distance, this principle is evidenced by

||Y − Z|| ≤ 2||Y ∗ − Y ||.

The right hand side can sometimes be conveniently
computed by coupling.
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Examples and their Couplings

• Independent Sums

–

• Combinatorial Central Limit Theorem

–

• Cone Measure on the Sphere

–
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Zero and Size Biasing

Let Y be nonnegative with finite mean µ. Recall Y s has
the Y -sized biased distribution if

E[Y f(Y )] = µEf(Y s)

for all smooth f .

Parallel to the zero bias transform: mean is replaced by
variance, f is replaced by f ′.

Both are special cases of ‘distributional biasing’ of the form

E[P (Y )f(Y )] = αEf (m)(Y (P )).

(Goldstein and Reinert, 2005)
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Zero (Size) Biasing an Independent Sum

To zero (size) bias a sum

Y =
n∑

i=1

Xi

of mean zero (non-negative) independent variables, pick
one proportional to its variance (mean) and replace with
biased version.

Answers intuitively the basic question of when a sum Y is
close to normal.
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Zero Bias CLT Rationale

If Y is the sum of comparable, independent, mean zero
variables then Y ∗ differs from Y by only one summand.

Hence Y ∗ is close to Y , so Y is nearly a fixed point of the
zero bias transformation, and hence close to normal.
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Sums of i.i.d. variables

When W = n−1/2
∑

Xi for X, X1, . . . , Xn i.i.d. with
mean zero, variance 1, and distribution function G,

W ∗ −W = n−1/2(X∗
I −XI).

Hence by previous bound

||F − Φ||1 ≤
2√
n
||G∗ −G||.

The distribution function G∗ of X∗ is given explicitly by

G∗(x) = E[X(X − x)1(X ≤ x)].
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Distribution Specific Constant

Bernoulli∗ is Uniform, and

||F − Φ|| ≤ E|X1|3√
n

, so c = 1.

For U [−
√

3,
√

3],

G∗(x) = −
√

3x3

36
+
√

3x

4
+

1
2

for x ∈ [−
√

3,
√

3],

yields

||F − Φ|| ≤
√

3
4
√

n
=

E|X1|3

3
√

n
, so c = 1/3
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Combinatorial Central Limit Theorem

Given n× n real matrix A, obtain bounds to the normal
approximation for

Y =
n∑

i=1

ai,π(i),

where π is uniform on Sn.

(Hoeffding, Chen and Ho, Bolthausen, von Bahr)
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Uniform distribution U(Sn)

1. Simple random sampling is a special case of the
special case where aij = cidj .

2. Measure of uniformity of π, letting aij = |i− j| gives
ai,π(i) = |i− π(i)|. Y = 0 on id, how far from zero is
Y when π is uniform?

3. Distribution of permutation test statistics.
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Exchangeable Pair

Given Y , construct Y ′ such that (Y, Y ′) is exchangeable,
and

E(Y ′|Y ) = (1− λ)Y, λ ∈ (0, 1).
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Should we exchange it?

Computation of certain bounds when applying the
exchangeable pair may require the (sometimes difficult)
calculation of quantities such as√

Var{E[(Y ′ − Y )2|Y ]}.

But such is not required for the computation of E|Y ∗ − Y |
for L1 bounds.

Nevertheless, one method of obtaining a zero bias coupling
involves the pair.
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Zero Bias from Exchangeable Pair

Let (Y ′, Y ′′) be an exchangeable pair with joint distribution
F satisfying E(Y ′′|Y ′) = (1− λ)Y ′, Var(Y ′) = σ2. Let

dF †(y†, y‡) =
(y† − y‡)2

2λσ2
dF (y†, y‡),

and U ∼ U [0, 1] independent. Then when (Y †, Y ‡) ∼ F †,

Y ∗ = UY † + (1− U)Y ‡

has the Y ∗-zero bias distribution.
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Combinatorial CLT, Y ′ =
∑n

i=1 ai,π′(i)

Given π′ ∼ U(Sn), let τIJ be the transposition of I and J ,
chosen distinct and uniformly, and let

π′′ = π′τI,J .

Then with Y ′′ formed using π′′, the pair Y ′, Y ′′ is
exchangeable,

E(Y ′′|Y ′) = (1− 2
n− 1

)Y ′,

and

Y ′′ − Y ′ = aI,π′(J) + aJ,π′(I) − (aI,π′(I) + aJ,π′(J)).

18



Square Difference Bias and Coupling

To form π†, π‡, consider I†, J†,K†, L† with distribution

p(i, j, k, l) =
[(aik + ajl)− (ail + ajk)]2

4n2(n− 1)σ2
.

Now (letting π = π′) set

π† =


πτπ−1(K†),J† if L† = π(I†),K† 6= π(J†)
πτπ−1(L†),I† if L† 6= π(I†),K† = π(J†)
πτπ−1(K†),I†τπ−1(L†),J† otherwise,

and π‡ = π†τI†,J† .
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Aside: Non Uniform π Distribution

May consider distribution constant on conjugacy classes, for
example, π uniform over all involutions π2 = id.

In general, we may construct an exchangeable pair for such
a π by letting

π′′ = τIJπτIJ ,

when A is symmetric and the probability of fixed points is
zero.
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Bound by computing E|Y ∗ − Y ′|

Letting

a�j =
1
n

n∑
i=1

aij ai� =
1
n

n∑
j=1

aij a�� =
1
n2

n∑
i,j=1

aij

a3 =
n∑

i,j=1

|aij − ai� − a�j + a��|3,

with σ2 = Var(Y ′),

||F − Φ||1 ≤
a3

(n− 1)σ3

(
16 +

56
n− 1

+
8

(n− 1)2

)
.
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Cone Measure Cn
p in Rn

S(`n
p ) = {x :

n∑
i=1

|xi|p = 1}, B(`n
p ) = {x :

n∑
i=1

|xi|p ≤ 1}

With µn Lebesgue measure in Rn, for A ⊂ S(`n
p ) and

[0, 1]A = {ta : a ∈ A, 0 ≤ t ≤ 1}

let

Cn
p (A) =

µn([0, 1]A)
µn(B(`n

p ))
.
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Cone Measure Cn
p in Rn

Special cases

1. p = 1: Uniform distribution over the simplex

n∑
i=1

|xi| = 1.

2. p = 2: Uniform distribution over the sphere

n∑
i=1

x2
i = 1.
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Projection

For X ∼ Cn
p for some p > 0 and θ ∈ Rn a unit vector,

consider the projection

Y = θ ·X.

When θ = n−1/2(1, 1, . . . , 1), then Y = n−1/2
∑n

i=1 Xi.

Diaconis and Freedman: for p = 2 considered total
variation bounds

Meckes and Meckes: for random vectors with symmetries in
general, considered supremum and total variation bounds
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Zero Bias Construction for Coordinate
Symmetric Vectors

(Y1, . . . , Yn) =d (e1Y1, . . . , enYn), ∀ei ∈ {−1, 1}.

Since Yi =d −Yi and (Yi, Yj) =d (Yi,−Yj) when i 6= j,
when second moments exist we have

EYi = 0 and Cov(Yi, Yj) = 0.

With σ2
i = Var(Yi), the construction depends on the square

bias distributions in direction i,

EYif(Y) = σ2
i Ef(Yi) or dF i(y) =

y2
i

σ2
i

dF (y).
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Square Bias Construction

Let Y =
∑n

i=1 Yi, I an independent random index with

distribution P (I = i) = σ2
i∑n

j=1 σ2
j

and U ∼ U [−1, 1]
independent of all other variables. Then

Y ∗ = UY I
I +

∑
j 6=I

Y I
j .

Generalizes the ‘replace one’ construction for independent
variables given earlier.

For coupling under dependence, pick i according to I,
generate yi

i , then ‘adjust’ Yj , j 6= i according to the
conditional distribution given Yi = yi

i .
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Coupling for Cone Measure

If {Gj , εj , j = 1, . . . , n} are independent variables with
Gj ∼ Γ(1/p, 1), G1,n =

∑n
i=1 Gi and εj ∈ {−1, 1} equally

likely, then

X =
(

ε1(
G1

G1,n
)1/p, . . . , εn(

Gn

G1,n
)1/p

)
∼ Cn

p .
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Square Bias in given Direction

With G′
j ∼ Γ(2/p, 1) independent,

Xi
i = εi

(
Gi + G′

i

G1,n + G′
i

)1/p

has the Xi square bias distribution, and the vector with
components { (

1−|Xi
i |

p

1−|Xi|p

)1/p

Xj j 6= i

Xi
i j = i

has the X distribution square biased in direction i.
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L1 Cone Measure Bound to Normal

Let X have cone measure Cn
p on the sphere S(`n

p ) for some
p > 0, and let

Y =
n∑

i=1

θiXi

be the one dimensional projection of X along the direction
θ ∈ Rn with ||θ|| = 1. Then with σ2

n,p = Var(X1) and
mn,p = E|X1

1 |,

||F − Φ|| ≤ 3
(

mn,p

σn,p

) n∑
i=1

|θi|3 +
(

1
p
∨ 1

)
4

n + 2
.
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Special Cases

p = 1

||F − Φ|| ≤ 9√
2

n∑
i=1

|θi|3 +
4

n + 2

p = 2

||F − Φ|| ≤ 9√
3

n∑
i=1

|θi|3 +
4

n + 2
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Summary

• Independent Sums

– Replace One

• Combinatorial Central Limit Theorem

– Exchangeable Pair

• Cone Measure on the Sphere

– Square Biasing Under Symmetry
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Extensions

• Independent Sums

– Replace One

• Combinatorial Central Limit Theorem

– Exchangeable Pair

• Cone Measure on the Sphere

– Square Biasing Under Symmetry

• More...

– ?
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