L^{1} Bounds in Normal Approximation

Larry Goldstein

University of Southern California

Zero Bias Transformation

Motivated by Stein's Lemma

$$
E[Z f(Z)]=\sigma^{2} E f^{\prime}(Z) \quad \text { if and only if } Z \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

For every Y with mean zero and variance σ^{2}, there exists a unique law for Y^{*} such that

$$
E[Y f(Y)]=\sigma^{2} E f^{\prime}\left(Y^{*}\right)
$$

for all smooth f. (Goldstein and Reinert, 1997)
Stein's Lemma becomes: The distributional transformation $Y \rightarrow Y^{*}$ has $\mathcal{N}\left(0, \sigma^{2}\right)$ as its unique fixed point.

L^{1} Bound

Principle: If $\mathcal{L}(Y)$ and $\mathcal{L}\left(Y^{*}\right)$ are close, then $\mathcal{L}(Y)$ is close to being a fixed point of the transformation, so is close to the unique fixed point, the normal.

In L^{1} (Wasserstein, Dudley, Fortet-Mourier or Kantarovich) distance, this principle is evidenced by

$$
\|Y-Z\| \leq 2\left\|Y^{*}-Y\right\|
$$

The right hand side can sometimes be conveniently computed by coupling.

Examples and their Couplings

- Independent Sums
- Combinatorial Central Limit Theorem
- Cone Measure on the Sphere

Examples and their Couplings

- Independent Sums
- Replace One
- Combinatorial Central Limit Theorem
- Cone Measure on the Sphere

Examples and their Couplings

- Independent Sums
- Replace One
- Combinatorial Central Limit Theorem
- Exchangeable Pair
- Cone Measure on the Sphere

Examples and their Couplings

- Independent Sums
- Replace One
- Combinatorial Central Limit Theorem
- Exchangeable Pair
- Cone Measure on the Sphere
- Square Biasing Under Symmetry

Zero and Size Biasing

Let Y be nonnegative with finite mean μ. Recall Y^{s} has the Y-sized biased distribution if

$$
E[Y f(Y)]=\mu E f\left(Y^{s}\right)
$$

for all smooth f.
Parallel to the zero bias transform: mean is replaced by variance, f is replaced by f^{\prime}.

Both are special cases of 'distributional biasing' of the form

$$
E[P(Y) f(Y)]=\alpha E f^{(m)}\left(Y^{(P)}\right)
$$

(Goldstein and Reinert, 2005)

Zero (Size) Biasing an Independent Sum

To zero (size) bias a sum

$$
Y=\sum_{i=1}^{n} X_{i}
$$

of mean zero (non-negative) independent variables, pick one proportional to its variance (mean) and replace with biased version.

Answers intuitively the basic question of when a sum Y is close to normal.

Zero Bias CLT Rationale

If Y is the sum of comparable, independent, mean zero variables then Y^{*} differs from Y by only one summand.

Hence Y^{*} is close to Y, so Y is nearly a fixed point of the zero bias transformation, and hence close to normal.

Sums of i.i.d. variables

When $W=n^{-1 / 2} \sum X_{i}$ for X, X_{1}, \ldots, X_{n} i.i.d. with mean zero, variance 1 , and distribution function G,

$$
W^{*}-W=n^{-1 / 2}\left(X_{I}^{*}-X_{I}\right) .
$$

Hence by previous bound

$$
\|F-\Phi\|_{1} \leq \frac{2}{\sqrt{n}}\left\|G^{*}-G\right\|
$$

The distribution function G^{*} of X^{*} is given explicitly by

$$
G^{*}(x)=E[X(X-x) \mathbf{1}(X \leq x)]
$$

Distribution Specific Constant

Bernoulli* is Uniform, and

$$
\|F-\Phi\| \leq \frac{E\left|X_{1}\right|^{3}}{\sqrt{n}}, \quad \text { so } c=1
$$

For $\mathcal{U}[-\sqrt{3}, \sqrt{3}]$,

$$
G^{*}(x)=-\frac{\sqrt{3} x^{3}}{36}+\frac{\sqrt{3} x}{4}+\frac{1}{2} \quad \text { for } \quad x \in[-\sqrt{3}, \sqrt{3}],
$$

yields

$$
\|F-\Phi\| \leq \frac{\sqrt{3}}{4 \sqrt{n}}=\frac{E\left|X_{1}\right|^{3}}{3 \sqrt{n}}, \quad \text { so } c=1 / 3
$$

Combinatorial Central Limit Theorem

Given $n \times n$ real matrix A, obtain bounds to the normal approximation for

$$
Y=\sum_{i=1}^{n} a_{i, \pi(i)},
$$

where π is uniform on \mathcal{S}_{n}.
(Hoeffding, Chen and Ho, Bolthausen, von Bahr)

Uniform distribution $\mathcal{U}\left(\mathcal{S}_{n}\right)$

1. Simple random sampling is a special case of the special case where $a_{i j}=c_{i} d_{j}$.
2. Measure of uniformity of π, letting $a_{i j}=|i-j|$ gives $a_{i, \pi(i)}=|i-\pi(i)| . Y=0$ on id, how far from zero is Y when π is uniform?
3. Distribution of permutation test statistics.

Exchangeable Pair

Given Y, construct Y^{\prime} such that $\left(Y, Y^{\prime}\right)$ is exchangeable, and

$$
E\left(Y^{\prime} \mid Y\right)=(1-\lambda) Y, \quad \lambda \in(0,1) .
$$

Should we exchange it?

Computation of certain bounds when applying the exchangeable pair may require the (sometimes difficult) calculation of quantities such as

$$
\sqrt{\operatorname{Var}\left\{E\left[\left(Y^{\prime}-Y\right)^{2} \mid Y\right]\right\}} .
$$

But such is not required for the computation of $E\left|Y^{*}-Y\right|$ for L^{1} bounds.

Nevertheless, one method of obtaining a zero bias coupling involves the pair.

Zero Bias from Exchangeable Pair

Let $\left(Y^{\prime}, Y^{\prime \prime}\right)$ be an exchangeable pair with joint distribution F satisfying $E\left(Y^{\prime \prime} \mid Y^{\prime}\right)=(1-\lambda) Y^{\prime}, \operatorname{Var}\left(Y^{\prime}\right)=\sigma^{2}$. Let

$$
d F^{\dagger}\left(y^{\dagger}, y^{\ddagger}\right)=\frac{\left(y^{\dagger}-y^{\ddagger}\right)^{2}}{2 \lambda \sigma^{2}} d F\left(y^{\dagger}, y^{\ddagger}\right),
$$

and $U \sim \mathcal{U}[0,1]$ independent. Then when $\left(Y^{\dagger}, Y^{\ddagger}\right) \sim F^{\dagger}$,

$$
Y^{*}=U Y^{\dagger}+(1-U) Y^{\ddagger}
$$

has the Y^{*}-zero bias distribution.

Combinatorial CLT, $Y^{\prime}=\sum_{i=1}^{n} a_{i, \pi^{\prime}(i)}$

Given $\pi^{\prime} \sim \mathcal{U}\left(\mathcal{S}_{n}\right)$, let $\tau_{I J}$ be the transposition of I and J, chosen distinct and uniformly, and let

$$
\pi^{\prime \prime}=\pi^{\prime} \tau_{I, J}
$$

Then with $Y^{\prime \prime}$ formed using $\pi^{\prime \prime}$, the pair $Y^{\prime}, Y^{\prime \prime}$ is exchangeable,

$$
E\left(Y^{\prime \prime} \mid Y^{\prime}\right)=\left(1-\frac{2}{n-1}\right) Y^{\prime}
$$

and

$$
Y^{\prime \prime}-Y^{\prime}=a_{I, \pi^{\prime}(J)}+a_{J, \pi^{\prime}(I)}-\left(a_{I, \pi^{\prime}(I)}+a_{J, \pi^{\prime}(J)}\right) .
$$

Square Difference Bias and Coupling

To form $\pi^{\dagger}, \pi^{\ddagger}$, consider $I^{\dagger}, J^{\dagger}, K^{\dagger}, L^{\dagger}$ with distribution

$$
p(i, j, k, l)=\frac{\left[\left(a_{i k}+a_{j l}\right)-\left(a_{i l}+a_{j k}\right)\right]^{2}}{4 n^{2}(n-1) \sigma^{2}} .
$$

Now (letting $\pi=\pi^{\prime}$) set

$$
\pi^{\dagger}= \begin{cases}\pi \tau_{\pi^{-1}\left(K^{\dagger}\right), J^{\dagger}} & \text { if } L^{\dagger}=\pi\left(I^{\dagger}\right), K^{\dagger} \neq \pi\left(J^{\dagger}\right) \\ \pi \tau_{\pi^{-1}\left(L^{\dagger}\right), I^{\dagger}} & \text { if } L^{\dagger} \neq \pi\left(I^{\dagger}\right), K^{\dagger}=\pi\left(J^{\dagger}\right) \\ \pi \tau_{\pi^{-1}\left(K^{\dagger}\right), I^{\dagger}} \tau_{\pi^{-1}\left(L^{\dagger}\right), J^{\dagger}} & \text { otherwise, }\end{cases}
$$

and $\pi^{\ddagger}=\pi^{\dagger} \tau_{I^{\dagger}, J^{\dagger}}$.

Aside: Non Uniform π Distribution

May consider distribution constant on conjugacy classes, for example, π uniform over all involutions $\pi^{2}=$ id.

In general, we may construct an exchangeable pair for such a π by letting

$$
\pi^{\prime \prime}=\tau_{I J} \pi \tau_{I J}
$$

when A is symmetric and the probability of fixed points is zero.

Bound by computing $E\left|Y^{*}-Y^{\prime}\right|$

Letting

$$
\begin{gathered}
a_{. j}=\frac{1}{n} \sum_{i=1}^{n} a_{i j} \quad a_{i .}=\frac{1}{n} \sum_{j=1}^{n} a_{i j} \quad a_{. .}=\frac{1}{n^{2}} \sum_{i, j=1}^{n} a_{i j} \\
a_{3}=\sum_{i, j=1}^{n}\left|a_{i j}-a_{i .}-a_{. j}+a_{. .}\right|^{3},
\end{gathered}
$$

with $\sigma^{2}=\operatorname{Var}\left(Y^{\prime}\right)$,

$$
\|F-\Phi\|_{1} \leq \frac{a_{3}}{(n-1) \sigma^{3}}\left(16+\frac{56}{n-1}+\frac{8}{(n-1)^{2}}\right) .
$$

Cone Measure \mathcal{C}_{p}^{n} in \mathbb{R}^{n}

$S\left(\ell_{p}^{n}\right)=\left\{\mathrm{x}: \sum_{i=1}^{n}\left|x_{i}\right|^{p}=1\right\}, \quad B\left(\ell_{p}^{n}\right)=\left\{\mathbf{x}: \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq 1\right\}$

With μ^{n} Lebesgue measure in \mathbf{R}^{n}, for $A \subset S\left(\ell_{p}^{n}\right)$ and

$$
[0,1] A=\{t a: a \in A, 0 \leq t \leq 1\}
$$

let

$$
\mathcal{C}_{p}^{n}(A)=\frac{\mu^{n}([0,1] A)}{\mu^{n}\left(B\left(\ell_{p}^{n}\right)\right)}
$$

Cone Measure \mathcal{C}_{p}^{n} in \mathbb{R}^{n}

Special cases

1. $p=1$: Uniform distribution over the simplex

$$
\sum_{i=1}^{n}\left|x_{i}\right|=1
$$

2. $p=2$: Uniform distribution over the sphere

$$
\sum_{i=1}^{n} x_{i}^{2}=1 .
$$

Projection

For $\mathbf{X} \sim \mathcal{C}_{p}^{n}$ for some $p>0$ and $\boldsymbol{\theta} \in \mathbb{R}^{n}$ a unit vector, consider the projection

$$
Y=\boldsymbol{\theta} \cdot \mathbf{X}
$$

When $\boldsymbol{\theta}=n^{-1 / 2}(1,1, \ldots, 1)$, then $Y=n^{-1 / 2} \sum_{i=1}^{n} X_{i}$.
Diaconis and Freedman: for $p=2$ considered total variation bounds

Meckes and Meckes: for random vectors with symmetries in general, considered supremum and total variation bounds

Zero Bias Construction for Coordinate Symmetric Vectors
 $$
\left(Y_{1}, \ldots, Y_{n}\right)={ }_{d}\left(e_{1} Y_{1}, \ldots, e_{n} Y_{n}\right), \quad \forall e_{i} \in\{-1,1\} .
$$

Since $Y_{i}={ }_{d}-Y_{i}$ and $\left(Y_{i}, Y_{j}\right)={ }_{d}\left(Y_{i},-Y_{j}\right)$ when $i \neq j$, when second moments exist we have

$$
E Y_{i}=0 \quad \text { and } \quad \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0
$$

With $\sigma_{i}^{2}=\operatorname{Var}\left(Y_{i}\right)$, the construction depends on the square bias distributions in direction i,

$$
E Y_{i} f(\mathbf{Y})=\sigma_{i}^{2} E f\left(\mathbf{Y}^{i}\right) \quad \text { or } \quad d F^{i}(\mathbf{y})=\frac{y_{i}^{2}}{\sigma_{i}^{2}} d F(\mathbf{y})
$$

Square Bias Construction

Let $Y=\sum_{i=1}^{n} Y_{i}, I$ an independent random index with distribution $P(I=i)=\frac{\sigma_{i}^{2}}{\sum_{j=1}^{n} \sigma_{j}^{2}}$ and $U \sim \mathcal{U}[-1,1]$ independent of all other variables. Then

$$
Y^{*}=U Y_{I}^{I}+\sum_{j \neq I} Y_{j}^{I}
$$

Generalizes the 'replace one' construction for independent variables given earlier.

For coupling under dependence, pick i according to I, generate y_{i}^{i}, then 'adjust' $Y_{j}, j \neq i$ according to the conditional distribution given $Y_{i}=y_{i}^{i}$.

Coupling for Cone Measure

If $\left\{G_{j}, \epsilon_{j}, j=1, \ldots, n\right\}$ are independent variables with $G_{j} \sim \Gamma(1 / p, 1), G_{1, n}=\sum_{i=1}^{n} G_{i}$ and $\epsilon_{j} \in\{-1,1\}$ equally likely, then

$$
\mathbf{X}=\left(\epsilon_{1}\left(\frac{G_{1}}{G_{1, n}}\right)^{1 / p}, \ldots, \epsilon_{n}\left(\frac{G_{n}}{G_{1, n}}\right)^{1 / p}\right) \sim \mathcal{C}_{p}^{n}
$$

Square Bias in given Direction

With $G_{j}^{\prime} \sim \Gamma(2 / p, 1)$ independent,

$$
X_{i}^{i}=\epsilon_{i}\left(\frac{G_{i}+G_{i}^{\prime}}{G_{1, n}+G_{i}^{\prime}}\right)^{1 / p}
$$

has the X_{i} square bias distribution, and the vector with components

$$
\left\{\begin{array}{cc}
\left(\frac{1-\left|X_{i}^{i}\right|^{p}}{1-\left|X_{i}\right|^{p}}\right)^{1 / p} X_{j} & j \neq i \\
X_{i}^{i} & j=i
\end{array}\right.
$$

has the \mathbf{X} distribution square biased in direction i.

L^{1} Cone Measure Bound to Normal

Let X have cone measure \mathcal{C}_{p}^{n} on the sphere $S\left(\ell_{p}^{n}\right)$ for some $p>0$, and let

$$
Y=\sum_{i=1}^{n} \theta_{i} X_{i}
$$

be the one dimensional projection of \mathbf{X} along the direction $\boldsymbol{\theta} \in \mathbf{R}^{n}$ with $\|\boldsymbol{\theta}\|=1$. Then with $\sigma_{n, p}^{2}=\operatorname{Var}\left(X_{1}\right)$ and $m_{n, p}=E\left|X_{1}^{1}\right|$,

$$
\|F-\Phi\| \leq 3\left(\frac{m_{n, p}}{\sigma_{n, p}}\right) \sum_{i=1}^{n}\left|\theta_{i}\right|^{3}+\left(\frac{1}{p} \vee 1\right) \frac{4}{n+2}
$$

Special Cases

$$
p=1
$$

$$
\|F-\Phi\| \leq \frac{9}{\sqrt{2}} \sum_{i=1}^{n}\left|\theta_{i}\right|^{3}+\frac{4}{n+2}
$$

$$
p=2
$$

$$
\|F-\Phi\| \leq \frac{9}{\sqrt{3}} \sum_{i=1}^{n}\left|\theta_{i}\right|^{3}+\frac{4}{n+2}
$$

Summary

- Independent Sums
- Replace One
- Combinatorial Central Limit Theorem
- Exchangeable Pair
- Cone Measure on the Sphere
- Square Biasing Under Symmetry

Extensions

- Independent Sums
- Replace One
- Combinatorial Central Limit Theorem
- Exchangeable Pair
- Cone Measure on the Sphere
- Square Biasing Under Symmetry
- More...
- ?

