L¹ Bounds in Normal Approximation

Larry Goldstein

University of Southern California

Zero Bias Transformation

Motivated by Stein's Lemma

$$E[Zf(Z)] = \sigma^2 E f'(Z)$$
 if and only if $Z \sim \mathcal{N}(0, \sigma^2)$.

For every Y with mean zero and variance $\sigma^2,$ there exists a unique law for Y^* such that

$$E[Yf(Y)] = \sigma^2 Ef'(Y^*)$$

for all smooth f. (Goldstein and Reinert, 1997)

Stein's Lemma becomes: The distributional transformation $Y \to Y^*$ has $\mathcal{N}(0, \sigma^2)$ as its unique fixed point.

L^1 Bound

Principle: If $\mathcal{L}(Y)$ and $\mathcal{L}(Y^*)$ are close, then $\mathcal{L}(Y)$ is close to being a fixed point of the transformation, so is close to the unique fixed point, the normal.

In L^1 (Wasserstein, Dudley, Fortet-Mourier or Kantarovich) distance, this principle is evidenced by

$$||Y - Z|| \le 2||Y^* - Y||.$$

The right hand side can sometimes be conveniently computed by coupling.

• Independent Sums

• Combinatorial Central Limit Theorem

• Cone Measure on the Sphere

• Independent Sums

- Replace One

• Combinatorial Central Limit Theorem

• Cone Measure on the Sphere

• Independent Sums

- Replace One

• Combinatorial Central Limit Theorem

- Exchangeable Pair

• Cone Measure on the Sphere

• Independent Sums

- Replace One

• Combinatorial Central Limit Theorem

- Exchangeable Pair

- Cone Measure on the Sphere
 - Square Biasing Under Symmetry

Zero and Size Biasing

Let Y be nonnegative with finite mean $\mu.$ Recall Y^s has the Y-sized biased distribution if

$$E[Yf(Y)] = \mu Ef(Y^s)$$

for all smooth f.

Parallel to the zero bias transform: mean is replaced by variance, f is replaced by f'.

Both are special cases of 'distributional biasing' of the form

$$E[P(Y)f(Y)] = \alpha Ef^{(m)}(Y^{(P)}).$$

(Goldstein and Reinert, 2005)

Zero (Size) Biasing an Independent Sum

To zero (size) bias a sum

$$Y = \sum_{i=1}^{n} X_i$$

of mean zero (non-negative) independent variables, pick one proportional to its variance (mean) and replace with biased version.

Answers intuitively the basic question of when a sum \boldsymbol{Y} is close to normal.

Zero Bias CLT Rationale

If Y is the sum of comparable, independent, mean zero variables then Y^* differs from Y by only one summand.

Hence Y^* is close to Y, so Y is nearly a fixed point of the zero bias transformation, and hence close to normal.

Sums of i.i.d. variables

When $W = n^{-1/2} \sum X_i$ for X, X_1, \ldots, X_n i.i.d. with mean zero, variance 1, and distribution function G,

$$W^* - W = n^{-1/2} (X_I^* - X_I).$$

Hence by previous bound

$$||F - \Phi||_1 \le \frac{2}{\sqrt{n}} ||G^* - G||.$$

The distribution function G^* of X^* is given explicitly by

$$G^*(x) = E[X(X - x)\mathbf{1}(X \le x)].$$

Distribution Specific Constant

Bernoulli* is Uniform, and

$$||F - \Phi|| \le \frac{E|X_1|^3}{\sqrt{n}}, \text{ so } c = 1.$$

For $\mathcal{U}[-\sqrt{3},\sqrt{3}]$, $G^*(x) = -\frac{\sqrt{3}x^3}{36} + \frac{\sqrt{3}x}{4} + \frac{1}{2}$ for $x \in [-\sqrt{3},\sqrt{3}]$,

yields

$$||F - \Phi|| \le \frac{\sqrt{3}}{4\sqrt{n}} = \frac{E|X_1|^3}{3\sqrt{n}}, \quad \text{so } c = 1/3$$

Combinatorial Central Limit Theorem

Given $n \times n$ real matrix A, obtain bounds to the normal approximation for

$$Y = \sum_{i=1}^{n} a_{i,\pi(i)},$$

where π is uniform on S_n .

(Hoeffding, Chen and Ho, Bolthausen, von Bahr)

Uniform distribution $\mathcal{U}(\mathcal{S}_n)$

- 1. Simple random sampling is a special case of the special case where $a_{ij} = c_i d_j$.
- 2. Measure of uniformity of π , letting $a_{ij} = |i j|$ gives $a_{i,\pi(i)} = |i \pi(i)|$. Y = 0 on id, how far from zero is Y when π is uniform?
- 3. Distribution of permutation test statistics.

Exchangeable Pair

Given Y, construct Y^\prime such that (Y,Y^\prime) is exchangeable, and

$$E(Y'|Y) = (1 - \lambda)Y, \quad \lambda \in (0, 1).$$

Should we exchange it?

Computation of certain bounds when applying the exchangeable pair may require the (sometimes difficult) calculation of quantities such as

$$\sqrt{\mathsf{Var}\{E[(Y'-Y)^2|Y]\}}.$$

But such is not required for the computation of $E|Y^{\ast}-Y|$ for L^{1} bounds.

Nevertheless, one method of obtaining a zero bias coupling involves the pair.

Zero Bias from Exchangeable Pair

Let (Y',Y'') be an exchangeable pair with joint distribution F satisfying $E(Y''|Y')=(1-\lambda)Y'$, $Var(Y')=\sigma^2$. Let

$$dF^{\dagger}(y^{\dagger},y^{\ddagger}) = \frac{(y^{\dagger}-y^{\ddagger})^2}{2\lambda\sigma^2} dF(y^{\dagger},y^{\ddagger}),$$

and $U\sim \mathcal{U}[0,1]$ independent. Then when $(Y^{\dagger},Y^{\ddagger})\sim F^{\dagger}$,

$$Y^* = UY^{\dagger} + (1-U)Y^{\ddagger}$$

has the Y^* -zero bias distribution.

Combinatorial CLT,
$$Y' = \sum_{i=1}^{n} a_{i,\pi'(i)}$$

Given $\pi' \sim \mathcal{U}(S_n)$, let τ_{IJ} be the transposition of I and J, chosen distinct and uniformly, and let

$$\pi'' = \pi' \tau_{I,J}.$$

Then with $Y^{\prime\prime}$ formed using $\pi^{\prime\prime},$ the pair $Y^\prime,Y^{\prime\prime}$ is exchangeable,

$$E(Y''|Y') = (1 - \frac{2}{n-1})Y',$$

and

$$Y'' - Y' = a_{I,\pi'(J)} + a_{J,\pi'(I)} - (a_{I,\pi'(I)} + a_{J,\pi'(J)}).$$

Square Difference Bias and Coupling

To form $\pi^{\dagger}, \pi^{\ddagger}$, consider $I^{\dagger}, J^{\dagger}, K^{\dagger}, L^{\dagger}$ with distribution

$$p(i, j, k, l) = \frac{\left[(a_{ik} + a_{jl}) - (a_{il} + a_{jk})\right]^2}{4n^2(n-1)\sigma^2}.$$

Now (letting $\pi = \pi'$) set

$$\pi^{\dagger} = \begin{cases} \pi \tau_{\pi^{-1}(K^{\dagger}),J^{\dagger}} \\ \pi \tau_{\pi^{-1}(L^{\dagger}),I^{\dagger}} \\ \pi \tau_{\pi^{-1}(K^{\dagger}),I^{\dagger}} \tau_{\pi^{-1}(L^{\dagger}),J^{\dagger}} \end{cases}$$

 $\begin{array}{l} \text{if } L^{\dagger}=\pi(I^{\dagger}), K^{\dagger}\neq\pi(J^{\dagger}) \\ \text{if } L^{\dagger}\neq\pi(I^{\dagger}), K^{\dagger}=\pi(J^{\dagger}) \\ \text{otherwise,} \end{array}$

and $\pi^{\ddagger} = \pi^{\dagger} \tau_{I^{\dagger}, J^{\dagger}}$.

Aside: Non Uniform π Distribution

May consider distribution constant on conjugacy classes, for example, π uniform over all involutions $\pi^2 = id$.

In general, we may construct an exchangeable pair for such a π by letting

$$\pi'' = \tau_{IJ} \pi \tau_{IJ},$$

when \boldsymbol{A} is symmetric and the probability of fixed points is zero.

Bound by computing $E|Y^* - Y'|$

Letting

$$a_{,j} = \frac{1}{n} \sum_{i=1}^{n} a_{ij} \quad a_{i} = \frac{1}{n} \sum_{j=1}^{n} a_{ij} \quad a_{,.} = \frac{1}{n^2} \sum_{i,j=1}^{n} a_{ij}$$

$$a_3 = \sum_{i,j=1}^n |a_{ij} - a_{i \cdot} - a_{\cdot j} + a_{\cdot \cdot}|^3,$$

with $\sigma^2 = \operatorname{Var}(Y')$,

$$||F - \Phi||_1 \le \frac{a_3}{(n-1)\sigma^3} \left(16 + \frac{56}{n-1} + \frac{8}{(n-1)^2}\right).$$

Cone Measure \mathcal{C}_p^n in \mathbb{R}^n

$$S(\ell_p^n) = \{ \mathbf{x} : \sum_{i=1}^n |x_i|^p = 1 \}, \quad B(\ell_p^n) = \{ \mathbf{x} : \sum_{i=1}^n |x_i|^p \le 1 \}$$

With μ^n Lebesgue measure in ${\bf R}^n,$ for $A\subset S(\ell_p^n)$ and $[0,1]A=\{ta:a\in A,0\leq t\leq 1\}$

let

$$\mathcal{C}_p^n(A) = \frac{\mu^n([0,1]A)}{\mu^n(B(\ell_p^n))}.$$

Cone Measure \mathcal{C}_p^n in \mathbb{R}^n

Special cases

1. p = 1: Uniform distribution over the simplex

$$\sum_{i=1}^{n} |x_i| = 1.$$

2. p = 2: Uniform distribution over the sphere

$$\sum_{i=1}^{n} x_i^2 = 1.$$

Projection

For $\mathbf{X}\sim \mathcal{C}_p^n$ for some p>0 and $\pmb{\theta}\in \mathbb{R}^n$ a unit vector, consider the projection

$$Y = \boldsymbol{\theta} \cdot \mathbf{X}.$$

When $\theta = n^{-1/2}(1, 1, ..., 1)$, then $Y = n^{-1/2} \sum_{i=1}^{n} X_i$.

Diaconis and Freedman: for $p=2\ {\rm considered}\ {\rm total}\ {\rm variation}\ {\rm bounds}$

Meckes and Meckes: for random vectors with symmetries in general, considered supremum and total variation bounds

Zero Bias Construction for Coordinate Symmetric Vectors

$$(Y_1, \ldots, Y_n) =_d (e_1 Y_1, \ldots, e_n Y_n), \quad \forall e_i \in \{-1, 1\}.$$

Since $Y_i =_d -Y_i$ and $(Y_i, Y_j) =_d (Y_i, -Y_j)$ when $i \neq j$, when second moments exist we have

$$EY_i = 0$$
 and $Cov(Y_i, Y_j) = 0.$

With $\sigma_i^2 = Var(Y_i)$, the construction depends on the *square* bias distributions in direction *i*,

$$EY_if(\mathbf{Y}) = \sigma_i^2 Ef(\mathbf{Y}^i) \quad \text{or} \quad dF^i(\mathbf{y}) = rac{y_i^2}{\sigma_i^2} dF(\mathbf{y}).$$

Square Bias Construction

Let $Y = \sum_{i=1}^{n} Y_i$, I an independent random index with distribution $P(I = i) = \frac{\sigma_i^2}{\sum_{j=1}^{n} \sigma_j^2}$ and $U \sim \mathcal{U}[-1, 1]$ independent of all other variables. Then

$$Y^* = UY_I^I + \sum_{j \neq I} Y_j^I.$$

Generalizes the 'replace one' construction for independent variables given earlier.

For coupling under dependence, pick i according to I, generate y_i^i , then 'adjust' $Y_j, j \neq i$ according to the conditional distribution given $Y_i = y_i^i$.

Coupling for Cone Measure

If $\{G_j, \epsilon_j, j = 1, \ldots, n\}$ are independent variables with $G_j \sim \Gamma(1/p, 1)$, $G_{1,n} = \sum_{i=1}^n G_i$ and $\epsilon_j \in \{-1, 1\}$ equally likely, then

$$\mathbf{X} = \left(\epsilon_1(\frac{G_1}{G_{1,n}})^{1/p}, \dots, \epsilon_n(\frac{G_n}{G_{1,n}})^{1/p}\right) \sim \mathcal{C}_p^n.$$

Square Bias in given Direction

With $G'_j \sim \Gamma(2/p, 1)$ independent,

$$X_i^i = \epsilon_i \left(\frac{G_i + G_i'}{G_{1,n} + G_i'}\right)^{1/p}$$

has the X_i square bias distribution, and the vector with components

$$\left\{ \begin{array}{cc} \left(\frac{1-|X_i^i|^p}{1-|X_i|^p}\right)^{1/p} X_j & j \neq i \\ X_i^i & j=i \end{array} \right.$$

has the \mathbf{X} distribution square biased in direction i.

L¹ Cone Measure Bound to Normal

Let ${\bf X}$ have cone measure \mathcal{C}_p^n on the sphere $S(\ell_p^n)$ for some p>0, and let

$$Y = \sum_{i=1}^{n} \theta_i X_i$$

be the one dimensional projection of X along the direction $\boldsymbol{\theta} \in \mathbf{R}^n$ with $||\boldsymbol{\theta}|| = 1$. Then with $\sigma_{n,p}^2 = \operatorname{Var}(X_1)$ and $m_{n,p} = E|X_1^1|$,

$$||F - \Phi|| \le 3\left(\frac{m_{n,p}}{\sigma_{n,p}}\right) \sum_{i=1}^{n} |\theta_i|^3 + \left(\frac{1}{p} \lor 1\right) \frac{4}{n+2}.$$

Special Cases

p = 1

$$||F - \Phi|| \le \frac{9}{\sqrt{2}} \sum_{i=1}^{n} |\theta_i|^3 + \frac{4}{n+2}$$

$$p=2$$

$$||F - \Phi|| \le \frac{9}{\sqrt{3}} \sum_{i=1}^{n} |\theta_i|^3 + \frac{4}{n+2}$$

Summary

- Independent Sums
 - Replace One
- Combinatorial Central Limit Theorem
 - Exchangeable Pair
- Cone Measure on the Sphere
 - Square Biasing Under Symmetry

Extensions

- Independent Sums
 - Replace One
- Combinatorial Central Limit Theorem
 - Exchangeable Pair
- Cone Measure on the Sphere
 - Square Biasing Under Symmetry
- More...