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Introduction to Stein’s Method for Normal
Approximation

1. Much activity since Stein’s 1972 paper

2. Any introduction, and this one in particular, is
necessarily somewhat ‘biased’, a selective tour of a
larger area than the one presented
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Introduction to Stein’s Method for Normal
Approximation

I. Background, Stein Identity, Equation, Bounds

II. Size Bias Couplings

III. Exchangeable Pair, Zero Bias Couplings

IV. Local dependence, Nonsmooth functions
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De Moive/Laplace Theorem, 1733/1820

Let X1, . . . , Xn be independent and identically distributed
(i.i.d.) random variables with distribution

P (X1 = 1) = P (X1 = −1) = 1/2,

and let

Sn = X1 + · · ·+Xn and Wn = Sn/
√
n.

Then Wn →d Z with Z ∼ N (0, 1), that is, for all x ∈ R,

lim
n→∞

P (Wn ≤ x) = Φ(x) :=
∫ x

−∞

1√
2π
e−z2/2dz.

5



The Central Limit Theorem

Let X1, . . . , Xn be i.i.d. with mean µ and variance σ2.
Then

Wn =
Sn − nµ
σ
√
n
→d Z as n→∞.

May relax the identical distribution assumption by imposing
the Lindeberg Condition.
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The Central Limit Theorem

Let X1, . . . , Xn be independent and identically distributed
with mean µ and variance σ2. Then

Wn =
Sn − nµ
σ
√
n
→d Z as n→∞.

If in addition E|X1|3 <∞, a bound on the distance
between the distribution function Fn of Wn and Φ is
provided by the Berry-Esseen Theorem,

sup
−∞<x<∞

|Fn(x)− Φ(x)| ≤ cE|X1|3

σ3
√
n

where c ≤ 0.7056 [Shevtsova (2006)].
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Simple Random Sampling

Let A = {a1, . . . , aN} be real numbers, and X1, . . . , Xn a
simple random sample of A of size 0 < n < N .

Prove Wn = (Sn − ESn)/
√

Var(Sn) satisfies

Wn →d Z as n→∞.

As the variables are dependent, the classical CLT does not
apply.
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Simple Random Sampling

Proved by Hájek in 1960, over 200 years after Laplace.

Demonstrating that the sum of a simple random sample is
asymptotically normal, due to the dependence, seems to be
somewhat harder than handling the independent case.
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Approach by Stein’s Method

Without loss of generality, suppose that∑
a∈A

a = 0.

Let X ′, X ′′, X2, . . . , Xn+1 be a simple random sample of
size n+ 1 of A, and set

W ′ = X ′ +
n∑

i=2

Xi and W ′′ = X ′′ +
n∑

i=2

Xi.

The pair W ′,W ′′ is exchangeable, that is,

(W ′,W ′′) =d (W ′′,W ′).
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Approach by Stein’s Method

In addition to (W ′,W ′′) being an exchangeable pair,

E[X ′|W ′] =
1
n
W ′, and E[X ′′|W ′] = − 1

N − n
W ′.

As W ′′ −W ′ = X ′′ −X ′, with 2 < n < N − 1,

E[W ′′|W ′] = (1− λ)W ′ for λ = N
n(N−n) ∈ (0, 1).

We call such a (W ′,W ′′) a Stein pair. We are handling the
random variables directly.
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Approach by Stein’s Method

The construction of this Stein pair indicates that Stein’s
method might be used to prove Hájek’s theorem, and
additionally provide a Berry-Esseen bound.

Bounds to the normal using these types of approaches
typically reduce to the computation of, or bounds on, low
order moments, perhaps even only on variances of certain
quantities.

Under the principle ‘there is no such thing as a free lunch’,
such variance computations may be difficult.
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Stein’s Lemma

Characterization of the normal distribution:

Z ∼ N (0, 1)

if and only if
E[Zf(Z)] = E[f ′(Z)]

for all absolutely continuous functions f such that
E|f ′(Z)| <∞.
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Stein’s Lemma

Characterization of the N (0, 1) distribution:

E[Zf(Z)] = E[f ′(Z)] if and only if Z ∼ N (0, 1).

Note that the normal N (0, 1) density function

φ(z) =
1√
2π
e−z2/2

satisfies the ‘dual’ equation

zφ(z) = −φ′(z).
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Proof of Stein’s Lemma

If direction: Assume Z is standard normal.

Break Ef ′(Z) into two parts to handle separately,

Ef ′(Z) =
∫ ∞
−∞

f ′(z)φ(z)dz

=
∫ ∞

0

f ′(z)φ(z)dz +
∫ 0

−∞
f ′(z)φ(z)dz.
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Proof of Stein’s Lemma

Consider the first integral. Use Fubini’s theorem to change
the order of integration to obtain∫ ∞

0

f ′(z)φ(z)dz =
∫ ∞

0

f ′(z)
∫ ∞

z

yφ(y)dydz

=
∫ ∞

0

∫ ∞
z

f ′(z)yφ(y)dydz

=
∫ ∞

0

∫ y

0

f ′(z)yφ(y)dzdy

=
∫ ∞

0

[f(y)− f(0)]yφ(y)dy.
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Proof of Stein’s Lemma

Similarly, for the second integral,∫ 0

−∞
f ′(z)φ(z)dz =

∫ 0

−∞
[f(y)− f(0)]yφ(y)dy.

Combining gives

Ef ′(Z) = EZ[f(Z)− f(0)] = EZf(Z).
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Stein’s Lemma, N (µ, σ2)

If X ∼ N (µ, σ2), then (X − µ)/σ ∼ N (0, 1), so

E

(
X − µ
σ

)
g

(
X − µ
σ

)
= Eg′

(
X − µ
σ

)
.

Letting f(x) = g((x− µ)/σ), we have

f ′(x) = σ−1g′((x− µ)/σ) or σf ′(x) = g′((x− µ)/σ),

so, in general X ∼ N (µ, σ2) if and only if

E(X − µ)f(X) = σ2Ef ′(X).
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Stein’s Method: Basic Idea

If F is a sufficiently large class of functions, and

E(X − µ)f(X) = σ2Ef ′(X) for all f ∈ F

then X ∼ N (µ, σ2).

Hence, if

E(W − µ)f(W ) ≈ σ2Ef ′(W ) for all f ∈ F

then W ≈ N (µ, σ2).

Hence, we would like to show that

E[(W − µ)f(W )− σ2f ′(W )] ≈ 0.

19



Distance to Normality

Let X and Y be random variables. Many distances between
the distributions of X and Y can be given by

d(X,Y ) = sup
h∈H
|Eh(X)− Eh(Y )|

for some class of functions H.

Distance may also be given in terms of functions of the
distribution functions F and G, of X and Y , respectively.
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Kolmogorov, or L∞ distance

Letting X and Y have distribution functions F and G,
respectively,

||F −G||∞ = sup
−∞<z<∞

|F (z)−G(z)|

= sup
h∈H
|Eh(X)− Eh(Y )|

for
H = {1(−∞,z](x) : z ∈ R}.
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Wasserstein, or L1 distance

||F −G||1 =
∫ ∞
−∞
|F (z)−G(z)|dz

= sup
h∈H
|Eh(X)− Eh(Y )|

for
H = {h : |h(x)− h(y)| ≤ |x− y|}.

Have also that

||F −G||1 = inf E|X − Y |

over all couplings of X and Y on a joint space with the
given marginals.
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Total Variation Distance

Total variation distance

||F −G||TV = sup
h∈H
|Eh(X)− Eh(Y )|

where
H = {h : 0 ≤ h ≤ 1}.
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From the Stein Identity to the Stein Equation

Can measure distance from W to a standard normal Z by

Eh(W )−Nh

for Nh = Eh(Z) over H.

Stein identity says discrepancy between W and Z is also
reflected in

E[f ′(W )−Wf(W )].
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From the Stein Identity to the Stein Equation

Can measure distance from W to normal Z by

Eh(W )−Nh

for Nh = Eh(Z) over H.

Stein identity says discrepancy between W and Z is also
reflected in

E[f ′(W )−Wf(W )].

Equating these quantities at w yields the Stein Equation:

f ′(w)− wf(w) = h(w)−Nh.
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Stein Equation

f ′(w)− wf(w) = h(w)−Nh. (1)

Goal: Given h ∈ H, compute (a bound) on

Eh(W )−Nh.

Approach: Given h, solve (1) for f and instead compute

E [f ′(W )−Wf(W )] .

Apriori, this appears harder. It also requires bounds on f in
terms of h.
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Solution to the Stein Equation

For h such that Nh exists, write

f ′(w)− wf(w) = h(w)−Nh (2)

as

ew2/2 d

dw

(
e−w2/2f(w)

)
= h(w)−Nh

and

f(w) = ew2/2

∫ w

−∞
[h(z)−Nh]e−z2/2dz

is the unique bounded solution to (2). Note also that f has
one more derivative than h.
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Solution to the Stein Equation

Since Eh(Z)−Nh = 0,

f(w) = ew2/2

∫ w

−∞
[h(u)−Nh]e−u2/2du

= −ew2/2

∫ ∞
w

[h(u)−Nh]e−u2/2du.
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Bounds on the Solution to the Stein Equation

Example: If f is the unique bounded solution to the Stein
equation for a bounded function h, then

||f ||∞ ≤
√
π

2
||h−Nh||∞.
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Bounds on Solution to the Stein Equation

For w ≤ 0, we have

|f(w)| = ew2/2

∣∣∣∣∫ w

−∞
[h(u)−Nh]e−u2/2du

∣∣∣∣
≤ sup

x≤0
|h(x)−Nh|ew2/2

∫ w

−∞
e−u2/2du,

while

d

dw
ew2/2

∫ w

−∞
e−u2/2du = 1 + wew2/2

∫ w

−∞
e−u2/2du > 0,

increasing over (−∞, 0], so maximum is attained at w = 0.
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Bounds on Solution to the Stein Equation

For w ≤ 0,

|f(w)| ≤ sup
x≤0
|h(x)−Nh|ew2/2

∫ w

−∞
e−u2/2du

≤ sup
x≤0
|h(x)−Nh|

∫ 0

−∞
e−u2/2du

= sup
x≤0
|h(x)−Nh|

√
2π
(

1√
2π

∫ 0

−∞
e−u2/2du

)
= sup

x≤0
|h(x)−Nh|

√
π

2
.

Similar bound for w ≥ 0.
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Bounds on Solution of the Stein Equation

If h is bounded

||f ||∞ ≤
√
π

2
||h−Nh||∞,

and absolutely continuous

||f ′||∞ ≤ 2||h−Nh||∞,

with ||h′||∞ <∞,

||f ′′||∞ ≤ 2||h′||∞.
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Indicator Bounds

For hz(w) = 1(−∞,z](w) [Chen and Shao (2005)]
(Singapore lecture notes)

0 < f(w) ≤
√

2π
4

and |f ′(w)| ≤ 1.

Also will use one additional bound for ‘smoothed indicators’
which decrease from 1 to zero over interval of some small
length λ > 0.
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Proof of Stein’s Lemma

Only if direction. Suppose E[f ′(Z)] = E[Zf(Z)] for all
absolutely continuous functions f with E|f ′(Z)| <∞.

Let f(w) be the solution to the Stein Equation for
h(w) = 1(−∞,z](w). Then f is absolutely continuous and
||f ′||∞ <∞. Hence

E[1(−∞,z](Z)− Φ(z)] = E[f ′(Z)− Zf(Z)] = 0,

that is

P (Z ≤ z) = E1(−∞,z](Z) = Φ(z) for all z ∈ R.
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Generator Approach to the Stein Equation

[Barbour (1990), Götze (1991)]

Note that with one more derivative

(Af)(w) = σ2f ′′(w)− wf ′(w)

is the generator of the Ornstein-Uhlenbeck process Wt,

dWt =
√

2σdBt −Wtdt

which has the normal N (0, σ2) as its unique stationary
distribution.
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Generator Approach

Letting Tt be the transition operator of the
Ornstein-Uhlenbeck process Wt, t ≥ 0,

(Tth)(x) = E [h(Wt)|W0 = x] ,

a solution to Af = h−Nh is given by

f = −
∫ ∞

0

Tthdt.

Technique works also in higher dimensional, and more
abstract spaces.
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Coming Attractions

II. Size Bias Couplings

III. Exchangeable Pair, Zero Bias Couplings

IV. Local dependence, Nonsmooth functions
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