A Gentle Introduction to Stein's Method for Normal Approximation II

Larry Goldstein

University of Southern California

- II . Size Bias Couplings
 - (a) Stein equation with mean and variance
 - (b) Size biasing
 - (c) Relation to Stein equation
 - (d) Smooth function bound
 - (e) Examples

[Baldi, Rinott and Stein (1989)]

Stein Equation

For given $h \in \mathcal{H}$, solve for f in

 $f'(w) - wf(w) = h(w) - Nh \quad \text{where} \quad Nh = Eh(Z).$

For W satisfying $EW=0, \mathsf{Var}(W)=1$ we calculate

Eh(W) - Nh

by computing

$$E[f'(W) - Wf(W)].$$

Stein Equation, Mean and Variance

If W has mean zero and variance 1, consider

$$g'(w) - wg(w) = h(w) - Nh$$
 where $Nh = Eh(Z)$.

If Y has mean μ and variance $\sigma^2,$ letting $w=(y-\mu)/\sigma,$

$$g'\left(rac{y-\mu}{\sigma}
ight) - \left(rac{y-\mu}{\sigma}
ight)g\left(rac{y-\mu}{\sigma}
ight)$$

and $f(y)=\sigma g((y-\mu)/\sigma)$ gives

$$f'(y) - \left(\frac{y-\mu}{\sigma^2}\right)f(y) = h\left(\frac{y-\mu}{\sigma}\right) - Nh.$$

Stein Equation, Scaling and Bounds

When

$$f(y)=\sigma g((y-\mu)/\sigma)$$

then

$$||f^{(k)}||_{\infty} = \sigma^{-k+1}||g^{(k)}||_{\infty}.$$

In particular,

$$||f'||_{\infty} = ||g'||_{\infty} \le 2||h - Nh||_{\infty}$$

and

$$||f''||_{\infty} = \sigma^{-1} ||g''||_{\infty} \le 2\sigma^{-1} ||h'||_{\infty}.$$

Size Biasing

Let $Y \ge 0$ have nonzero finite mean $EY = \mu$. We say Y^s has the Y-size bias distribution if

$$\frac{dF^s}{dF} = \frac{y}{\mu}$$

where F and F^s are the distributions of Y and Y^s , respectively. Alternatively, the distribution of Y^s is characterized by

$$E[Yf(Y)] = \mu E[f(Y^s)]$$

for all functions for which these expectations exist.

Size Biased Sampling

Oil exploration, find large reserves first.

For Y nonnegative integer valued with finite nonzero mean,

$$P(Y^s = k) = \frac{kP(Y = k)}{EY}, \quad k = 0, 1, \dots$$

Random Digit Dialing, Sampling (zero mass at zero). Note if Y is Bernoulli $p \in (0, 1)$, then

$$Y^s = 1.$$

Waiting Time Paradox

Consider $\Gamma(\alpha, 1/\lambda)$ distribution,

$$g(y; \alpha, 1/\lambda) = \frac{\lambda^{\alpha} y^{\alpha-1} e^{-\lambda y}}{\Gamma(\alpha)}.$$

Poisson Process with exponential $Y_i \sim \Gamma(1, 1/\lambda)$ interarrival times. The memoryless property says one lands in interval of length with distribution $Y_1 + Y_2 \sim \Gamma(2, 1/\lambda)$. Note $EY_1 = 1/\lambda$, and

 $\lambda^2 y e^{-\lambda y}$ is the size biased density of $\lambda e^{-\lambda y}$.

Single Summand Property

Let X_1, \ldots, X_n be nonnegative independent random variables with finite means μ_1, \ldots, μ_n , respectively, and

$$Y = \sum_{i=1}^{n} X_i$$

Let I be an index with distribution $P(I = i) = \mu_i / \sum_{j=1}^n \mu_j$, and for i = 1, 2..., n let X_i^i have the X_i size biased distribution, and be independent of $X_j, j \neq i$. Then with

$$Y^j = \sum_{i \neq j} X_i + X_j^j,$$

the variable Y^I has the Y-size biased distribution.

Size Biasing under Dependence

For $\mathbf{X} = (X_1, \dots, X_n) \in \mathbb{R}^n$ with nonnegative components and positive means μ_1, \dots, μ_n we say \mathbf{X}^i has the \mathbf{X} distribution biased in direction i if

$$EX_i g(\mathbf{X}) = \mu_i Eg(\mathbf{X}^i) \quad \text{or} \quad dF^i(\mathbf{x}) = \frac{x_i dF(\mathbf{x})}{\mu_i}$$

Then letting I be a random index independent of $\mathbf{X}, \mathbf{X}^i, i = 1, \dots, n$ with distribution

$$P(I=i) = rac{\mu_i}{\sum_{j=1}^n \mu_j}, \quad ext{the variable} \quad Y^I = \sum_{i=1}^n X^I_i$$

has the Y size biased distribution.

Size Biasing under Dependence Let $Y = \sum_{j=1}^{n} X_j$ and $Y^i = \sum_{j=1}^{n} X_j^i$. Since $EX_i g(\mathbf{X}) = \mu_i Eg(\mathbf{X}^i)$ for $g(\mathbf{x}) = f(x_1 + \dots + x_n)$ we have $EX_i f(Y) = \mu_i Ef(Y^i)$.

Summing over i yields

$$E[Yf(Y)] = \sum_{i=1}^{n} \mu_i Ef(Y^i)$$
$$= \mu \sum_{i=1}^{n} P(I=i) Ef(Y^i)$$
$$= \mu Ef(Y^I).$$

Dependent Bernoullis

If X_1, \ldots, X_n are independent non trivial Bernoulli random variables, then $X_i^i = 1$ so

$$\mathbf{X}^i = \mathcal{L}(\mathbf{X}|X_i = 1).$$

For instance, if $\mathbf{X} \in \mathbb{R}^N$ are the inclusion indicator variables for individuals in a simple random sample of size n, \mathbf{X}^i are the inclusion indicators when $X_i^i = 1$ and the remaining $X_j^i, j \neq i$ are indicators for a simple random sample of size n-1.

Include individual i, then sample n-1 individuals from those that remain. Will need coupling.

Size Biasing: Mean and Variance Relation

With $\mu = EY$ recall

$$\mu Ef(Y^s) = E[Yf(Y)].$$

If Y and Y^s are defined on the same space,

$$\mu E(Y^s - Y) = \mu EY^s - \mu EY$$
$$= EY^2 - \mu^2$$
$$= \sigma^2$$

where $\sigma^2 = \operatorname{Var}(Y)$.

Size Biasing and the Stein Equation

Recall (μ, σ^2) Stein's Lemma: If

$$E\left[\left(\frac{X-\mu}{\sigma^2}\right)f(X)\right] = Ef'(X) \quad \text{for } f \in \mathcal{F}$$

then $X \sim \mathcal{N}(\mu, \sigma^2)$.

Hence, if

$$E\left[\left(\frac{Y-\mu}{\sigma^2}\right)f(Y)\right] \approx Ef'(Y) \quad \text{for } f \in \mathcal{F}$$

then $Y \approx \mathcal{N}(\mu, \sigma^2)$.

Size Bias Coupling

Suppose Y and Y^s are defined on a common space, with Y^s having the Y size bias distribution. Then for a twice differentiable function f,

$$E\left[\left(\frac{Y-\mu}{\sigma^2}\right)f(Y)\right] = E\left[\frac{\mu}{\sigma^2}(f(Y^s) - f(Y))\right]$$
$$= \frac{\mu}{\sigma^2}E(Y^s - Y)f'(Y) + R$$

where

$$R = \frac{\mu}{\sigma^2} E \int_Y^{Y^s} (Y^s - t) f''(t) dt.$$

Size Bias Coupling

Taking the difference,

$$\begin{split} E\left[f'(Y) - \left(\frac{Y-\mu}{\sigma^2}\right)f(Y)\right] \\ &= E\left[\left(1 - \frac{\mu}{\sigma^2}E(Y^s - Y)\right)f'(Y)\right] + R \\ &= E\left[f'(Y)E\left[\left(1 - \frac{\mu}{\sigma^2}(Y^s - Y)\right)|Y\right]\right] + R. \end{split}$$

Main Term

$$\begin{split} &|E\left[f'(Y)E[\left(1-\frac{\mu}{\sigma^2}(Y^s-Y)\right)|Y]\right]|\\ \leq & \frac{\mu}{\sigma^2}\sqrt{E[f'(Y)]^2}\sqrt{\operatorname{Var}(E(Y^s-Y|Y))}\\ \leq & \frac{2\mu}{\sigma^2}||h-Nh||_{\infty}\sqrt{\operatorname{Var}(E(Y^s-Y|Y))}. \end{split}$$

When $Y = \sum_{i=1}^{n} X_i$, sum of nonnegative variables, typically we have μ and σ^2 of O(n). Hence if the variance term is O(1/n), this term has order $n^{-1/2}$.

Size Bias Coupling, Remainder Term

$$R = \frac{\mu}{\sigma^2} E \int_Y^{Y^s} (Y^s - t) f''(t) dt.$$

Recalling $||f''||_\infty \leq (2/\sigma)||h'||_\infty,$ may be bounded by

$$|R| \le ||f''||_{\infty} \frac{\mu}{\sigma^2} \frac{1}{2} E(Y^s - Y)^2 \le ||h'||_{\infty} \frac{\mu}{\sigma^3} E(Y^s - Y)^2.$$

If μ and σ^2 are both order O(n) then if $E(Y^s-Y)^2$ is bounded the remainder term R has order $n^{-1/2}.$

Error Bound

The remainder term depends on $E(Y^s - Y)^2$. Berry-Esseen bounds depend on third moments.

Note

$$E[Yf(Y)] = \mu Ef(Y^s)$$
 applied with $f(w) = w^2$ gives $\mu E(Y^s)^2 = EY^3.$

Putting terms together

Smooth function bound: If h' exists and is bounded,

$$Eh((Y-\mu)/\sigma) - Nh| \le R_1 + R_2$$

where

$$R_1 = \frac{2\mu}{\sigma^2} ||h - Nh||_{\infty} \sqrt{\mathsf{Var}(E(Y^s - Y|Y))}$$

and

$$R_2 = ||h'||_{\infty} \frac{\mu}{\sigma^3} E(Y^s - Y)^2.$$

Typically μ and σ^2 are O(n), so we want

$${\rm Var}(E(Y^s-Y|Y)) = O(n^{-1}) \quad {\rm and} \quad E(Y^s-Y)^2 = O(1).$$

Independent Identically Distributed Variables

When $Y = X_1 + \cdots + X_n$, a sum of nonnegative i.i.d. variables with variances σ^2 and finite third moments, then with P(I = i) = 1/n and X_i^s independent of all other variables

$$Y^I - Y = X^s_I - X_I.$$

Hence $E[X_I^s - X_I|Y] = EX_I^s - Y/n$ and therefore

$$Var(E[X_I^s - X_I|Y]) = Var(Y)/n^2 = \sigma^2/n = O(n^{-1}),$$

and since $E(X_i^s)^2 = EX_i^3/EX_i$,

$$E(Y^{s} - Y)^{2} = E(X_{I}^{s} - X_{I})^{2} \le 2E((X_{I}^{s})^{2} + X_{I}^{2}) = O(1).$$

Example: Simple Random Sampling n of N

Population $\mathcal{A} = \{a_1, \ldots, a_N\} \subset (0, \infty)$. Want to approximate the standardized distribution of

$$Y = \sum_{i=1}^{N} a_i J_i,$$

where all $\mathbf{J} = (J_1, \dots, J_N) \in \{0, 1\}^N$ with $\sum_{i=1}^N J_i = n$ are equally likely.

Coupling Y and Y^s

Given **J**, let *K* be chosen uniformly from the collection of *k* for which $J_k = 1$. For each *i* let

$$J_j^i = \begin{cases} J_j & j \notin \{i, K\} \\ J_i & j = K \\ 1 & j = i. \end{cases}$$

Interchanging the sampling indicators of i and the sampled unit K gives \mathbf{J}^i indicators with

$$\mathcal{L}(\mathbf{J}^i) = \mathcal{L}(J_1, \dots, J_N | J_i = 1)$$

on the same space as, and close to, ${\bf J}.$

Simple Random Sampling Coupling

As $Ea_iJ_i = a_in/N$, upon picking $P(I = i) \propto a_i$, Y^I has the Y-size biased distribution, where $Y^i = \sum_{j=1}^N a_j J_j^i$. Letting

$$\overline{Y} = \sum_{i \notin \{I,K\}} a_i J_i$$

when $I \neq K$ we have

 $Y = \overline{Y} + a_I J_I + a_K J_K$ and $Y^I = \overline{Y} + a_I J_K + a_K J_I$,

and then, in all cases,

$$Y^{I} - Y = a_{I}J_{K} + a_{K}J_{I} - a_{I}J_{I} - a_{K}J_{K} = (1 - J_{I})(a_{I} - a_{K}).$$

Conditional Expectation of Difference

May be difficult to calculate the conditional expectation

$$E(Y^{I} - Y|Y) = E((1 - J_{I})(a_{I} - a_{K})|Y).$$

Let $X=E(\Delta|\mathcal{F})$ where Y is \mathcal{F} measurable. By the conditional variance formula

$$\mathsf{Var}(X) = E[\mathsf{Var}(X|Y)] + \mathsf{Var}[E(X|Y)] \ge \mathsf{Var}[E(X|Y)],$$

and

$$E(X|Y) = E(E(\Delta|\mathcal{F})|Y) = E(\Delta|Y).$$

Hence, conditioning on more yields an upper bound,

$$\mathsf{Var}[E(\Delta|\mathcal{F})] \geq \mathsf{Var}[E(\Delta|Y)].$$

Conditional Expectation of Difference

Condition on more:

$$\operatorname{Var}(E((1-J_I)(a_I-a_K)|Y)) \leq \operatorname{Var}(E((1-J_I)(a_I-a_K)|\mathbf{J})).$$

Tractable conditional expectation:

$$E((1 - J_I)(a_I - a_K)|\mathbf{J})$$

$$= \sum_{i,k} (1 - J_i)(a_i - a_k)P(I = i, K = k|\mathbf{J})$$

$$= \sum_{i,k} (1 - J_i)(a_i - a_k)\frac{a_i}{N\overline{a}}\frac{J_k}{n}$$

Under 'typical' conditions [Luk (1994)] $n/N \rightarrow f \in (0,1)$ and $a_i = O(1)$, the variance will be O(1/n), as desired

Advertisements

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_n . For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_n which has degree d, that is,

$$Y = \sum_{v \in \mathcal{V}} X_v \quad \text{where} \quad X_v = \mathbf{1}(D(v) = d).$$

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_n . For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_n which has degree d, that is,

$$Y = \sum_{v \in \mathcal{V}} X_v \quad \text{where} \quad X_v = \mathbf{1}(D(v) = d).$$

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_n . For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_n which has degree d, that is,

$$Y = \sum_{v \in \mathcal{V}} X_v \quad \text{where} \quad X_v = \mathbf{1}(D(v) = d).$$

To size bias, select V uniformly over \mathcal{V} . Conditional on D(V) = d, the d edges of V are uniform over all possible $\binom{n-1}{d}$ choices. Edges not involving V are independent. Hence, a coupling can be achieved by first generating \mathcal{G}_n , selecting V, and then adding or removing edges from V as needed for the cases D(V) < d and D(V) > d, respectively.

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_n . For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_n which has degree d, that is,

$$Y = \sum_{v \in \mathcal{V}} X_v \quad \text{where} \quad X_v = \mathbf{1}(D(v) = d).$$

See Jay Bartroff's talk.

Covered Volume of Balls around Randomly Placed Points

Let U_1, \ldots, U_n be i.i.d. in $C_n = [0, n^{1/d})^d$ with periodic boundary conditions, and let $B_{i,\rho}$ be the ball of radius ρ centered around U_i . Let V be the volume of their union,

$$V = \mathsf{Volume}(\bigcup_{i=1}^{n} B_{i,\rho}).$$

Unlike previous examples, there are no obvious indicators to 'set to 1'; in fact, V is continuous.

Q: So, how to size bias V?

Covered Volume of Balls around Randomly Placed Points

Let U_1, \ldots, U_n be i.i.d. in $C_n = [0, n^{1/d})^d$ with periodic boundary conditions, and let $B_{i,\rho}$ be the ball of radius ρ centered around U_i . Let V be the volume of the union

$$V = \mathsf{Volume}(\bigcup_{i=1}^n B_{i,\rho}).$$

Unlike previous examples, there are no obvious indicators to 'set to 1'; in fact, V is continuous.

- Q: So, how to size bias V?
- A: See Mathew Penrose's talk.

Coming Attractions

- III. Exchangeable Pair, Zero Bias Couplings
- IV. Local dependence, Nonsmooth functions