A Gentle Introduction to Stein's Method for Normal Approximation II

Larry Goldstein

University of Southern California

II . Size Bias Couplings
(a) Stein equation with mean and variance
(b) Size biasing
(c) Relation to Stein equation
(d) Smooth function bound
(e) Examples
[Baldi, Rinott and Stein (1989)]

Stein Equation

For given $h \in \mathcal{H}$, solve for f in

$$
f^{\prime}(w)-w f(w)=h(w)-N h \quad \text { where } \quad N h=E h(Z) .
$$

For W satisfying $E W=0, \operatorname{Var}(W)=1$ we calculate

$$
E h(W)-N h
$$

by computing

$$
E\left[f^{\prime}(W)-W f(W)\right]
$$

Stein Equation, Mean and Variance

If W has mean zero and variance 1 , consider

$$
g^{\prime}(w)-w g(w)=h(w)-N h \quad \text { where } \quad N h=E h(Z) .
$$

If Y has mean μ and variance σ^{2}, letting $w=(y-\mu) / \sigma$,

$$
g^{\prime}\left(\frac{y-\mu}{\sigma}\right)-\left(\frac{y-\mu}{\sigma}\right) g\left(\frac{y-\mu}{\sigma}\right)
$$

and $f(y)=\sigma g((y-\mu) / \sigma)$ gives

$$
f^{\prime}(y)-\left(\frac{y-\mu}{\sigma^{2}}\right) f(y)=h\left(\frac{y-\mu}{\sigma}\right)-N h .
$$

Stein Equation, Scaling and Bounds

When

$$
f(y)=\sigma g((y-\mu) / \sigma)
$$

then

$$
\left\|f^{(k)}\right\|_{\infty}=\sigma^{-k+1}\left\|g^{(k)}\right\|_{\infty}
$$

In particular,

$$
\left\|f^{\prime}\right\|_{\infty}=\left\|g^{\prime}\right\|_{\infty} \leq 2\|h-N h\|_{\infty}
$$

and

$$
\left\|f^{\prime \prime}\right\|_{\infty}=\sigma^{-1}\left\|g^{\prime \prime}\right\|_{\infty} \leq 2 \sigma^{-1}\left\|h^{\prime}\right\|_{\infty}
$$

Size Biasing

Let $Y \geq 0$ have nonzero finite mean $E Y=\mu$. We say Y^{s} has the Y-size bias distribution if

$$
\frac{d F^{s}}{d F}=\frac{y}{\mu}
$$

where F and F^{s} are the distributions of Y and Y^{s}, respectively. Alternatively, the distribution of Y^{s} is characterized by

$$
E[Y f(Y)]=\mu E\left[f\left(Y^{s}\right)\right]
$$

for all functions for which these expectations exist.

Size Biased Sampling

Oil exploration, find large reserves first.
For Y nonnegative integer valued with finite nonzero mean,

$$
P\left(Y^{s}=k\right)=\frac{k P(Y=k)}{E Y}, \quad k=0,1, \ldots
$$

Random Digit Dialing, Sampling (zero mass at zero).
Note if Y is Bernoulli $p \in(0,1)$, then

$$
Y^{s}=1
$$

Waiting Time Paradox

Consider $\Gamma(\alpha, 1 / \lambda)$ distribution,

$$
g(y ; \alpha, 1 / \lambda)=\frac{\lambda^{\alpha} y^{\alpha-1} e^{-\lambda y}}{\Gamma(\alpha)}
$$

Poisson Process with exponential $Y_{i} \sim \Gamma(1,1 / \lambda)$ interarrival times. The memoryless property says one lands in interval of length with distribution $Y_{1}+Y_{2} \sim \Gamma(2,1 / \lambda)$. Note $E Y_{1}=1 / \lambda$, and

$$
\lambda^{2} y e^{-\lambda y} \text { is the size biased density of } \lambda e^{-\lambda y} .
$$

Single Summand Property

Let X_{1}, \ldots, X_{n} be nonnegative independent random variables with finite means μ_{1}, \ldots, μ_{n}, respectively, and

$$
Y=\sum_{i=1}^{n} X_{i}
$$

Let I be an index with distribution
$P(I=i)=\mu_{i} / \sum_{j=1}^{n} \mu_{j}$, and for $i=1,2 \ldots, n$ let X_{i}^{i} have the X_{i} size biased distribution, and be independent of $X_{j}, j \neq i$. Then with

$$
Y^{j}=\sum_{i \neq j} X_{i}+X_{j}^{j},
$$

the variable Y^{I} has the Y-size biased distribution.

Size Biasing under Dependence

For $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ with nonnegative components and positive means μ_{1}, \ldots, μ_{n} we say \mathbf{X}^{i} has the \mathbf{X} distribution biased in direction i if

$$
E X_{i} g(\mathbf{X})=\mu_{i} E g\left(\mathbf{X}^{i}\right) \quad \text { or } \quad d F^{i}(\mathbf{x})=\frac{x_{i} d F(\mathbf{x})}{\mu_{i}}
$$

Then letting I be a random index independent of $\mathbf{X}, \mathbf{X}^{i}, i=1, \ldots, n$ with distribution

$$
P(I=i)=\frac{\mu_{i}}{\sum_{j=1}^{n} \mu_{j}}, \quad \text { the variable } \quad Y^{I}=\sum_{i=1}^{n} X_{i}^{I}
$$

has the Y size biased distribution.

Size Biasing under Dependence

Let $Y=\sum_{j=1}^{n} X_{j}$ and $Y^{i}=\sum_{j=1}^{n} X_{j}^{i}$. Since

$$
E X_{i} g(\mathbf{X})=\mu_{i} E g\left(\mathbf{X}^{i}\right)
$$

for $g(\mathbf{x})=f\left(x_{1}+\cdots+x_{n}\right)$ we have

$$
E X_{i} f(Y)=\mu_{i} E f\left(Y^{i}\right)
$$

Summing over i yields

$$
\begin{aligned}
E[Y f(Y)] & =\sum_{i=1}^{n} \mu_{i} E f\left(Y^{i}\right) \\
& =\mu \sum_{i=1}^{n} P(I=i) E f\left(Y^{i}\right) \\
& =\mu E f\left(Y^{I}\right)
\end{aligned}
$$

Dependent Bernoullis

If X_{1}, \ldots, X_{n} are independent non trivial Bernoulli random variables, then $X_{i}^{i}=1$ so

$$
\mathbf{X}^{i}=\mathcal{L}\left(\mathbf{X} \mid X_{i}=1\right)
$$

For instance, if $\mathbf{X} \in \mathbb{R}^{N}$ are the inclusion indicator variables for individuals in a simple random sample of size n, \mathbf{X}^{i} are the inclusion indicators when $X_{i}^{i}=1$ and the remaining $X_{j}^{i}, j \neq i$ are indicators for a simple random sample of size $n-1$.

Include individual i, then sample $n-1$ individuals from those that remain. Will need coupling.

Size Biasing: Mean and Variance Relation

With $\mu=E Y$ recall

$$
\mu E f\left(Y^{s}\right)=E[Y f(Y)] .
$$

If Y and Y^{s} are defined on the same space,

$$
\begin{aligned}
\mu E\left(Y^{s}-Y\right) & =\mu E Y^{s}-\mu E Y \\
& =E Y^{2}-\mu^{2} \\
& =\sigma^{2}
\end{aligned}
$$

where $\sigma^{2}=\operatorname{Var}(Y)$.

Size Biasing and the Stein Equation

Recall (μ, σ^{2}) Stein's Lemma: If

$$
E\left[\left(\frac{X-\mu}{\sigma^{2}}\right) f(X)\right]=E f^{\prime}(X) \quad \text { for } f \in \mathcal{F}
$$

then $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
Hence, if

$$
E\left[\left(\frac{Y-\mu}{\sigma^{2}}\right) f(Y)\right] \approx E f^{\prime}(Y) \quad \text { for } f \in \mathcal{F}
$$

then $Y \approx \mathcal{N}\left(\mu, \sigma^{2}\right)$.

Size Bias Coupling

Suppose Y and Y^{s} are defined on a common space, with Y^{s} having the Y size bias distribution. Then for a twice differentiable function f,

$$
\begin{aligned}
E\left[\left(\frac{Y-\mu}{\sigma^{2}}\right) f(Y)\right] & =E\left[\frac{\mu}{\sigma^{2}}\left(f\left(Y^{s}\right)-f(Y)\right)\right] \\
& =\frac{\mu}{\sigma^{2}} E\left(Y^{s}-Y\right) f^{\prime}(Y)+R
\end{aligned}
$$

where

$$
R=\frac{\mu}{\sigma^{2}} E \int_{Y}^{Y^{s}}\left(Y^{s}-t\right) f^{\prime \prime}(t) d t
$$

Size Bias Coupling

Taking the difference,

$$
\begin{aligned}
& E\left[f^{\prime}(Y)-\left(\frac{Y-\mu}{\sigma^{2}}\right) f(Y)\right] \\
& \quad=E\left[\left(1-\frac{\mu}{\sigma^{2}} E\left(Y^{s}-Y\right)\right) f^{\prime}(Y)\right]+R \\
& \quad=E\left[f^{\prime}(Y) E\left[\left.\left(1-\frac{\mu}{\sigma^{2}}\left(Y^{s}-Y\right)\right) \right\rvert\, Y\right]\right]+R
\end{aligned}
$$

Main Term

$$
\begin{aligned}
& \left|E\left[f^{\prime}(Y) E\left[\left.\left(1-\frac{\mu}{\sigma^{2}}\left(Y^{s}-Y\right)\right) \right\rvert\, Y\right]\right]\right| \\
\leq & \frac{\mu}{\sigma^{2}} \sqrt{E\left[f^{\prime}(Y)\right]^{2}} \sqrt{\operatorname{Var}\left(E\left(Y^{s}-Y \mid Y\right)\right)} \\
\leq & \frac{2 \mu}{\sigma^{2}}\|h-N h\|_{\infty} \sqrt{\operatorname{Var}\left(E\left(Y^{s}-Y \mid Y\right)\right)} .
\end{aligned}
$$

When $Y=\sum_{i=1}^{n} X_{i}$, sum of nonnegative variables, typically we have μ and σ^{2} of $O(n)$. Hence if the variance term is $O(1 / n)$, this term has order $n^{-1 / 2}$.

Size Bias Coupling, Remainder Term

$$
R=\frac{\mu}{\sigma^{2}} E \int_{Y}^{Y^{s}}\left(Y^{s}-t\right) f^{\prime \prime}(t) d t
$$

Recalling $\left\|f^{\prime \prime}\right\|_{\infty} \leq(2 / \sigma)\left\|h^{\prime}\right\|_{\infty}$, may be bounded by

$$
|R| \leq\left\|f^{\prime \prime}\right\|_{\infty} \frac{\mu}{\sigma^{2}} \frac{1}{2} E\left(Y^{s}-Y\right)^{2} \leq\left\|h^{\prime}\right\|_{\infty} \frac{\mu}{\sigma^{3}} E\left(Y^{s}-Y\right)^{2}
$$

If μ and σ^{2} are both order $O(n)$ then if $E\left(Y^{s}-Y\right)^{2}$ is bounded the remainder term R has order $n^{-1 / 2}$.

Error Bound

The remainder term depends on $E\left(Y^{s}-Y\right)^{2}$. Berry-Esseen bounds depend on third moments.

Note

$$
E[Y f(Y)]=\mu E f\left(Y^{s}\right)
$$

applied with $f(w)=w^{2}$ gives $\mu E\left(Y^{s}\right)^{2}=E Y^{3}$.

Putting terms together

Smooth function bound: If h^{\prime} exists and is bounded,

$$
|E h((Y-\mu) / \sigma)-N h| \leq R_{1}+R_{2}
$$

where

$$
R_{1}=\frac{2 \mu}{\sigma^{2}}\|h-N h\|_{\infty} \sqrt{\operatorname{Var}\left(E\left(Y^{s}-Y \mid Y\right)\right)}
$$

and

$$
R_{2}=\left\|h^{\prime}\right\|_{\infty} \frac{\mu}{\sigma^{3}} E\left(Y^{s}-Y\right)^{2} .
$$

Typically μ and σ^{2} are $O(n)$, so we want
$\operatorname{Var}\left(E\left(Y^{s}-Y \mid Y\right)\right)=O\left(n^{-1}\right) \quad$ and $\quad E\left(Y^{s}-Y\right)^{2}=O(1)$.

Independent Identically Distributed Variables

When $Y=X_{1}+\cdots+X_{n}$, a sum of nonnegative i.i.d. variables with variances σ^{2} and finite third moments, then with $P(I=i)=1 / n$ and X_{i}^{s} independent of all other variables

$$
Y^{I}-Y=X_{I}^{s}-X_{I}
$$

Hence $E\left[X_{I}^{s}-X_{I} \mid Y\right]=E X_{I}^{s}-Y / n$ and therefore

$$
\operatorname{Var}\left(E\left[X_{I}^{s}-X_{I} \mid Y\right]\right)=\operatorname{Var}(Y) / n^{2}=\sigma^{2} / n=O\left(n^{-1}\right)
$$

and since $E\left(X_{i}^{s}\right)^{2}=E X_{i}^{3} / E X_{i}$,
$E\left(Y^{s}-Y\right)^{2}=E\left(X_{I}^{s}-X_{I}\right)^{2} \leq 2 E\left(\left(X_{I}^{s}\right)^{2}+X_{I}^{2}\right)=O(1)$.

Example: Simple Random Sampling n of N

Population $\mathcal{A}=\left\{a_{1}, \ldots, a_{N}\right\} \subset(0, \infty)$. Want to approximate the standardized distribution of

$$
Y=\sum_{i=1}^{N} a_{i} J_{i}
$$

where all $\mathbf{J}=\left(J_{1}, \ldots, J_{N}\right) \in\{0,1\}^{N}$ with $\sum_{i=1}^{N} J_{i}=n$ are equally likely.

Coupling Y and Y^{s}

Given \mathbf{J}, let K be chosen uniformly from the collection of k for which $J_{k}=1$. For each i let

$$
J_{j}^{i}=\left\{\begin{array}{cc}
J_{j} & j \notin\{i, K\} \\
J_{i} & j=K \\
1 & j=i .
\end{array}\right.
$$

Interchanging the sampling indicators of i and the sampled unit K gives \mathbf{J}^{i} indicators with

$$
\mathcal{L}\left(\mathbf{J}^{i}\right)=\mathcal{L}\left(J_{1}, \ldots, J_{N} \mid J_{i}=1\right)
$$

on the same space as, and close to, \mathbf{J}.

Simple Random Sampling Coupling

As $E a_{i} J_{i}=a_{i} n / N$, upon picking $P(I=i) \propto a_{i}, Y^{I}$ has the Y-size biased distribution, where $Y^{i}=\sum_{j=1}^{N} a_{j} J_{j}^{i}$. Letting

$$
\bar{Y}=\sum_{i \notin\{I, K\}} a_{i} J_{i}
$$

when $I \neq K$ we have

$$
Y=\bar{Y}+a_{I} J_{I}+a_{K} J_{K} \quad \text { and } \quad Y^{I}=\bar{Y}+a_{I} J_{K}+a_{K} J_{I},
$$

and then, in all cases,
$Y^{I}-Y=a_{I} J_{K}+a_{K} J_{I}-a_{I} J_{I}-a_{K} J_{K}=\left(1-J_{I}\right)\left(a_{I}-a_{K}\right)$.

Conditional Expectation of Difference

May be difficult to calculate the conditional expectation

$$
E\left(Y^{I}-Y \mid Y\right)=E\left(\left(1-J_{I}\right)\left(a_{I}-a_{K}\right) \mid Y\right)
$$

Let $X=E(\Delta \mid \mathcal{F})$ where Y is \mathcal{F} measurable. By the conditional variance formula

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[E(X \mid Y)] \geq \operatorname{Var}[E(X \mid Y)]
$$

and

$$
E(X \mid Y)=E(E(\Delta \mid \mathcal{F}) \mid Y)=E(\Delta \mid Y)
$$

Hence, conditioning on more yields an upper bound,

$$
\operatorname{Var}[E(\Delta \mid \mathcal{F})] \geq \operatorname{Var}[E(\Delta \mid Y)]
$$

Conditional Expectation of Difference

Condition on more:
$\operatorname{Var}\left(E\left(\left(1-J_{I}\right)\left(a_{I}-a_{K}\right) \mid Y\right)\right) \leq \operatorname{Var}\left(E\left(\left(1-J_{I}\right)\left(a_{I}-a_{K}\right) \mid \mathbf{J}\right)\right)$.
Tractable conditional expectation:

$$
\begin{aligned}
& E\left(\left(1-J_{I}\right)\left(a_{I}-a_{K}\right) \mid \mathbf{J}\right) \\
= & \sum_{i, k}\left(1-J_{i}\right)\left(a_{i}-a_{k}\right) P(I=i, K=k \mid \mathbf{J}) \\
= & \sum_{i, k}\left(1-J_{i}\right)\left(a_{i}-a_{k}\right) \frac{a_{i}}{N \bar{a}} \frac{J_{k}}{n}
\end{aligned}
$$

Under 'typical' conditions [Luk (1994)] $n / N \rightarrow f \in(0,1)$ and $a_{i}=O(1)$, the variance will be $O(1 / n)$, as desired

Advertisements

Graph Degree Problem on \mathcal{G}_{n}

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_{n}. For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_{n} which has degree d, that is,

$$
Y=\sum_{v \in \mathcal{V}} X_{v} \quad \text { where } \quad X_{v}=\mathbf{1}(D(v)=d)
$$

Graph Degree Problem on \mathcal{G}_{n}

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_{n}. For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_{n} which has degree d, that is,

$$
Y=\sum_{v \in \mathcal{V}} X_{v} \quad \text { where } \quad X_{v}=\mathbf{1}(D(v)=d)
$$

Graph Degree Problem on \mathcal{G}_{n}

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_{n}. For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_{n} which has degree d, that is,

$$
Y=\sum_{v \in \mathcal{V}} X_{v} \quad \text { where } \quad X_{v}=\mathbf{1}(D(v)=d)
$$

To size bias, select V uniformly over \mathcal{V}. Conditional on $D(V)=d$, the d edges of V are uniform over all possible $\binom{n-1}{d}$ choices. Edges not involving V are independent. Hence, a coupling can be achieved by first generating \mathcal{G}_{n}, selecting V, and then adding or removing edges from V as needed for the cases $D(V)<d$ and $D(V)>d$, respectively.

Graph Degree Problem on \mathcal{G}_{n}

For every pair of vertices in the set \mathcal{V} of size n, draw an edge, independently of all other edges, with probability π_{n}. For d a nonnegative integer, let Y be the number of edges of the resulting graph \mathcal{G}_{n} which has degree d, that is,

$$
Y=\sum_{v \in \mathcal{V}} X_{v} \quad \text { where } \quad X_{v}=\mathbf{1}(D(v)=d)
$$

See Jay Bartroff's talk.

Covered Volume of Balls around Randomly Placed Points

Let U_{1}, \ldots, U_{n} be i.i.d. in $C_{n}=\left[0, n^{1 / d}\right)^{d}$ with periodic boundary conditions, and let $B_{i, \rho}$ be the ball of radius ρ centered around U_{i}. Let V be the volume of their union,

$$
V=\operatorname{Volume}\left(\bigcup_{i=1}^{n} B_{i, \rho}\right)
$$

Unlike previous examples, there are no obvious indicators to 'set to 1 '; in fact, V is continuous.

Q: So, how to size bias V ?

Covered Volume of Balls around Randomly Placed Points

Let U_{1}, \ldots, U_{n} be i.i.d. in $C_{n}=\left[0, n^{1 / d}\right)^{d}$ with periodic boundary conditions, and let $B_{i, \rho}$ be the ball of radius ρ centered around U_{i}. Let V be the volume of the union

$$
V=\operatorname{Volume}\left(\bigcup_{i=1}^{n} B_{i, \rho}\right)
$$

Unlike previous examples, there are no obvious indicators to 'set to 1 '; in fact, V is continuous.

Q: So, how to size bias V ?
A: See Mathew Penrose's talk.

Coming Attractions

III. Exchangeable Pair, Zero Bias Couplings
IV. Local dependence, Nonsmooth functions

