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II . Size Bias Couplings

(a) Stein equation with mean and variance

(b) Size biasing

(c) Relation to Stein equation

(d) Smooth function bound

(e) Examples

[Baldi, Rinott and Stein (1989)]
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Stein Equation

For given h ∈ H, solve for f in

f ′(w)− wf(w) = h(w)−Nh where Nh = Eh(Z).

For W satisfying EW = 0,Var(W ) = 1 we calculate

Eh(W )−Nh

by computing
E[f ′(W )−Wf(W )].
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Stein Equation, Mean and Variance

If W has mean zero and variance 1, consider

g′(w)− wg(w) = h(w)−Nh where Nh = Eh(Z).

If Y has mean µ and variance σ2, letting w = (y − µ)/σ,

g′
(
y − µ
σ

)
−
(
y − µ
σ

)
g

(
y − µ
σ

)
and f(y) = σg((y − µ)/σ) gives

f ′(y)−
(
y − µ
σ2

)
f(y) = h

(
y − µ
σ

)
−Nh.
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Stein Equation, Scaling and Bounds

When
f(y) = σg((y − µ)/σ)

then
||f (k)||∞ = σ−k+1||g(k)||∞.

In particular,

||f ′||∞ = ||g′||∞ ≤ 2||h−Nh||∞

and
||f ′′||∞ = σ−1||g′′||∞ ≤ 2σ−1||h′||∞.
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Size Biasing

Let Y ≥ 0 have nonzero finite mean EY = µ. We say Y s

has the Y -size bias distribution if

dF s

dF
=
y

µ

where F and F s are the distributions of Y and Y s,
respectively. Alternatively, the distribution of Y s is
characterized by

E[Y f(Y )] = µE[f(Y s)]

for all functions for which these expectations exist.
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Size Biased Sampling

Oil exploration, find large reserves first.

For Y nonnegative integer valued with finite nonzero mean,

P (Y s = k) =
kP (Y = k)

EY
, k = 0, 1, . . ..

Random Digit Dialing, Sampling (zero mass at zero).

Note if Y is Bernoulli p ∈ (0, 1), then

Y s = 1.
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Waiting Time Paradox

Consider Γ(α, 1/λ) distribution,

g(y;α, 1/λ) =
λαyα−1e−λy

Γ(α)
.

Poisson Process with exponential Yi ∼ Γ(1, 1/λ)
interarrival times. The memoryless property says one lands
in interval of length with distribution Y1 + Y2 ∼ Γ(2, 1/λ).
Note EY1 = 1/λ, and

λ2ye−λy is the size biased density of λe−λy.
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Single Summand Property

Let X1, . . . , Xn be nonnegative independent random
variables with finite means µ1, . . . , µn, respectively, and

Y =
n∑
i=1

Xi.

Let I be an index with distribution
P (I = i) = µi/

∑n
j=1 µj , and for i = 1, 2 . . . , n let Xi

i

have the Xi size biased distribution, and be independent of
Xj , j 6= i. Then with

Y j =
∑
i 6=j

Xi +Xj
j ,

the variable Y I has the Y -size biased distribution.
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Size Biasing under Dependence

For X = (X1, . . . , Xn) ∈ Rn with nonnegative components
and positive means µ1, . . . , µn we say Xi has the X
distribution biased in direction i if

EXig(X) = µiEg(Xi) or dF i(x) =
xidF (x)

µi
.

Then letting I be a random index independent of
X,Xi, i = 1, . . . , n with distribution

P (I = i) =
µi∑n
j=1 µj

, the variable Y I =
n∑
i=1

XI
i

has the Y size biased distribution.
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Size Biasing under Dependence

Let Y =
∑n
j=1Xj and Y i =

∑n
j=1X

i
j . Since

EXig(X) = µiEg(Xi)

for g(x) = f(x1 + · · ·+ xn) we have

EXif(Y ) = µiEf(Y i).

Summing over i yields

E[Y f(Y )] =
n∑
i=1

µiEf(Y i)

= µ

n∑
i=1

P (I = i)Ef(Y i)

= µEf(Y I).
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Dependent Bernoullis

If X1, . . . , Xn are independent non trivial Bernoulli random
variables, then Xi

i = 1 so

Xi = L(X|Xi = 1).

For instance, if X ∈ RN are the inclusion indicator variables
for individuals in a simple random sample of size n, Xi are
the inclusion indicators when Xi

i = 1 and the remaining
Xi
j , j 6= i are indicators for a simple random sample of size

n− 1.

Include individual i, then sample n− 1 individuals from
those that remain. Will need coupling.
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Size Biasing: Mean and Variance Relation

With µ = EY recall

µEf(Y s) = E[Y f(Y )].

If Y and Y s are defined on the same space,

µE(Y s − Y ) = µEY s − µEY
= EY 2 − µ2

= σ2

where σ2 = Var(Y ).
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Size Biasing and the Stein Equation

Recall (µ, σ2) Stein’s Lemma: If

E[
(
X − µ
σ2

)
f(X)] = Ef ′(X) for f ∈ F

then X ∼ N (µ, σ2).

Hence, if

E[
(
Y − µ
σ2

)
f(Y )] ≈ Ef ′(Y ) for f ∈ F

then Y ≈ N (µ, σ2).
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Size Bias Coupling

Suppose Y and Y s are defined on a common space, with
Y s having the Y size bias distribution. Then for a twice
differentiable function f ,

E[
(
Y − µ
σ2

)
f(Y )] = E[

µ

σ2
(f(Y s)− f(Y ))]

=
µ

σ2
E(Y s − Y )f ′(Y ) +R

where

R =
µ

σ2
E

∫ Y s

Y

(Y s − t)f ′′(t)dt.
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Size Bias Coupling

Taking the difference,

E

[
f ′(Y )−

(
Y − µ
σ2

)
f(Y )

]
= E

[(
1− µ

σ2
E(Y s − Y )

)
f ′(Y )

]
+R

= E
[
f ′(Y )E[

(
1− µ

σ2
(Y s − Y )

)
|Y ]
]

+R.
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Main Term

|E
[
f ′(Y )E[

(
1− µ

σ2
(Y s − Y )

)
|Y ]
]
|

≤ µ

σ2

√
E[f ′(Y )]2

√
Var(E(Y s − Y |Y ))

≤ 2µ
σ2
||h−Nh||∞

√
Var(E(Y s − Y |Y )).

When Y =
∑n
i=1Xi, sum of nonnegative variables,

typically we have µ and σ2 of O(n). Hence if the variance
term is O(1/n), this term has order n−1/2.
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Size Bias Coupling, Remainder Term

R =
µ

σ2
E

∫ Y s

Y

(Y s − t)f ′′(t)dt.

Recalling ||f ′′||∞ ≤ (2/σ)||h′||∞, may be bounded by

|R| ≤ ||f ′′||∞
µ

σ2

1
2
E(Y s − Y )2 ≤ ||h′||∞

µ

σ3
E(Y s − Y )2.

If µ and σ2 are both order O(n) then if E(Y s − Y )2 is
bounded the remainder term R has order n−1/2.
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Error Bound

The remainder term depends on E(Y s − Y )2. Berry-Esseen
bounds depend on third moments.

Note
E[Y f(Y )] = µEf(Y s)

applied with f(w) = w2 gives µE(Y s)2 = EY 3.
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Putting terms together

Smooth function bound: If h′ exists and is bounded,

|Eh((Y − µ)/σ)−Nh| ≤ R1 +R2

where

R1 =
2µ
σ2
||h−Nh||∞

√
Var(E(Y s − Y |Y ))

and
R2 = ||h′||∞

µ

σ3
E(Y s − Y )2.

Typically µ and σ2 are O(n), so we want

Var(E(Y s− Y |Y )) = O(n−1) and E(Y s− Y )2 = O(1).
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Independent Identically Distributed Variables

When Y = X1 + · · ·+Xn, a sum of nonnegative i.i.d.
variables with variances σ2 and finite third moments, then
with P (I = i) = 1/n and Xs

i independent of all other
variables

Y I − Y = Xs
I −XI .

Hence E[Xs
I −XI |Y ] = EXs

I − Y/n and therefore

Var(E[Xs
I −XI |Y ]) = Var(Y )/n2 = σ2/n = O(n−1),

and since E(Xs
i )2 = EX3

i /EXi,

E(Y s − Y )2 = E(Xs
I −XI)2 ≤ 2E((Xs

I )2 +X2
I ) = O(1).
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Example: Simple Random Sampling n of N

Population A = {a1, . . . , aN} ⊂ (0,∞). Want to
approximate the standardized distribution of

Y =
N∑
i=1

aiJi,

where all J = (J1, . . . , JN ) ∈ {0, 1}N with
∑N
i=1 Ji = n

are equally likely.
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Coupling Y and Y s

Given J, let K be chosen uniformly from the collection of k
for which Jk = 1. For each i let

J ij =

 Jj j 6∈ {i,K}
Ji j = K
1 j = i.

Interchanging the sampling indicators of i and the sampled
unit K gives Ji indicators with

L(Ji) = L(J1, . . . , JN |Ji = 1)

on the same space as, and close to, J.
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Simple Random Sampling Coupling

As EaiJi = ain/N , upon picking P (I = i) ∝ ai, Y I has

the Y -size biased distribution, where Y i =
∑N
j=1 ajJ

i
j .

Letting

Y =
∑

i 6∈{I,K}

aiJi

when I 6= K we have

Y = Y + aIJI + aKJK and Y I = Y + aIJK + aKJI ,

and then, in all cases,

Y I−Y = aIJK+aKJI−aIJI−aKJK = (1−JI)(aI−aK).
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Conditional Expectation of Difference

May be difficult to calculate the conditional expectation

E(Y I − Y |Y ) = E((1− JI)(aI − aK)|Y ).

Let X = E(∆|F) where Y is F measurable. By the
conditional variance formula

Var(X) = E[Var(X|Y )] + Var[E(X|Y )] ≥ Var[E(X|Y )],

and
E(X|Y ) = E(E(∆|F)|Y ) = E(∆|Y ).

Hence, conditioning on more yields an upper bound,

Var[E(∆|F)] ≥ Var[E(∆|Y )].
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Conditional Expectation of Difference

Condition on more:

Var(E((1−JI)(aI−aK)|Y )) ≤ Var(E((1−JI)(aI−aK)|J)).

Tractable conditional expectation:

E((1− JI)(aI − aK)|J)

=
∑
i,k

(1− Ji)(ai − ak)P (I = i,K = k|J)

=
∑
i,k

(1− Ji)(ai − ak)
ai
Na

Jk
n

Under ‘typical’ conditions [Luk (1994)] n/N → f ∈ (0, 1)
and ai = O(1), the variance will be O(1/n), as desired
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Graph Degree Problem on Gn

For every pair of vertices in the set V of size n, draw an
edge, independently of all other edges, with probability πn.
For d a nonnegative integer, let Y be the number of edges
of the resulting graph Gn which has degree d, that is,

Y =
∑
v∈V

Xv where Xv = 1(D(v) = d).
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Graph Degree Problem on Gn

For every pair of vertices in the set V of size n, draw an
edge, independently of all other edges, with probability πn.
For d a nonnegative integer, let Y be the number of edges
of the resulting graph Gn which has degree d, that is,

Y =
∑
v∈V

Xv where Xv = 1(D(v) = d).
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Graph Degree Problem on Gn

For every pair of vertices in the set V of size n, draw an
edge, independently of all other edges, with probability πn.
For d a nonnegative integer, let Y be the number of edges
of the resulting graph Gn which has degree d, that is,

Y =
∑
v∈V

Xv where Xv = 1(D(v) = d).

To size bias, select V uniformly over V. Conditional on
D(V ) = d, the d edges of V are uniform over all possible(
n−1
d

)
choices. Edges not involving V are independent.

Hence, a coupling can be achieved by first generating Gn,
selecting V , and then adding or removing edges from V as
needed for the cases D(V ) < d and D(V ) > d, respectively.
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Graph Degree Problem on Gn

For every pair of vertices in the set V of size n, draw an
edge, independently of all other edges, with probability πn.
For d a nonnegative integer, let Y be the number of edges
of the resulting graph Gn which has degree d, that is,

Y =
∑
v∈V

Xv where Xv = 1(D(v) = d).

See Jay Bartroff’s talk.
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Covered Volume of Balls around Randomly
Placed Points

Let U1, . . . , Un be i.i.d. in Cn = [0, n1/d)d with periodic
boundary conditions, and let Bi,ρ be the ball of radius ρ
centered around Ui. Let V be the volume of their union,

V = Volume(
n⋃
i=1

Bi,ρ).

Unlike previous examples, there are no obvious indicators to
‘set to 1’; in fact, V is continuous.

Q: So, how to size bias V ?
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Covered Volume of Balls around Randomly
Placed Points

Let U1, . . . , Un be i.i.d. in Cn = [0, n1/d)d with periodic
boundary conditions, and let Bi,ρ be the ball of radius ρ
centered around Ui. Let V be the volume of the union

V = Volume(
n⋃
i=1

Bi,ρ).

Unlike previous examples, there are no obvious indicators to
‘set to 1’; in fact, V is continuous.

Q: So, how to size bias V ?

A: See Mathew Penrose’s talk.
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Coming Attractions

III. Exchangeable Pair, Zero Bias Couplings

IV. Local dependence, Nonsmooth functions
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