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Stein Equation

Let W satisfy EW = 0,Var(W ) = 1. Recall, for given
h ∈ H,

f ′(w)− wf(w) = h(w)−Nh where Nh = Eh(Z).

For the given W , we calculate

Eh(W )−Nh

by computing
E[f ′(W )−Wf(W )].
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Stein Exchangeable Pair

[Stein, (1986)]

We say the random variables (W,W ′) form a λ-Stein pair if
(W,W ′) is exchangeable and satisfy the ‘linearity’ or ‘linear
regression’ condition

E(W ′|W ) = (1− λ)W for some λ ∈ (0, 1).
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Linearity Condition: Bivariate Normal
Connection

Parallel to a property of bivariate normal variables Z1, Z2:
conditional expectation of Z1 given Z2 is linear

E(Z1|Z2) = µ1 + σ1ρ

(
Z2 − µ2

σ2

)
.

When Z1 and Z2 have mean zero and equal variance,

E(Z1|Z2) = (1− λ)Z2 for λ = 1− ρ.
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Linearity Condition: Generator Connection

E(W ′|W ) = (1− λ)W or E(W ′ −W |W ) = −λW.

Embed in a sequence, E(Wt+1 −Wt|Wt) = −λWt,

∆Wt = −λWt + εt where E[εt|Wt] = 0.

Reminiscent of Ornstein Uhlenbeck process

dWt = −λWt + σdBt.
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Linearity Condition: Reversible Markov Chain
Connection

If W1,W2, . . . is a reversible Markov Chain in stationarity,
then (Wt,Wt+1) is exchangeable.

To apply the method for a given distribution W , construct
a reversible Markov chain with stationary distribution W .
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Anti-Voter Model

On the graph (V, E), with |V| = n, consider the evolution
of the state Xt ∈ {−1, 1}n where at each time step a
vertex chosen uniformly at random chooses a neighbor at
random and adopts the opposite state.

Though Xt is not reversible, if stationary and the function
W satisfies W (Xt+1)−W (Xt) ∈ {−1, 0, 1} then
(W (Xt),W (Xt+1)) is exchangeable.

[Liggett (1985), Rinott and Rotar (1997)]
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Anti-Voter Model: Linearity

Let T denote the number of vertices i with Xi = 1, and let
U = 2T − n. Further, let a, b and c be the number of edges
whose vertices agree with 1,−1, or disagree, respectively.

Observe that for a regular graph of degree r

T = [2a+ c]/r, n− T = [2b+ c]/r.

P (U ′ − U = −2 |X) =
2a
rn
, P (U ′ − U = 2 |X) =

2b
rn
.

Therefore, using a+ b+ c = rn/2,

E[(U ′ − U) |X] =
4b− 4a
rn

=
2(n− 2T )

n
= −2U

n
.
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Stein Exchangeable Pair: Mean

When expectations exist they must equal zero, as

EW = EW ′ = E(E(W ′|W )) = E(1−λ)W = (1−λ)EW.

As 1− λ 6= 0,
EW = 0.
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Stein Exchangeable Pair: Variance Identity

E[W ′W ] = E (E(W ′W |W ))
= E (WE(W ′|W ))
= (1− λ)E

(
W 2
)

= (1− λ)σ2

gives

E(W ′ −W )2 = 2(EW 2 − EW ′W )
= 2(σ2 − (1− λ)σ2)
= 2λσ2.
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Stein Exchangeable Pair: Function Identity

Linearity condition gives

E[W ′f(W )] = E[f(W )E (W ′|W )] = (1− λ)E[Wf(W )],

so

E(W ′ −W )(f(W ′)− f(W )) = 2E(Wf(W )−W ′f(W ))
= 2λE[Wf(W )]

or

E[Wf(W )] =
E(W ′ −W )(f(W ′)− f(W ))

2λ
.
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Exchangeable Pair and the Stein Equation

If W,W ′ is Stein pair with variance 1, then

E

(
(W ′ −W )(f(W ′)− f(W ))

2λ

)
= E[Wf(W )].

Taylor expansion

f(W ′)−f(W ) = (W ′−W )f ′(W )+
∫ W ′

W

(W ′−s)f ′′(s)ds.

Multiplying by (W ′ −W )/(2λ) results in two terms, the
first of which is

1
2λ

(W ′ −W )2f ′(W ).
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Exchangeable Pair: First Term

First term of the difference f ′(W )−Wf(W ) is

E

(
f ′(W )[1− (W ′ −W )2

2λ
]
)

Since E(W ′ −W )2/(2λ) = 1, conditioning on W , applying
the Cauchy Schwarz inequality and that ||f ′||∞ ≤ 4||h||∞
yields the bound

R1 =
2||h||∞
λ

√
Var(E((W ′ −W )2|W )).
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Exchangeable Pair: Second Term

Expectation of

1
2λ
|(W ′−W )

∫ W ′

W

(W ′− s)f ′′(s)| ≤ 1
4λ
||f ′′||∞ |W ′−W |3

so, applying the bound ||f ′′||∞ ≤ 2||h′||∞, the second term
is bounded by

R2 =
||h′||∞

2λ
E|W ′ −W |3.
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Exchangeable Pair: Smooth Functions

Let h be bounded and have bounded derivative, and let
W,W ′ be a mean zero, variance 1, λ-Stein pair. Then

|Eh(W )−Nh| ≤ R1 +R2

where

R1 =
2||h||∞
λ

√
Var(E((W ′ −W )2|W ))

and

R2 =
||h′||∞

2λ
E|W ′ −W |3.
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Exchangeable Pair: Example

Let π be uniform over Πn ⊂ Sn, the collection of fixed
point free (π(i) 6= i) involutions (π2(i) = i) of {1, . . . , n}.
Special case of a distribution on Sn constant on cycle type,
that is, one satisfying

P (π) = P (ρ−1πρ) for all π, ρ ∈ Sn.

Let {aij}i,j be a collection of n2 real numbers.
Approximate the distribution of

W =
n∑
i=1

ai,π(i).

May assume aij = aji and aii = 0 without loss of
generality.
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Combinatorial CLT: Involutions

Let for a, b, c distinct, let A = {π : π(a) = c}, and
B = {π : π(b) = c}, and let τab be the transposition of a
and b. Then

π ∈ A if and only if τ−1
ab πτab ∈ B

so P (A) = P (τ−1
ab Aτab) = P (B) and therefore

Eai,π(i) =
1

n− 1

∑
j 6=i

ai,j =
1

n− 1

n∑
j=1

ai,j .

When considering L((W − EW )/σW ) we may assume∑
j ai,j = 0 for all i without loss of generality.
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Coupling: Involutions

Let I, J with I 6= J be chosen uniformly from {1, . . . , n},
and set

π′ = παIJ where αij = τi,π(j)τj,π(i).

For π ∈ Πn and i 6= j, whereas π has the cycle(s)

(i, π(i)), (j, π(j))

π′ has the cycle(s)

(i, j), (π(i), π(j)).
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Linearity Condition

Recalling W =
∑
i ai,π(i) and letting W ′ =

∑
i ai,π′(i), we

have

W ′ −W = 2
(
aI,J + aπ(I),π(J) − (aI,π(I) + aJ,π(J))

)
.

E[aI,J |π] = E[aI,J ] =
1

n(n− 1)

∑
i,j

aij = 0

and

E[aI,π(I)|π] =
1
n

n∑
i=1

ai,π(i) =
1
n
W,

and so, since the resulting expression is W measurable,

E[W ′|W ] = (1− 4
n

)W.
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Involutions: Calculating the Bound

Need to compute

R1 =
2||h||∞
λ

√
Var(E((W ′ −W )2|W ))

and

R2 =
||h′||∞

2λ
E|W ′ −W |3

for

W ′ −W = 2
(
aI,J + aπ(I),π(J) − (aI,π(I) + aJ,π(J))

)
.

Under the usual asymptotic R2 = O(n−1/2).

22



Involutions: Calculating the Bound

Recall

W ′ −W = 2
(
aI,J + aπ(I),π(J) − (aI,π(I) + aJ,π(J))

)
.

To show R1 = O(n−1/2) use

Var(E((W ′ −W )2|W )) ≤ Var(E((W ′ −W )2|π)).

Requires calculation of the variance of a sum of terms such
as

E(a2
I,π(I)|π) =

1
n

n∑
i=1

a2
i,π(i).
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Zero Bias Coupling

[Goldstein and Reinert (1997)]

Stein identity: Z ∼ N (0, σ2) if and only if

E[Zf(Z)] = σ2E[f ′(Z)] for all smooth f .

For any mean zero, variance σ2 distribution L(W ) there
exists L(W ∗) satisfying

E[Wf(W )] = σ2E[f ′(W ∗)].

Distributional transformation W →W ∗, of which N (0, σ2)
is the unique fixed point.

Absolutely continuous, support(W ∗) ⊂ co(support(W )).
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Zero Bias Distribution

Density of W ∗ is given by

p∗(t) = E[X;X > t]/σ2.

Distribution can also be specified as ‘square biasing’
followed by multiplication by an independent uniform,

X∗ =d UY

where
dFY
dFX

=
x2

σ2
.
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Fixed Point Proximity

If W is close to W ∗, then W is close to being a fixed point
of the zero bias transformation, so close to the unique fixed
point, so close to normal.
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Change One Property

Parallel to the size biasing: If X1, . . . , Xn are independent
nonnegative (mean zero) random variables with finite
nonzero mean (variance), then

W =
n∑
i=1

Xi

can be size (zero) biased by replacing a single summand,
chosen with probability proportional to its mean (variance)
and replacing it with an independent random variable
having that summands size (zero) biased distribution, e.g.

W ∗ −W = X∗I −XI .
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Zero Bias Rationale for CLT

When W is the sum of many comparable variables, W ∗

differs from W by only a single summand. Hence the
distributions of W and W ∗ are close, so L(W ) is close to
being a fixed point of the zero bias transformation, and so
must be close to the normal.

One way to make this statement precise is with the
following L1 bound: For any coupling of W , having
variance 1, to W ∗,

||L(W )− L(Z)||1 ≤ 2E|W ∗ −W |.
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Proof of L1 Bound

Let W ∗ have the W -zero bias distribution, and be defined
on the same space as W . Then when ||h′||∞ ≤ 1,

|Eh(W )−Nh| = |E[f ′(W )−Wf(W )]|
= |Ef ′(W )− Ef ′(W ∗)|
≤ ||f ′′||∞E|W −W ∗|
≤ 2||h′||∞E|W −W ∗|
≤ 2E|W ∗ −W |.

Taking supremum over all h with ||h′||∞ ≤ 1 yields

||L(W )− L(Z)||1 ≤ 2E|W ∗ −W |.
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Connection to Exchangeable Pair

If dF (w′, w′′) is the distribution of the Stein pair W ′,W ′′

let W †,W ‡ have distribution

dF †(w′, w′′) =
(w′ − w′′)2

2λσ2
dF (w′, w′′).

Then if U is a uniform variable, independent of W †,W ‡,

W ∗ = UW † + (1− U)W ‡

has the W -zero biased distribution.
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Square biasing under symmetry

Let Y = (Y1, . . . , Yn) =d (±Y1, . . . ,±Yn) with
Var(Yi) = σ2

i ∈ (0,∞) and W =
∑n
i=1 Yi. Let

Yi ∼ y2
i dF (y)/σ2

i , I a random index independent of Y
and {Yi, i = 1, . . . , n} with distribution

P (I = i) =
σ2
i∑n

j=1 σ
2
j

,

and U ∼ U [−1, 1] independent of all other variables. Then

W ∗ = UY II +
∑
j 6=I

Y Ij

has the W -zero bias distribution.
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Connection to K function

For a mean zero random variable X, Chen and Shao let

K(t) = E(X10≤t≤X −X1X≤t<0) = E(X1X>t) a.e.,

so K(t)/σ2 is the zero bias density. For a sum W of
independent variables, letting W = W (i) +Xi, they write

E[Wf(W )] =
n∑
i=1

∫ ∞
−∞

E[f ′(W (i) + t)]Ki(t)dt,

which is σ2Ef ′(W ∗), as the expression above equals

σ2
n∑
i=1

σ2
i

σ2

∫ ∞
−∞

E[f ′(W (i)+t)]
Ki(t)
σ2
i

dt = σ2Ef ′(WI+X∗I ).
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Comparison of three couplings

1. Exchangeable pair: linearity condition, evaluation of
the variance of a conditional expectation.

2. Size bias: no linearity condition, evaluation of the
variance of a conditional expectation.

3. Zero bias:

(a) Construction through exchangeable pair:
linearity condition, no variance of conditional
expectation.

(b) Construction through square biasing: symmetry
condition, no variance of conditional
expectation.
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IV. Local dependence, Nonsmooth functions
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