A Gentle Introduction to Stein's Method for Normal Approximation IV

Larry Goldstein

University of Southern California

- IV. Local dependence
 - (a) Smooth function bound under local dependence
- IV. Nonsmooth functions
 - (a) Concentration Inequalities
 - (b) Smoothing Inequalities
 - (c) Inductive Approach

Let $\{X_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a collection of mean zero random variables with Var(W) = 1 where $W = \sum_{\alpha \in \mathcal{A}} X_{\alpha}$.

For each $\alpha \in \mathcal{A}$ suppose there exists $S_{\alpha} \subset \mathcal{A}$ such that

$$X_{\alpha}$$
 is independent of $\{X_{\beta} : \beta \in S_{\alpha}^{c}\}.$

Let $\{X_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a collection of mean zero random variables with Var(W) = 1 where $W = \sum_{\alpha \in \mathcal{A}} X_{\alpha}$. For each $\alpha \in \mathcal{A}$ suppose there exists $S_{\alpha} \subset \mathcal{A}$ such that

$$X_{\alpha}$$
 is independent of $\{X_{\beta} : \beta \in S_{\alpha}^c\}$.

In particular, note therefore, that

$$\sum_{\alpha \in \mathcal{A}} \sum_{\beta \in S_{\alpha}} E X_{\alpha} X_{\beta} = 1.$$

For $\alpha \in A$ let $W_\alpha = \sum_{\beta \not\in S_\alpha} X_\beta.$

Given h, consider

$$E[h(W) - Nh]$$

$$= E[f'(W) - Wf(W)]$$

$$= E[f'(W) - \sum_{\alpha \in \mathcal{A}} X_{\alpha}f(W)]$$

$$= E[f'(W) - \sum_{\alpha \in \mathcal{A}} X_{\alpha}(f(W) - f(W_{\alpha})) + \sum_{\alpha \in \mathcal{A}} X_{\alpha}f(W_{\alpha})]$$

$$= E[f'(W) - \sum_{\alpha \in \mathcal{A}} X_{\alpha}(f(W) - f(W_{\alpha}))].$$

Summands are

$$X_{\alpha}(f(W) - f(W_{\alpha}))] = X_{\alpha} \left(f'(W)(W - W_{\alpha}) \right) + R_{\alpha},$$

so subtracting sum of first term from $f^\prime(W)$ yields

$$|E[f'(W)(1 - \sum_{\alpha \in \mathcal{A}} X_{\alpha} \sum_{\beta \in S_{\alpha}} X_{\beta}]||$$

$$\leq 2||h||_{\infty} \sqrt{\mathsf{Var}\left(\sum_{\alpha \in \mathcal{A}, \beta \in S_{\alpha}} X_{\alpha} X_{\beta}\right)}.$$

For the remainder term, recalling

$$X_{\alpha}(f(W) - f(W_{\alpha}))] = X_{\alpha} \left(f'(W)(W - W_{\alpha}) \right) + R_{\alpha},$$

we see

$$|R_{\alpha}| \leq \frac{1}{2} ||f''||_{\infty} |X_{\alpha}(\sum_{\beta \in S_{\alpha}} X_{\beta})^2| \leq ||h'||_{\infty} |X_{\alpha}(\sum_{\beta \in S_{\alpha}} X_{\beta})^2|.$$

Local Dependence: Smooth Function Theorem

If $||h'||_{\infty} < \infty$, then |Eh(W) - Nh| is bounded by

$$2||h||_{\infty} \sqrt{\operatorname{Var}\left(\sum_{\alpha \in \mathcal{A}, \beta \in S_{\alpha}} X_{\alpha} X_{\beta}\right)} + ||h'||_{\infty} \sum_{\alpha \in \mathcal{A}} E|X_{\alpha}(\sum_{\beta \in S_{\alpha}} X_{\beta})^{2}|.$$

Local Dependence: Smooth Function Theorem

Application:

Let each edge in a finite lattice in \mathbb{Z}^2 be present with probability $p \in (0, 1)$ independent of the presence of all other edges. Let W be the number of squares.

Compute a bound on the normal approximation to W.

Local Dependence: Smooth Function Theorem

Application:

Let each edge in a finite lattice in \mathbb{Z}^2 be present with probability $p \in (0, 1)$ independent of the presence of all other edges. Let W be the number of squares.

Assign an independent uniform random variable to each vertex of a fixed graph. Let W be the number of local maxima.

Compute a bound on the normal approximation to W.

Kolmogorov, or L^{∞} Bounds

So far we have dealt with expectations of smooth functions. Now we consider deriving bounds on

$$||F - \Phi||_{\infty} = \sup_{-\infty < x < \infty} |F(x) - \Phi(x)|.$$

As $F(x) = E\mathbf{1}(X \le x)$, an expectation of a nonsmooth function, we need some new ideas to obtain a bound using Stein's method.

[Chen and Shao (2004)]

A bound on the probability that a random variable takes values in a (small) interval.

Let $z \in \mathbb{R}$ and $\delta > 0$. Now let

$$g(w) = \begin{cases} -\delta/2 & w \in (-\infty, z] \\ \text{linear} & w \in (z, z + \delta] \\ \delta/2 & w \in (z + \delta, \infty) \end{cases}$$

Then for W with mean zero and variance 1,

$$\begin{aligned} P(z \leq W^* \leq z + \delta) &= Eg'(W^*) \\ &= EWg(W) \leq (\delta/2)E|W| \leq \delta/2. \end{aligned}$$

Suppose for the given W we can find W^* such that $|W^* - W| \le \delta$. For example, if X_1, \ldots, X_n are i.i.d. mean zero with $|X_1| \le K$,

$$W = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$$
 then $W^* = W - \frac{1}{\sqrt{n}} (X_I - X_I^*)$,

where P(I = i) = 1/n, so in particular

$$|W^* - W| \le \delta$$
 where $\delta = \frac{2K}{\sqrt{n}}$.

When
$$|W^* - W| \le \delta$$
,
 $P(W \le z) - P(W^* \le z)$
 $= P(W^* \le z + W^* - W) - P(W^* \le z)$
 $\le P(W^* \le z + \delta) - P(W^* \le z)$
 $= P(z \le W^* \le z + \delta)$
 $\le \delta/2$.

Interchanging the roles of W and W^* , we have

$$P(W^* \le z) - P(W \le z) \le P(z \le W \le z + \delta)$$

From the concentration inequality for $W^{\ast},$ we have likewise that

$$P(W^* \le z) - P(W \le z)$$

$$\le P(z \le W \le z + \delta)$$

$$= P(z \le W^* - (W^* - W) \le z + \delta)$$

$$= P(z + (W^* - W) \le W^* \le z + \delta + (W^* - W))$$

$$\le P(z - \delta \le W^* \le z + 2\delta)$$

$$\le \frac{3}{2}\delta.$$

Hence

$$|P(W \le z) - P(W^* \le z)| \le \frac{3}{2}\delta.$$

Letting

$$f'(w) - wf(w) = \mathbf{1}_{(-\infty,z]}(w) - \Phi(z)$$

we have

$$|P(W \le z) - P(Z \le z)| = |E[f'(W) - Wf(W)]|$$

= $|E[f'(W) - f'(W^*)]|$

$$= |E[Wf(W) - W^*f(W^*)] + P(W \le z) - P(W^* \le z)$$

$$= |E[Wf(W) - W^*f(W^*)] + P(W \le z) - P(W^* \le z)$$

$$\leq |E[Wf(W) - W^*f(W^*)]| + \frac{3}{2}\delta.$$

$$= |E[Wf(W) - W^*f(W^*)] + P(W \le z) - P(W^* \ge Z) - P(W^*$$

$$= |E[Wf(W) - W^*f(W^*)] + P(W \le z) - P(W^* \le z)$$

$$\sum_{i=1}^{n} \frac{f(W^{i}) - f(W^{i})}{W^{i}f(W^{i})} + D(W < \gamma)$$

$$|E[f'(W) - f'(W^*)]|$$

$$W \le z) - P(Z \le z)| = |E[f'(W) +$$

For the first term $E\left(Wf(W) - W^*f(W^*)\right)$ write

$$\begin{split} &|E[(W(f(W) - f(W^*)) - (W^* - W)f(W^*)]| \\ \leq & ||f'||_{\infty}E|W(W - W^*)| + ||f||_{\infty}E|W^* - W| \\ \leq & E|W(W - W^*)| + \frac{\sqrt{2\pi}}{4}E|W^* - W| \\ \leq & \delta(E|W| + \frac{\sqrt{2\pi}}{4}) \\ \leq & \delta(1 + \frac{\sqrt{2\pi}}{4}) \end{split}$$

Bounded zero bias coupling theorem: If $|W^*-W| \leq \delta$ then

$$|P(W \le z) - P(Z \le z)| \le \frac{3}{2}\delta + \delta(1 + \frac{\sqrt{2\pi}}{4})$$
$$= \delta\left(\frac{5}{2} + \frac{\sqrt{2\pi}}{4}\right).$$

Bounded zero bias coupling theorem: If $|W^* - W| \leq \delta$ then

$$\begin{aligned} |P(W \le z) - P(Z \le z)| &\le \frac{3}{2}\delta + \delta(1 + \frac{\sqrt{2\pi}}{4}) \\ &= \delta\left(\frac{5}{2} + \frac{\sqrt{2\pi}}{4}\right). \end{aligned}$$

When $W = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i$ with X_1, \ldots, X_n i.i.d mean zero variance 1 and $|X_i| \leq K$, may take $\delta = 2K/\sqrt{n}$ so

$$|P(W \le z) - P(Z \le z)| \le n^{-1/2} K\left(5 + \sqrt{\frac{\pi}{2}}\right).$$

[Bhattacharya and Ranga Rao (1986), Göetze (1991), Rinott and Rotar (1996)]

Works more generally than on indicators, and also in higher dimension, though will illustrate in $\mathbb{R}.$

For a function $h: \mathbb{R} \to \mathbb{R}$ let

$$h_{\epsilon}^+(x) = \sup_{|y| \leq \epsilon} h(x+y), \quad h_{\epsilon}^-(x) = \inf_{|y| \leq \epsilon} h(x+y)$$

and

$$\tilde{h}_{\epsilon}(x) = h_{\epsilon}^{+}(x) - h_{\epsilon}^{-}(x).$$

Let ${\mathcal H}$ be a class of measurable functions on ${\mathbb R}$ such that

- (i) The functions h ∈ H are uniformly bounded in absolute value by a constant, which can be taken to be 1 without loss of generality,
- (ii) For any real numbers c and d, and for any $h\in\mathcal{H},$ the function $h(cx+d)\in\mathcal{H},$
- (iii) For any $\epsilon > 0$ and $h \in \mathcal{H}$, the functions h_{ϵ}^+ , h_{ϵ}^- are also in \mathcal{H} , and there exists a, depending only on \mathcal{H} , such that

$$E\tilde{h}_{\epsilon}(Z) \le a\epsilon.$$

Let \mathcal{H} denote a class of measurable functions satisfying (i),(ii), and (iii) and let $h \in \mathcal{H}$. let $\phi(t)$ denote the standard normal density, and, for $t \in (0, 1)$, define

$$h_t(x) = \int h(x+ty)\phi(y)dy$$

and

$$\delta_t = \sup\{|Eh_t(W) - Nh_t| : h \in \mathcal{H}\}.$$

Lemma 1 For any random variable W on \mathbb{R}

$$\delta \leq 2.8\delta_t + 4.7at$$
 for all $t \in (0,1)$.

Use techniques for smooth functions to obtain a bound on δ_t , which may involve the original δ , e.g. for some constants c_1, c_2 and c_3 ,

$$\delta_t \le c_1 + \frac{1}{t} (c_2 \delta + c_3)$$
 for all $t \in (0, 1)$.

Substitution of δ_t into the smoothing inequality

$$\delta \le 2.8\delta_t + 4.7at$$

yields a minimization problem over t, and a bound on δ .

For $n \in \mathbb{N}$ and $\gamma \geq 1$ let $\mathcal{L}(n, \gamma)$ be collection of distributions on $\mathbf{X} = (X_1, X_2, \dots, X_n)$ with i.i.d. mean zero, variance 1 components, and $1 \leq \gamma = E|X_1^3| < \infty$. Let

$$S_n = n^{-1/2} (X_1 + \dots + X_n)$$

and for $\lambda \ge 0$, $\delta(\lambda, \gamma, n) = \sup\{|E(h_{z,\lambda}(S_n) - h_{z,\lambda}(Z))| : z \in \mathbb{R}, \mathbf{X} \in \mathcal{L}(n, \gamma)\}$ where $h_{z,0}(x) = \mathbf{1}(x \le z)$ and for $\lambda > 0$ $h_{z,\lambda}(x) = \begin{cases} 1 & x < z \\ 1 + \frac{z-x}{\lambda} & x \in [z, z + 1/\lambda) \\ 0 & x \ge z + 1/\lambda \end{cases}$

Letting $\delta(\gamma, n) = \delta(0, \gamma, n)$, the Berry-Esseen Theorem is $\sup\{\sqrt{n}\delta(\gamma, n)/\gamma : \gamma \ge 1, n \in \mathbb{N}\} < \infty.$ By $h_{z,0}(x) \le h_{z,\lambda}(x) \le h_{z+\lambda,0}(x)$ we have $\delta(\gamma, n) \le \delta(\lambda, \gamma, n) + \lambda/\sqrt{2\pi}.$

When f solves the Stein equation for $h=h_{z,\lambda},$ Chen & Shao '04 give

$$|f'(x+s) - f'(x+t)| \le |x|+1) \min(|s|+|t|,1) + \lambda^{-1} \left| \int_s^t \mathbf{1}(z \le x+u \le z+\alpha) du \right|$$

We have

$$Eh(S_n) - h(Z) = E[f'(S_n) - S_n f(S_n)] = E[f'(S_n) - f'(S_n^*)]$$

which is

$$E[f'(S_{n-1} + X_n/\sqrt{n}) - f'(S_{n-1} + X_n^*/\sqrt{n})].$$

Need to bound the expectation of

$$(|S_{n-1}|+1)\min((|X_n|+|X_n^*|)/\sqrt{n},1) + \lambda^{-1} \left| \int_{X_n/\sqrt{n}}^{X_n^*/\sqrt{n}} \mathbf{1}(z \le S_{n-1}+u \le z+\lambda) du \right|$$

Regarding the first term, we have

$$E|X_n| \le (E|X_n|^2)^{1/2} = 1 \le (E|X_n^3|)^{1/3} \le E|X_n^3|.$$

From the zero bias identity with function $sign(x)x^2$ we have $E|X_n^*| = (1/2)E|X_n^3|$. Note, therefore, that

$$c_X = E|X_n^* - X_n| \le E|X_n^*| + E|X_n| \le (3/2)\gamma.$$

Since $E(|S_{n-1}| + 1) \le 2$,

 $E\left((|S_{n-1}|+1)\min((|X_n|+|X_n^*|)/\sqrt{n},1)\right) \le 3n^{-1/2}\gamma.$

Second term: expectation of

$$\lambda^{-1} \left| \int_{X_n/\sqrt{n}}^{X_n^*/\sqrt{n}} \mathbf{1}(z \le S_{n-1} + u \le z + \lambda) du \right|$$

which we decompose as λ^{-1} times

$$E\left(\int_{X_n/\sqrt{n}}^{X_n^*/\sqrt{n}} \mathbf{1}(z \le S_{n-1} + u \le z + \lambda) du; X_n \le X_n^*\right)$$
$$+ E\left(\int_{X_n^*/\sqrt{n}}^{X_n/\sqrt{n}} \mathbf{1}(z \le S_{n-1} + u \le z + \lambda) du; X_n > X_n^*\right)$$

For any $u \in \mathbb{R}$,

$$P(z \le S_{n-1} + u \le z + \lambda)$$

can be no more than

$$|P(z \le S_{n-1} + u \le z + \lambda) - P(z \le Z + u \le z + \lambda)| + |P(z \le Z + u \le z + \lambda)|,$$

which is bounded by

$$2\delta(\gamma, n-1) + \lambda/\sqrt{2\pi}.$$

Hence, with $c_X=E|X_n^*-X_n|\leq (3/2)\gamma,$ conditioning on X_n and $X_n^*,$

$$\lambda^{-1} \left| \int_{X_n/\sqrt{n}}^{X_n^*/\sqrt{n}} \mathbf{1}(z \le S_{n-1} + u \le z + \lambda) du \right|$$

is bounded by

$$n^{-1/2}c_X\left(2\delta(\gamma, n-1)/\lambda + 1/\sqrt{2\pi}\right)$$

$$\leq n^{-1/2}\gamma\left(3\delta(\gamma, n-1)/\lambda + 3/\sqrt{8\pi}\right).$$

Putting everything together, $\delta(\gamma,n)$ is bounded by

$$\lambda/\sqrt{2\pi} + n^{-1/2}\gamma \left(3\delta(\gamma, n-1)/\lambda + 3/\sqrt{8\pi} + 3\right)$$

Choosing $\lambda = 3\beta\gamma/\sqrt{n}$ in $\lambda/\sqrt{2\pi} + n^{-1/2}\gamma\left(3\delta(\gamma,n-1)/\lambda + 3/\sqrt{8\pi} + 3\right)$ yields, with $c = 3\beta/\sqrt{2\pi} + 3/\sqrt{8\pi} + 3$. $\delta(\gamma, n) < \delta(\gamma, n-1)/\beta + n^{-1/2}\gamma c.$ Letting $a_n = \sqrt{n}\delta(\gamma, n)/\gamma$, and using that $\sqrt{n/(n-1)} < \sqrt{2}$ for all n > 2 we have $a_1 \leq 1$ and $a_n \leq \frac{\sqrt{2}}{\beta}a_{n-1} + c$ for all $n \geq 2$.

With $\beta > 1$, choosing $\lambda = 3\beta\gamma/\sqrt{n}$ in

$$\lambda/\sqrt{2\pi} + n^{-1/2}\gamma \left(3\delta(\gamma, n-1)/\lambda + 3/\sqrt{8\pi} + 3 \right)$$

yields, with $c=3\beta/\sqrt{2\pi}+3/\sqrt{8\pi}+3>1$,

$$\delta(\gamma, n) \le \delta(\gamma, n-1)/\beta + n^{-1/2}\gamma c.$$

Letting $a_n=\sqrt{n}\delta(\gamma,n)/\gamma,$ and using that $\sqrt{n/(n-1)}\leq\sqrt{2}$ for all $n\geq 2$ we have

$$a_1 \leq 1$$
 and $a_n \leq \frac{\sqrt{2}}{\beta}a_{n-1} + c$ for all $n \geq 2$.

Now taking $\beta > \sqrt{2}$ so that $\alpha = \sqrt{2}/\beta < 1,$ we can show that if

$$a_n \leq \alpha a_{n-1} + c$$
 and $a_1 \leq 1$,

then

$$a_n \le c_1 + c_2 \alpha^n$$
 where $c_1 = \frac{c}{1 - \alpha}, c_2 = \frac{1 - \alpha - c}{\alpha(1 - \alpha)} < 0$

so that

$$a_n \uparrow \frac{c}{1-\alpha} = \frac{3\beta/\sqrt{2\pi} + 3/\sqrt{8\pi} + 3}{1-\sqrt{2}/\beta},$$

which has minimal value 12.969.

Recap

- I. Background, Stein Identity, Equation, Bounds
- II. Size Bias Couplings
- III. Exchangeable Pair, Zero Bias Couplings
- IV. Local dependence, Nonsmooth functions

