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Local Dependence

Let {Xα}α∈A be a collection of mean zero random
variables with Var(W ) = 1 where W =

∑
α∈AXα.

For each α ∈ A suppose there exists Sα ⊂ A such that

Xα is independent of {Xβ : β ∈ Scα}.
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Local Dependence

Let {Xα}α∈A be a collection of mean zero random
variables with Var(W ) = 1 where W =

∑
α∈AXα. For

each α ∈ A suppose there exists Sα ⊂ A such that

Xα is independent of {Xβ : β ∈ Scα}.

In particular, note therefore, that∑
α∈A

∑
β∈Sα

EXαXβ = 1.
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Local Dependence

For α ∈ A let
Wα =

∑
β 6∈Sα

Xβ .

Given h, consider

E[h(W )−Nh]
= E[f ′(W )−Wf(W )]

= E[f ′(W )−
∑
α∈A

Xαf(W )]

= E[f ′(W )−
∑
α∈A

Xα(f(W )− f(Wα)) +
∑
α∈A

Xαf(Wα)]

= E[f ′(W )−
∑
α∈A

Xα(f(W )− f(Wα))].
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Local Dependence

Summands are

Xα(f(W )− f(Wα))] = Xα (f ′(W )(W −Wα)) +Rα,

so subtracting sum of first term from f ′(W ) yields

|E[f ′(W )(1−
∑
α∈A

Xα

∑
β∈Sα

Xβ ]||

≤ 2||h||∞

√√√√√Var

 ∑
α∈A,β∈Sα

XαXβ

.
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Local Dependence

For the remainder term, recalling

Xα(f(W )− f(Wα))] = Xα (f ′(W )(W −Wα)) +Rα,

we see

|Rα| ≤
1
2
||f ′′||∞|Xα(

∑
β∈Sα

Xβ)2| ≤ ||h′||∞|Xα(
∑
β∈Sα

Xβ)2|.
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Local Dependence: Smooth Function
Theorem

If ||h′||∞ <∞, then |Eh(W )−Nh| is bounded by

2||h||∞

√√√√√Var

 ∑
α∈A,β∈Sα

XαXβ


+ ||h′||∞

∑
α∈A

E|Xα(
∑
β∈Sα

Xβ)2|.
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Local Dependence: Smooth Function
Theorem

Application:

Let each edge in a finite lattice in Z2 be present with
probability p ∈ (0, 1) independent of the presence of
all other edges. Let W be the number of squares.

Compute a bound on the normal approximation to W .
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Local Dependence: Smooth Function
Theorem

Application:

Let each edge in a finite lattice in Z2 be present with
probability p ∈ (0, 1) independent of the presence of
all other edges. Let W be the number of squares.

Assign an independent uniform random variable to
each vertex of a fixed graph. Let W be the number
of local maxima.

Compute a bound on the normal approximation to W .
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Kolmogorov, or L∞ Bounds

So far we have dealt with expectations of smooth functions.
Now we consider deriving bounds on

||F − Φ||∞ = sup
−∞<x<∞

|F (x)− Φ(x)|.

As F (x) = E1(X ≤ x), an expectation of a nonsmooth
function, we need some new ideas to obtain a bound using
Stein’s method.
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Concentration Inequalities

[Chen and Shao (2004)]

A bound on the probability that a random variable takes
values in a (small) interval.

Let z ∈ R and δ > 0. Now let

g(w) =

 −δ/2 w ∈ (−∞, z]
linear w ∈ (z, z + δ]
δ/2 w ∈ (z + δ,∞)

Then for W with mean zero and variance 1,

P (z ≤W ∗ ≤ z + δ) = Eg′(W ∗)
= EWg(W ) ≤ (δ/2)E|W | ≤ δ/2.
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Concentration Inequalities

Suppose for the given W we can find W ∗ such that
|W ∗ −W | ≤ δ. For example, if X1, . . . , Xn are i.i.d. mean
zero with |X1| ≤ K,

W =
1√
n

n∑
i=1

Xi then W ∗ = W − 1√
n

(XI −X∗I ) ,

where P (I = i) = 1/n, so in particular

|W ∗ −W | ≤ δ where δ =
2K√
n
.
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Concentration Inequalities

When |W ∗ −W | ≤ δ,

P (W ≤ z)− P (W ∗ ≤ z)
= P (W ∗ ≤ z +W ∗ −W )− P (W ∗ ≤ z)
≤ P (W ∗ ≤ z + δ)− P (W ∗ ≤ z)
= P (z ≤W ∗ ≤ z + δ)
≤ δ/2.

Interchanging the roles of W and W ∗, we have

P (W ∗ ≤ z)− P (W ≤ z) ≤ P (z ≤W ≤ z + δ)
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Concentration Inequalities

From the concentration inequality for W ∗, we have likewise
that

P (W ∗ ≤ z)− P (W ≤ z)
≤ P (z ≤W ≤ z + δ)
= P (z ≤W ∗ − (W ∗ −W ) ≤ z + δ)
= P (z + (W ∗ −W ) ≤W ∗ ≤ z + δ + (W ∗ −W ))
≤ P (z − δ ≤W ∗ ≤ z + 2δ)

≤ 3
2
δ.

Hence

|P (W ≤ z)− P (W ∗ ≤ z)| ≤ 3
2
δ.
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Concentration Inequalities

Letting

f ′(w)− wf(w) = 1(−∞,z](w)− Φ(z)

we have

|P (W ≤ z)− P (Z ≤ z)| = |E[f ′(W )−Wf(W )]|
= |E[f ′(W )− f ′(W ∗)]|
= |E[Wf(W )−W ∗f(W ∗)] + P (W ≤ z)− P (W ∗ ≤ z)|

≤ |E[Wf(W )−W ∗f(W ∗)]|+ 3
2
δ.
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Concentration Inequalities

For the first term E (Wf(W )−W ∗f(W ∗)) write

|E[(W (f(W )− f(W ∗))− (W ∗ −W )f(W ∗)]|
≤ ||f ′||∞E|W (W −W ∗)|+ ||f ||∞E|W ∗ −W |

≤ E|W (W −W ∗)|+
√

2π
4

E|W ∗ −W |

≤ δ(E|W |+
√

2π
4

)

≤ δ(1 +
√

2π
4

)
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Concentration Inequalities

Bounded zero bias coupling theorem: If |W ∗−W | ≤ δ then

|P (W ≤ z)− P (Z ≤ z)| ≤ 3
2
δ + δ(1 +

√
2π
4

)

= δ

(
5
2

+
√

2π
4

)
.
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Concentration Inequalities

Bounded zero bias coupling theorem: If |W ∗−W | ≤ δ then

|P (W ≤ z)− P (Z ≤ z)| ≤ 3
2
δ + δ(1 +

√
2π
4

)

= δ

(
5
2

+
√

2π
4

)
.

When W = 1√
n

∑n
i=1Xi with X1, . . . , Xn i.i.d mean zero

variance 1 and |Xi| ≤ K, may take δ = 2K/
√
n so

|P (W ≤ z)− P (Z ≤ z)| ≤ n−1/2K

(
5 +

√
π

2

)
.
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Smoothing Inequalities

[Bhattacharya and Ranga Rao (1986), Göetze (1991),
Rinott and Rotar (1996)]

Works more generally than on indicators, and also in higher
dimension, though will illustrate in R.

For a function h : R→ R let

h+
ε (x) = sup

|y|≤ε
h(x+ y), h−ε (x) = inf

|y|≤ε
h(x+ y)

and

h̃ε(x) = h+
ε (x)− h−ε (x).

20



Smoothing Inequalities

Let H be a class of measurable functions on R such that

(i) The functions h ∈ H are uniformly bounded in
absolute value by a constant, which can be taken to
be 1 without loss of generality,

(ii) For any real numbers c and d, and for any h ∈ H, the
function h(cx+ d) ∈ H,

(iii) For any ε > 0 and h ∈ H, the functions h+
ε , h

−
ε are

also in H, and there exists a, depending only on H,
such that

Eh̃ε(Z) ≤ aε.
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Smoothing Inequalities

Let H denote a class of measurable functions satisfying
(i),(ii), and (iii) and let h ∈ H. let φ(t) denote the
standard normal density, and, for t ∈ (0, 1), define

ht(x) =
∫
h(x+ ty)φ(y)dy

and

δt = sup{|Eht(W )−Nht| : h ∈ H}.

Lemma 1 For any random variable W on R

δ ≤ 2.8δt + 4.7at for all t ∈ (0, 1).
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Smoothing Inequalities

Use techniques for smooth functions to obtain a bound on
δt, which may involve the original δ, e.g. for some
constants c1, c2 and c3,

δt ≤ c1 +
1
t

(c2δ + c3) for all t ∈ (0, 1).

Substitution of δt into the smoothing inequality

δ ≤ 2.8δt + 4.7at

yields a minimization problem over t, and a bound on δ.
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Inductive Approach

For n ∈ N and γ ≥ 1 let L(n, γ) be collection of
distributions on X = (X1, X2, . . . , Xn) with i.i.d. mean
zero, variance 1 components, and 1 ≤ γ = E|X3

1 | <∞. Let

Sn = n−1/2(X1 + · · ·+Xn)

and for λ ≥ 0,

δ(λ, γ, n) = sup{|E(hz,λ(Sn)−hz,λ(Z))| : z ∈ R,X ∈ L(n, γ)}

where hz,0(x) = 1(x ≤ z) and for λ > 0

hz,λ(x) =

 1 x < z
1 + z−x

λ x ∈ [z, z + 1/λ)
0 x ≥ z + 1/λ
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Inductive Approach

Letting δ(γ, n) = δ(0, γ, n), the Berry-Esseen Theorem is

sup{
√
nδ(γ, n)/γ : γ ≥ 1, n ∈ N} <∞.

By hz,0(x) ≤ hz,λ(x) ≤ hz+λ,0(x) we have

δ(γ, n) ≤ δ(λ, γ, n) + λ/
√

2π.

When f solves the Stein equation for h = hz,λ, Chen &
Shao ’04 give

|f ′(x+ s)− f ′(x+ t)| ≤

(|x|+ 1) min(|s|+ |t|, 1) + λ−1

∣∣∣∣∫ t

s

1(z ≤ x+ u ≤ z + α)du
∣∣∣∣
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Inductive Approach

We have

Eh(Sn)− h(Z) = E[f ′(Sn)− Snf(Sn)]
= E[f ′(Sn)− f ′(S∗n)]

which is

E[f ′(Sn−1 +Xn/
√
n)− f ′(Sn−1 +X∗n/

√
n)].

Need to bound the expectation of

(|Sn−1|+ 1) min((|Xn|+ |X∗n|)/
√
n, 1)+

λ−1

∣∣∣∣∣
∫ X∗

n/
√
n

Xn/
√
n

1(z ≤ Sn−1 + u ≤ z + λ)du

∣∣∣∣∣ .
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Inductive Approach

Regarding the first term, we have

E|Xn| ≤ (E|Xn|2)1/2 = 1 ≤ (E|X3
n|)1/3 ≤ E|X3

n|.

From the zero bias identity with function sign(x)x2 we have
E|X∗n| = (1/2)E|X3

n|. Note, therefore, that

cX = E|X∗n −Xn| ≤ E|X∗n|+ E|Xn| ≤ (3/2)γ.

Since E(|Sn−1|+ 1) ≤ 2,

E
(
(|Sn−1|+ 1) min((|Xn|+ |X∗n|)/

√
n, 1)

)
≤ 3n−1/2γ.
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Inductive Approach

Second term: expectation of

λ−1

∣∣∣∣∣
∫ X∗

n/
√
n

Xn/
√
n

1(z ≤ Sn−1 + u ≤ z + λ)du

∣∣∣∣∣
which we decompose as λ−1 times

E

(∫ X∗
n/
√
n

Xn/
√
n

1(z ≤ Sn−1 + u ≤ z + λ)du;Xn ≤ X∗n

)

+ E

(∫ Xn/
√
n

X∗
n/
√
n

1(z ≤ Sn−1 + u ≤ z + λ)du;Xn > X∗n

)
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Inductive Approach

For any u ∈ R,

P (z ≤ Sn−1 + u ≤ z + λ)

can be no more than

|P (z ≤ Sn−1 + u ≤ z + λ)− P (z ≤ Z + u ≤ z + λ)|
+|P (z ≤ Z + u ≤ z + λ)|,

which is bounded by

2δ(γ, n− 1) + λ/
√

2π.
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Inductive Approach

Hence, with cX = E|X∗n −Xn| ≤ (3/2)γ, conditioning on
Xn and X∗n,

λ−1

∣∣∣∣∣
∫ X∗

n/
√
n

Xn/
√
n

1(z ≤ Sn−1 + u ≤ z + λ)du

∣∣∣∣∣
is bounded by

n−1/2cX

(
2δ(γ, n− 1)/λ+ 1/

√
2π
)

≤ n−1/2γ
(

3δ(γ, n− 1)/λ+ 3/
√

8π
)
.

Putting everything together, δ(γ, n) is bounded by

λ/
√

2π + n−1/2γ
(

3δ(γ, n− 1)/λ+ 3/
√

8π + 3
)
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Inductive Approach

Choosing λ = 3βγ/
√
n in

λ/
√

2π + n−1/2γ
(

3δ(γ, n− 1)/λ+ 3/
√

8π + 3
)

yields, with c = 3β/
√

2π + 3/
√

8π + 3,

δ(γ, n) ≤ δ(γ, n− 1)/β + n−1/2γc.

Letting an =
√
nδ(γ, n)/γ, and using that√

n/(n− 1) ≤
√

2 for all n ≥ 2 we have

a1 ≤ 1 and an ≤
√

2
β
an−1 + c for all n ≥ 2.
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Inductive Approach

With β > 1, choosing λ = 3βγ/
√
n in

λ/
√

2π + n−1/2γ
(

3δ(γ, n− 1)/λ+ 3/
√

8π + 3
)

yields, with c = 3β/
√

2π + 3/
√

8π + 3 > 1,

δ(γ, n) ≤ δ(γ, n− 1)/β + n−1/2γc.

Letting an =
√
nδ(γ, n)/γ, and using that√

n/(n− 1) ≤
√

2 for all n ≥ 2 we have

a1 ≤ 1 and an ≤
√

2
β
an−1 + c for all n ≥ 2.
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Inductive Approach

Now taking β >
√

2 so that α =
√

2/β < 1, we can show
that if

an ≤ αan−1 + c and a1 ≤ 1,

then

an ≤ c1 + c2α
n where c1 =

c

1− α
, c2 =

1− α− c
α(1− α)

< 0

so that

an ↑
c

1− α
=

3β/
√

2π + 3/
√

8π + 3
1−
√

2/β
,

which has minimal value 12.969.
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Recap

I. Background, Stein Identity, Equation, Bounds

II. Size Bias Couplings

III. Exchangeable Pair, Zero Bias Couplings

IV. Local dependence, Nonsmooth functions
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