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Let { X4 }aca be a collection of mean zero random
variables with Var(IW) =1 where W =%, X,.

For each o € A suppose there exists S, C A such that

X, isindependent of {Xgz:(0 € S5},



Let { X4 }aca be a collection of mean zero random
variables with Var(IW) =1 where W =% _ , X,. For
each a € A suppose there exists S,, C A such that

X, is independent of {Xg: (3 € S5}

In particular, note therefore, that

> Y EXoXp=1

acABES,



For a € A let

W, = Z X3.

BESa
Given h, consider
E[h(W) — Nh]
= E[f'(W)-W[fW)]

= E[f/(W)= ) Xof(W)

acA
= E[fI(W) - Z Xa(f(W) - f(WOz)) + Z Xaf(Wa)]
acA acA

= E[f'(W) =Y Xa(f(W) = f(Wa))].

acA



Summands are
Xa(f(W) - f(Wa))] = X, (f/(W)(W - Wa)) + Ry,

so subtracting sum of first term from f'(W) yields

E[ff W)=Y Xo Y Xgll

acA BESy

< 2l |Var [ > XaXp|.
acA,BESA




For the remainder term, recalling
Xa(f(W) - f(Wa))] = Xa (f/(W)(W - Wa)) + Ra,

we see

1
[Ral < S ool Xa (D Xp)* < [1W]|eolXal D Xp)?).
BESa BESa



Local Dependence: Smooth Function
Theorem

If ||h]|oe < 00, then |ER(W) — Nh| is bounded by

2|7 || o Var( Z XQXB>

a€A,BES

+ Wl Y ElXa( D X5)°).

a€A BESa



Application:

Let each edge in a finite lattice in Z? be present with
probability p € (0,1) independent of the presence of
all other edges. Let W be the number of squares.

Compute a bound on the normal approximation to W.



Application:

Let each edge in a finite lattice in Z? be present with
probability p € (0,1) independent of the presence of
all other edges. Let W be the number of squares.

Assign an independent uniform random variable to
each vertex of a fixed graph. Let W be the number
of local maxima.

Compute a bound on the normal approximation to W.



So far we have dealt with expectations of smooth functions.
Now we consider deriving bounds on

IF = ®llec = sup [F(z) = ®(z)|.
As F(z) = E1(X < x), an expectation of a nonsmooth

function, we need some new ideas to obtain a bound using
Stein’'s method.



[Chen and Shao (2004)]

A bound on the probability that a random variable takes
values in a (small) interval.

Let z € R and 6 > 0. Now let

—0/2 w € (—o0, 2]
glw) =< linear w € (2,2 + ]
0/2  we (z+46,00)

Then for W with mean zero and variance 1,

P(z<W*<z2+446) = Eg¢(W*)
— EW(W) < (5/2)EIW]| < 6/2.



Suppose for the given W we can find W* such that
|[W* — W| < 4. For example, if X;,..., X, are i.i.d. mean
zero with | X;| < K,

1 n
W=— X, then W*=W — Xr— X7),

1
Vn
where P(I =1i) = 1/n, so in particular

[W* —W| <46 where = g
vn



Concentration Inequalities

When |[W* — W| <4,

IN

IN

Interchanging the roles of W and W*, we have

PW*<2)—P(W<2)<P(z<W < z+50)



From the concentration inequality for W*, we have likewise
that

PW*<2z)—P(W < 2)

< P(z<W<z+46)

= PE<W —(W"=W)<z+9)
Pz+(W"=W)<W*"<z4+5+(W"-W))

< P(z—6 <W* < z2+420)
3

< —=o.

< 2(5
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Letting

Concentration Inequalities

we have
IP(W < 2) — P(Z < 2)| = |E[f' (W) - WF(W)]|
= B[ W) - V)
= |B[W W) — W*f(W5)] + P(W < 2) - P(W* < 2)
< \BW W) — W W) + 26,



Concentration Inequalities

For the first term E (W f(W) — W* f(W*)) write

IN

IN

IA

IN

[E[(W(f(W) = f(W7)) = (W" = W) f(W")]|
f Moo EIW (W = W) + (| fllo EIW" — W|
E|W (W — W*)| + @ElW* — W

s+ L7

5(1+@)



Concentration Inequalities

Bounded zero bias coupling theorem: If |IW* —W| < § then

IP(W<2)-P(Z<z)| < -5+5(1+ @)

5 V2r
= 5(5*7)‘



Bounded zero bias coupling theorem: If [IW* —W| < § then

V2
;6 +o(1+ )

|[P(W < z) - P(Z <2)|

IN

2 4

When W = ﬁ S X with Xq,..., X, i.i.d mean zero
variance 1 and | X;| < K, may take § = 2K/\/n so

|PW <2z2)—P(Z<2z)| < n 'K (5 + \/D .



[Bhattacharya and Ranga Rao (1986), Goetze (1991),
Rinott and Rotar (1996)]

Works more generally than on indicators, and also in higher
dimension, though will illustrate in R.

For a function h : R — R let

hE(x) = sup hia +y), ho(z) = inf Al +y)

ly|<e ly|<e

and



Let H be a class of measurable functions on R such that

(i) The functions h € H are uniformly bounded in
absolute value by a constant, which can be taken to
be 1 without loss of generality,

(ii) For any real numbers ¢ and d, and for any h € H, the
function h(cx +d) € H,

(iii) For any € > 0 and h € H, the functions h, h_ are
also in H, and there exists a, depending only on H,
such that

Eh(Z) < ae.



Let H denote a class of measurable functions satisfying
(i),(ii), and (iii) and let h € H. let ¢(t) denote the
standard normal density, and, for t € (0,1), define

hi(z) = /h(erty)cﬁ(y)dy
and
0r = sup{|Eht(W) — Nh¢| : h € H}.

Lemma 1 For any random variable W on R

0 < 2.86; +4.7at for allt € (0,1).



Use techniques for smooth functions to obtain a bound on
d¢, which may involve the original §, e.g. for some
constants ¢y, ¢ and c3,

1
0 <er+ n (cod +c3) forallt e (0,1).
Substitution of §; into the smoothing inequality

0 <2.86; +4.7at

yields a minimization problem over ¢, and a bound on 4.



Forn € Nand v > 1 let £L(n,~) be collection of
distributions on X = (X1, X», ..., X,,) with i.i.d. mean
zero, variance 1 components, and 1 < v = E|X3}| < co. Let

Sp=n""3(X14 -+ X,)
and for A > 0,
5(A,y,n) = sup{[E(hz A (Sn)—h:a(2))] : 2 € R,X € L(n,7)}
where h, o(z) = 1(x < z) and for A > 0

1 r <z
hoa(z) = 1+2352%2 zelz,z+1/))
0 x>z4+1/A



Letting 6(7y,n) = 6(0,,n), the Berry-Esseen Theorem is
sup{f5(% )/7 1y >1,n €N} <oo.
By ho(x) < hoa(z
(v,

When f solves the Stein equation for & = h, , Chen &
Shao '04 give

[f'(@+s) = flz+b)] <

n
< hyta0(z) we have

)
n) < 6(\,y,n) + \/V2r.

t
(Jz| + 1) min(|s| + [¢],1) + A1 / 1z<z+4+u<z+a)du




We have
Eh(sn) - h(Z) = E[f/(Sn) - Snf(Sn)]
= E[f'(Sn) = f'(Sy)]
which is
E[f/(Snfl + Xn/\/ﬁ) - f/(Snfl + X;/\/ﬁ)]
Need to bound the expectation of

(ISn—1| + 1) min((|Xn| + [ X7])/v/n, 1)+

X5 /Vn
AL / 1(z<S,—1+u<z+N)dul.

‘)(’Vl/\/"iI




Regarding the first term, we have
E|Xn| < (BIXa))'? =1 < (BIX3)'? < EIX).

2

From the zero bias identity with function sign(z)z? we have

E|X7| = (1/2)E|X3|. Note, therefore, that
cx = E|X;, — Xo| < E|X; |+ E|Xa| < (3/2)y.
Since E(|Sy—1] +1) <2,

E ((|Sn—1]+ 1) min((|X,| + |X]) /v, 1)) < 3n~1/24.



Second term: expectation of

X3 /R
A1 / 1(z< S, 1+u<z+Ndu

Xn /v

which we decompose as A~ ! times

X5 /Vn
E / 1(z< S 1+u<z+Ndu; X,, < X
Xn/v/n

Xn/vn
+ E / 1(z < Spo1+u < 2+ Ndy; X, > X
X5 /v



Inductive Approach

For any u € R,
Pz<Sp1+u<z+A)
can be no more than

[P(z< Sp1+u<z4+4N)—-P<Z+u<z+N)]
HP(z<Z+u<z+ M),

which is bounded by
26(y,n— 1)+ A/V2rm.



Hence, with cx = E| X} — X,,| < (3/2)~, conditioning on
X, and X7,

X/
AL / 1(z< Sp—1+u<z+ N)du

Xn /v
is bounded by

n~2ex (2(5(7,71 -1/ A+ 1/\/%)
< nl/%y (35(%11 - 1/A+ 3/\/@) .

Putting everything together, §(y,n) is bounded by

A/ V27 4+ 012y (35(% n—1)/\+3/V8r + 3)



Choosing A = 387y/+/n in
A V2 + 02y (35(7,71 - 1)/)\+3/\/877T+3>
yields, with ¢ = 33/v/27 + 3/v/87 + 3,

8(v,m) < 8(y,n—1)/B+n" e

Letting a,, = v/nd(v,n)/~, and using that
Vn/(n—1) < /2 for all n. > 2 we have

2
a; <1 and angian_lJrc for all n > 2.

B



With 8 > 1, choosing A = 38v/+y/n in
A V2Zr 402y (35(% n—1)/A+3/V8r + 3)
yields, with ¢ = 38/v27 +3/v/8m + 3 > 1,

8(v,m) < 8(y,n—1)/B+n" e

Letting a,, = v/nd(v,n)/~, and using that
Vn/(n—1) < /2 for all n. > 2 we have

2
a; <1 and angian_lJrc for all n > 2.

B



Now taking 3 > /2 so that a = v/2/3 < 1, we can show
that if
an < aa,_1+c and a; <1,

then

an < c1+coa” where ¢ =

so that

¢ 38/V2r+3/V8r+3
l—a 1fﬂ/ﬂ

)

which has minimal value 12.969.
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