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6. Translated Poisson approximation

In our basic example for the Stein-Chen method, we take I1, I2, . . . to be independent
indicator random variables. A Poisson approximation is then plausible if the probabilities
pi := P(Ii = 1) are generally small. The Stein–Chen method, as in (2.9), easily implies
that

dTV (L(W ),Po(λ)) ≤ λ−1
n∑
i=1

p2
i ≤ max

1≤i≤n
pi, (6.1)

where λ := EW =
∑n
i=1 pi.

Clearly, if the pi’s are not all small, there may be little content in (6.1). This is to
be expected, since then EW = λ and VarW = λ −

∑n
i=1 p

2
i need no longer be close to

one another, whereas Poisson distributions have equal mean and variance. This makes it
more natural to try to find a family of distributions for the approximation within which
both mean and variance can be matched, as is possible using the normal family in the
classical central limit theorem. One choice is to approximate with a member of the family
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of translated Poisson distributions {TP (µ, σ2), (µ, σ2) ∈ R×R+}, where

TP (µ, σ2){j} := Po(σ2 + δ){j − bµ− σ2c}
= Po(λ′){j − γ}, j ∈ Z,

(6.2)

where
γ := γ(µ, σ2) := bµ− σ2c, δ := δ(µ, σ2) := µ− σ2 − γ
and λ′ := λ′(µ, σ2) := σ2 + δ.

(6.3)

The TP (µ, σ2) distribution is just that of a Poisson with mean λ′ := λ′(µ, σ2) := σ2 + δ,
then shifted along the lattice by an amount γ := γ(µ, σ2) := bµ − σ2c. In particular,
it has mean λ′ + γ = µ and variance λ′ such that σ2 ≤ λ′ < σ2 + 1; note that λ′ = σ2

only if µ− σ2 ∈ Z. For sums of independent, integer-valued random variables Yi, this idea
has been exploited by Vaitkus & Čekanavičius (1998), and also in Barbour & Xia (1999),
Čekanavičius & Vaitkus (2001) and Barbour & Čekanavičius (2002), using Stein’s method.
Error rates are obtained that are of the same order as in the classical central limit theorem,
but now with respect to the much stronger total variation norm, provided that some
‘smoothness’ of the distribution of W can be established.

Just as in the Poisson case, the introduction of Stein’s method raises the possibility of
making similar approximations for sums of dependent random variables as well. However,
the ‘smoothness’ needed is typically a bound of order O(1/

√
n) for dTV (L(W + 1),L(W )),

and this can lead to much more delicate arguments than are required for Poisson approx-
imation. Nonetheless, since a sum of even integer valued random variables can never be
close in total variation to any translated Poisson distribution, it is clear that some such
condition is necessary.

In this chapter, we discuss some of the ways in which total variation approximation
by translated Poisson distributions can be achieved. We give an explicit inequality in
Lemma 6.1, from which the accuracy of translated Poisson approximation can be directly
deduced. We then illustrate its use in the context of sums of independent random variables.
Applying it for sums of dependent random variables is a lot more difficult; for an example in
the case of Markov dependence, see Barbour and Lindvall (2006). Here, we discuss instead
one of Röllin’s methods for making such approximations (Röllin 2005), which is effective
in a wider range of circumstances, including many local and combinatorial dependence
structures. Here, the key feature is to find a sum of (conditionally) independent Bernoulli
random variables imbedded within the problem. In such circumstances, the method also
yields local limit approximations of appropriate accuracy.

6.1 The basic lemma

Since the TP (µ, σ2) distributions are just translates of Poisson distributions, the
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Stein–Chen method itself can be used to establish total variation approximation. In par-
ticular, from (6.2), W ∼ TP (µ, σ2) if and only if

E{λ′g(W + 1)− (W − γ)g(W )} = 0 (6.4)

for all bounded functions g : Z→ R, where λ′ = λ′(µ, σ2) and γ = γ(µ, σ2) are as defined
in (6.2). Define g∗C for C ⊂ Z+ by

g∗C(k) = 0, k ≤ 0;

λ′g∗C(k + 1)− kg∗C(k) = 1C(k)− Po(λ′){C}, k ≥ 0,

as in (2.1) for the Stein–Chen method. It then follows that

‖g∗C‖ ≤ (λ′)−1/2 and ‖∆g∗C‖ ≤ (λ′)−1

(Barbour, Holst and Janson 1992, Lemma I.1.1), where ∆g(j) := g(j + 1)− g(j) and, for
bounded functions g : Z → R, we let ‖g‖ denote the supremum norm. Correspondingly,
for B ⊂ Z such that B∗ := B − γ ⊂ Z+, the function gB defined by

gB(j) := g∗B∗(j − γ), j ∈ Z, (6.5)

satisfies

λ′gB(w + 1)− (w − γ)gB(w)

= λ′g∗B∗(w − γ + 1)− (w − γ)g∗B∗(w − γ)

= 1B∗(w − γ)− Po(λ′){B∗}
= 1B(w)− TP (µ, σ2){B} (6.6)

if w ≥ γ, and
λ′gB(w + 1)− (w − γ)gB(w) = 0 (6.7)

if w < γ; and clearly

‖gB‖ ≤ (λ′)−1/2 and ‖∆gB‖ ≤ (λ′)−1. (6.8)

This can be exploited to prove the closeness in total variation of L(W ) to TP (µ, σ2) for
an arbitrary integer-valued random variable W , as illustrated in the following result. Note
that we make no assumptions about non-negativity or about the dependence structure
among the random variables Y1, . . . , Yn.
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Lemma 6.1. Let Y1, Y2, . . . , Yn be integer valued random variables with finite means, and

define W :=
∑n
i=1 Yi. Let (ai)ni=1 and (bi)ni=1 be real numbers such that, for all bounded

g : Z→ R,

|E[Yig(W )]−E[Yi]Eg(W )− aiE[∆g(W )]| ≤ bi‖∆g‖, 1 ≤ i ≤ n. (6.9)

Then

dTV (L(W ),TP (EW,σ2)) ≤ (λ′)−1

(
δ +

n∑
i=1

bi

)
+ P[W < bEW − σ2c],

where σ2 :=
∑n
i=1 ai, δ = δ(EW,σ2) and λ′ = σ2 + δ.

Proof. Adding (6.9) over i, and then adding and subtracting cEg(W ) for c ∈ R to be
chosen at will, we get

|E[(W − c)g(W )]− (EW − c− σ2)Eg(W )− σ2E[g(W + 1)]| ≤

(
n∑
i=1

bi

)
‖∆g‖,

where σ2 =
∑n
i=1 ai as above. Taking c = γ = bEW − σ2c, so that the middle term

(almost) disappears, the expression can be rewritten as

|E[(W − γ)g(W )]− λ′E[g(W + 1)]| ≤

(
δ +

n∑
i=1

bi

)
‖∆g‖, (6.10)

where δ and λ′ are as above.
Fixing any set B ⊂ Z+ + γ, take g = gB as in (6.5). It then follows from (6.6) that

|P(W ∈B)− TP (EW,σ2){B}|
= |E{(1B(W )− TP (EW,σ2){B})(I[W ≥ γ] + I[W < γ])}|
≤ |E{(λ′gB(W + 1)− (W − γ)gB(W )) I[W ≥ γ]}|+ P(W < γ)

= |E{λ′gB(W + 1)− (W − γ)gB(W )}|+ P(W < γ), (6.11)

this last from (6.7). Hence (6.10) and (6.11) show that, for any B ⊂ Z+ + γ,

|P(W ∈ B)− TP (EW,σ2){B}| ≤

(
δ +

n∑
i=1

bi

)
‖∆gB‖+ P(W < γ)

≤ (λ′)−1

(
δ +

n∑
i=1

bi

)
+ P(W < γ). (6.12)
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Now the largest value D of the differences {TP (EW,σ2){C} − P(W ∈ C)}, C ⊂ Z, is
attained at a set C0 ⊂ Z+ + γ, and is thus bounded as in (6.12); the minimum is attained
at Z \ C0 with the value −D. Hence

|P(W ∈ C)− TP (EW,σ2){C}| ≤ (λ′)−1

(
δ +

n∑
i=1

bi

)
+ P(W < γ)

for all C ⊂ Z, and the lemma follows.

If the random variables Yi have finite variances, both λ′ and VarW are typically of
order O(n), so that letting b̄ := n−1

∑n
i=1 bi and applying Chebyshev’s inequality to bound

the final probability, we find that then dTV (L(W ),TP (EW,σ2)) is of order O(n−1 + b̄).
Hence we are interested in choosing a1, a2, . . . so that b1, b2, . . . are small.

6.2 Independent indicator random variables

As a first example, consider the case where W :=
∑n
i=1 Yi when Y1, Y2, . . . are inde-

pendent indicators, with EYi = pi. (6.1) is good if the pi are small: how do things go
when they are not? We start by computing the elements in (6.9). First, we note that

E{Yig(W )} = piEg(Wi + 1);

EYiEg(W ) = pi(1− pi)Eg(Wi) + p2
iEg(Wi + 1),

(6.13)

where Wi :=
∑
j 6=i Yj . Hence

E{Yig(W )} −EYiEg(W ) = pi(1− pi)E∆g(Wi). (6.14)

Comparing this expression with (6.9) suggests taking ai = pi(1 − pi). We then need to
evaluate the difference E∆g(W )−E∆g(Wi). Since

E∆g(W ) = (1− pi)E∆g(Wi) + piE∆g(Wi + 1)

= E∆g(Wi) + piE∆2g(Wi),

we can substitute this into (6.14) to give

E{Yig(W )} −EYiEg(W )− pi(1− pi)E∆g(W ) = −p2
i (1− pi)E∆2g(Wi). (6.15)

The right hand side of (6.15) is not quite in the form expected in (6.9), because
of the appearance of the second difference of the function g. One might expect this to
work to our advantage, since, for the solutions gλ,A of the Stein Equation for the Poisson
distribution Po(λ) corresponding to f = 1A, the bound (2.3) on ‖∆gλ,A‖ is of smaller

5



order in λ than that on ‖gλ,A‖. However, for A a singleton {a}, suitably chosen, the
value of ‖∆gλ,a‖ can be arbitrarily close to the upper bound in (2.3), and, for this choice
of A, ‖∆2gλ,a‖ > ‖∆gλ,a‖. What is more, if we bounded |E∆2gA(Wi)| in (6.15) by (say)
2‖∆gA‖, the conclusion of Lemma 6.1 could yield nothing better than

dTV (L(W ),TP (EW,σ2)) ≤ 2σ−2
n∑
i=1

p2
i (1− pi)

with σ2 :=
∑n
i=1 pi(1− pi), again of order max1≤i≤n pi if the pi are all of comparable size,

and hence no better than the bound in (6.1).
The trick is to observe that, for any bounded function g and any random variable V ,

|E∆2g(V )| ≤ 2‖∆g‖ dTV (L(V ),L(V + 1)), (6.16)

in view of the definition of total variation distance. Note that the modulus must be outside
the expectation. Now we can use an inequality, which can be proved using the ‘Mineka
coupling’ (Lindvall 2002, II.14),

dTV (L(Wi),L(Wi + 1)) ≤ cMR

{∑
j 6=i

{1− dTV (L(Yj),L(Yj + 1))}
}−1/2

, (6.17)

true for arbitrary independent integer valued random variables Yi: the improved version
here with cMR =

√
2/π was established by Mattner and Roos (2006). For our indicator

random variables,

1− dTV (L(Yi),L(Yi + 1)) = min{pi, 1− pi}. (6.18)

If
∑n
i=1 p

2
i ≥ 1, this leads to the following bound.

Theorem 6.2. If W :=
∑n
i=1 Yi, where Y1, . . . , Yn are independent and Yi ∼ Be (pi), then

dTV (L(W ),TP (λ, σ2)) ≤ 2σ−2

(
1 +

n∑
i=1

p2
i (1− pi)ϕ

)
≤ 2σ−2 + 2ϕ, (6.19)

with λ :=
∑n
i=1 pi, σ

2 :=
∑n
i=1 pi(1− pi) and

ϕ := max
1≤i≤n

cMR

{∑
j 6=i

min{pj , 1− pj}
}−1/2

. (6.20)

If σ2 ≥ 1, the bound can be simply majorized by 4/σ.

Note that, if
∑n
i=1 p

2
i < 1, the approximation is by the Poisson distribution, and (6.1)

should be used instead. If not, then the bound is at most 2σ−1(2cMR maxi pi+σ−1), since
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σ ≥ 1 when
∑n
i=1 p

2
i ≥ 1, and this is of order O(p/

√
np + 1/np) if all the pi are equal

to p, 1/
√
n ≤ p ≤ 1/2; smaller than the error in Poisson approximation if p� 1/

√
n, and

smaller than that in the central limit theorem for p� 1. So it is a useful result.
Now there is no need to restrict attention to indicator random variables; any indepen-

dent integer valued random variables with finite means will do. Of course, the expressions
analogous to (6.13)–(6.15) become much more complicated, and it is advisable to assume
that the Yi have third moments, if an error rate of order O(n−1/2) is to be achieved —
exactly as in the Berry–Esseen theorem. But the basic method of proof remains the same:
see, for example, Barbour and Čekanavičius (2002, Theorem 3.1). The big concern is that
(6.17) need not yield something small, unless the distributions of the Yi overlap with their
unit translates. Something of this sort is also to be expected. For instance, for even integer
valued random variables Yi, their sum is also necessarily even, and approximation by a
translated Poisson distribution in total variation is clearly poor. Improving the central
limit theorem to approximation in total variation is a sensitive issue, and ‘relatively small’
errors cannot simply be discounted.

Note that, in (6.9), the choice

ai = E[YiW ]−E[Yi]E[W ] (6.21)

is rather natural, and always implies that σ2 = VarW .
The argument above hinges on showing that, in (6.15),

|E∆2gA(Wi)| = O(σ−3), (6.22)

and this was achieved using the observation (6.16). The end result is then, broadly speak-
ing, to be able to approximate the probability of any set A to accuracy O(σ−1), and not
just the probabilities of intervals, as in the central limit theorem. However, for local limit
approximations, this accuracy is too weak, since it is typically of the same order as the
probabilities being approximated. For singletons A = {a}, one can, however, exploit the
extra properties of the corresponding functions ga. In particular, the form of the func-
tion ga easily implies the `1 estimate∑

j

|∆ga(j)| ≤ 2σ−2 (6.23)

for the solutions to the Stein equation for Po(σ2). This allows one to prove the bound

|E∆2ga(W ′)| =
∣∣∣∑
j

{∆ga(j + 1)−∆ga(j)}P[W ′ = j]
∣∣∣

=
∣∣∣∑
j

{P[W ′ = j]−P[W ′ = j − 1]}∆ga(j)
∣∣∣
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≤ max
j

∣∣P[W ′ = j]−P[W ′ = j − 1]
∣∣ ∑

j

|∆ga(j)|

≤ 2σ−2 max
j

∣∣P[W ′ = j]−P[W ′ = j − 1]
∣∣. (6.24)

The trick is now to show that

max
j

∣∣P[W ′ = j]−P[W ′ = j − 1]
∣∣ = O(σ−2). (6.25)

To do so, we consider once again a sum of independent random variables Yi, and we
now suppose that, by using the total variation approximation techniques above, we have
been able to show that W ′ = W ′1 + W ′2, where W ′1 and W ′2 are independent, and such
that dTV (L(W ′l ),L(W ′l + 1)) = O(σ−1), l = 1, 2, using (6.17). Then, by independence,

P[W ′ = j]−P[W ′ = j − 1] = E{hj(W ′1)− hj(W ′1 + 1)},

where
hj(k) := P[W ′2 = j − k].

Now it is immediate that

|hj(k)| = |P[W ′2 ≤ j − k]−P[W ′2 + 1 ≤ j − k]| ≤ dTV (L(W ′2),L(W ′2 + 1)),

so that
‖hj‖ ≤ dTV (L(W ′2),L(W ′2 + 1)) = O(σ−1), (6.26)

uniformly in j. Hence it follows that

|E{hj(W ′1)− hj(W ′1 + 1)}| ≤ 2‖hj‖ dTV (L(W ′1),L(W ′1 + 1)) = O(σ−2),

again uniformly in j. This establishes (6.25), from which and (6.24) we obtain

|E∆2ga(W ′)| = O(σ−4). (6.27)

This strengthening of (6.22) for singleton sets A = {a} enables one to establish local limit
approximations for sums of independent random variables Yi to an error of order O(σ−2),
which, by analogy with the central limit theorem, is just what one would hope for. Here,
it is once again critical that the counterparts of (6.17) for W1 and W2 should yield bounds
of order O(σ−1): exclusively even integer valued random variables cannot work.

For the sum W of independent indicator random variables Yi, the considerations above
yield the following theorem. Let λ and σ2 be the mean and variance of W , as before. Now
split the Yj into two sets, denoted by (Y1j , 1 ≤ j ≤ n1) and (Y2j , 1 ≤ j ≤ n2), with
n1 + n2 = n, and set plj = EYlj , l = 1, 2. We apply the argument above with each of the
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random variables Wi := W − Yi in turn as W ′; thus, for the quantities appearing in the
bounds, we define

σ2
l :=

nl∑
j=1

plj(1− plj)− max
1≤i≤nl

pli(1− pli), l = 1, 2;

ϕl := max
1≤i≤n

cMR

{∑
j 6=i

min{plj , 1− plj}
}−1/2

,

l = 1, 2.

The notation
dloc(P,Q) := max

i
|P{i} −Q{i}|

is used to denote the largest difference between point probabilities for probability distri-
butions P and Q on the integers.

Theorem 6.3. With the above definitions and assumptions, we have

dloc(L(W ),TP (λ, σ2)) ≤ 8
{

1
σ2

1

+ ϕ1

}{
1
σ2

2

+ ϕ2

}
max

1≤i≤n
pi.

In particular, for σ2 ≥ 2, the bound can be majorized by 280σ−2 max1≤i≤n pi.

Of course, the choice of split can be made to minimize the bound in the theorem.

6.3 Dependent random variables: Röllin’s theorem

There are many arguments for proving sharp results for sums of independent random
variables Yi, and the results above could certainly be improved upon by other means.
Our interest lies primarily in showing that this technique can also be used for sums of
dependent random variables. Because total variation is a very sharp measure of distance,
the arguments are unfortunately correspondingly tricky. The method above can be carried
through, provided that the error terms left over when computing the left hand side of (6.9)
can be expressed (more or less) in terms of quantities of the form |E∆2gA(W ′)|, for random
variables W ′ such that dTV (L(W ′),L(W ′ + 1)) is small enough. To establish this latter
property, the usual approach is to find a sum of (conditionally) independent integer valued
random variables within W ′, to which the inequality (6.17) can be applied.

The following theorem of Röllin (2005) gives one way of doing this. It yields approx-
imations both in total variation and locally. Note that the left hand side of (6.9), the
difficult part, does not come into the conditions of the theorem. Instead, it is replaced
with an inequality (6.28) which is typically much easier to verify. This inequality can be
recognised as expressing (using Stein’s method) that a suitably chosen random variable U
is close to the standard normal, with respect to expectations of smooth test functions. The
random variable U is, however, not the same as the original W , even when standardized,
and it would often be more convenient if it were.
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Theorem 6.4. Let W be an integer-valued random variable with expectation µ and

variance σ2 and let X be a random element of a Polish space on the same probability

space. Define µX := E(W |X), σ2
X := Var (W |X) and ρ2 := E(σ2

X), and let τ2 = Var (µX),
ν2 = Var (σ2

X). Assume that there exists ε ≥ 0 such that U := (µX − µ)/τ satisfies

∣∣E{f ′(U)− Uf(U)
}∣∣ ≤ ε ‖f ′′‖, for all f ∈ C2. (6.28)

Then we have

dTV
(
L(W ),TP (µ, σ2)

)
≤ EDTV (X) +

1
ρ

{
14 +

ν

ρ
+

5ετ3

σ2

}
,

dloc
(
L(W ),TP (µ, σ2)

)
≤ EDloc(X) +

1
ρ2

{
49 +

6ν2

ρ2
+

20ετ3

σ2

}
,

where

DTV (X) := dTV
(
L(W |X),TP (µX , σ2

X)
)
; Dloc(X) := dloc

(
L(W |X),TP (µX , σ2

X)
)
.

The elements in the bounds reflect the way in which Röllin’s proof runs. First, one
approximates the conditional distribution L(W |X) by the translated Poisson distribution
which matches its mean µX and variance σ2

X . This yields the first term in the error
bounds, which describes how well the distribution of W is approximated by that of a
mixture of translated Poisson distributions, where mean and variance are chosen according
to L(µX , σ2

X). The remaining term governs errors arising in two ways. First, this translated
Poisson distribution is approximated by the mixture with mean chosen according to L(µX)
but with fixed variance ρ2 = E(σ2

X), and the appearance of ν/ρ reflects the fact that σ2
X

must not be too variable if the approximation is to be good. Secondly, this approximation
is replaced by one involving a single translated Poisson distribution. Here, significant
variation can be accommodated in L(µX), with the variance parameter increasing from ρ2

to σ2, provided that the (normalized) distribution of µX is suitably close to the standard
normal, whence the appearance of ετ3/σ2 in the bound. Note that the last two steps are
approximations within the family of (mixtures of) translated Poisson distributions, and
are thus technically relatively easy to handle.

In order to exploit the theorem, we need to be able to approximate L(W |X) by
TP (µX , σ2

X) in the appropriate fashion. Here, one usually tries to choose X in such a
way as to make L(W |X) that of a sum of independent integer valued random variables.
Theorems 6.2 and 6.3 can be invoked provided these random variables have Bernoulli
distributions. We start by showing that Röllin’s theorem can be used to extend these
theorems to more general independent summands.
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Theorem 6.5. Let X1, . . . , Xn be independent integer valued random variables, and let

0 ≤ qj(l) ≤ 1 for any 1 ≤ j ≤ n and l ∈ Z; write Yj := Xj + Jj , where, conditional

on X = (X1, . . . , Xn), the Jj ∼ Be (qj(Xj)) are independent. Write W :=
∑n
j=1 Yj ,

ρ2 := E
{∑n

j=1 qj(Xj)(1− qj(Xj))
}

. Then

dTV (L(W ),TP (µ, σ2)) ≤ ρ−1(27 + 5Λ);

dloc(L(W ),TP (µ, σ2)) ≤ ρ−2(891 + 20Λ),

where µ := EW , σ2 := VarW , and

Λ := σ−2
n∑
j=1

E|Yj −EYj |3

is σ times the usual Lyapounov ratio for W .

Proof. We can suppose that ρ ≥ 1, since otherwise the bounds are vacuous. Setting
T (X) :=

∑n
j=1Xj , we first observe that L(W −T (X) |X) is that of a sum of independent

indicators with means qj(Xj), so that, from Theorems 6.2 and 6.3,

dTV (L(W |X),TP (µX , σ2
X)) ≤ min{1, 4σ−1

X };
dloc(L(W |X),TP (µX , σ2

X)) ≤ min{1, 280σ−2
X },

where

µX := T (X) +
n∑
j=1

qj(Xj) and σ2
X :=

n∑
j=1

qj(Xj)(1− qj(Xj)).

Note that

ν2 := Var (σ2
X) ≤

n∑
j=1

E{[qj(Xj)(1− qj(Xj))]2} ≤ 1
4E(σ2

X) = 1
4ρ

2, (6.29)

so that ν/ρ ≤ 1/2 . Also, in view of (6.29), by Chebyshev’s inequality,

E min{1, σ−1
X } ≤ ρ−2 +

√
2ρ−1 ≤ 3ρ−1; E min{1, σ−2

X } ≤ 3ρ−2, (6.30)

and hence, by Theorems 6.2 and 6.3,

EDTV (X) ≤ 12ρ−1; EDloc(X) ≤ 840ρ−2.

Now µX can also be written as a sum
∑n
j=1 E(Yj |Xj) of independent random variables,

with

τ2 := Var (µX) ≤ VarW and
n∑
j=1

E|E(Yj |Xj)−EYj |3 ≤
n∑
j=1

E|Yj −EYj |3,
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and hence, using a standard argument for the normal approximation of sums of independent
random variables by Stein’s method, it follows that

τ3ε ≤ 3
2

n∑
j=1

E|Yj −EYj |3.

The theorem follows by substituting these quantities into the bounds given in Theorem 6.4.

Corollary 6.6. Let Y1, . . . , Yn be independent integer valued random variables, and for

1 ≤ j ≤ n and l ∈ Z let pjl := P[Yj = l]. Write W :=
∑n
j=1 Yj , µ := EW , σ2 := VarW

and

Λ := σ−2
n∑
j=1

E|Yj −EYj |3.

Then
dTV (L(W ),TP (µ, σ2)) ≤ χ−1(27 + 5Λ);

dloc(L(W ),TP (µ, σ2)) ≤ χ−2(891 + 20Λ),

with χ2 := 1
4

∑n
j=1

∑
l(pjl ∧ pj,l+1).

Proof. To recover the setting of the previous theorem, define independent random vari-
ables Xj with πjl := P[Xj = l] = pjl+ 1

2{pjl∧pj,l+1−pj,l−1∧pjl}. Then, given X1, . . . , Xn,
let J1, . . . , Jn be independent, with Jj ∼ Be (qj(Xj)), where

qj(l) :=
1
2

(pjl ∧ pj,l+1)/πjl ≤
1
2
,

and check that Xj + Jj and Yj have the same distribution. Now

ρ2 = E


n∑
j=1

qj(Xj)(1− qj(Xj))


=

n∑
j=1

∑
l

1
2

(pjl ∧ pj,l+1)(1− qj(l)) ≥
1
4

n∑
j=1

∑
l

(pjl ∧ pj,l+1) = χ2,

and the corollary follows.

Now a simple example with dependence, the number of 2–runs in a sequence of
Bernoulli trials. Let I1, . . . , I2n be independent Be (p) random variables, and let W :=∑2n−1
i=1 Yi with Yi = IiIi+1. The random variables Yi are one–dependent, and the cen-

tral limit theorem is straightforward, with error rate O({np2(1− p2)}−1/2) in Kolmogorov
distance. What can be said about translated Poisson approximation?
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Theorem 6.7. With the definitions above, and setting µ = EW , σ2 = Var (W ), we have

dTV (L(W ),TP (µ, σ2)) = O({np2(1− p)2}−1/2);

dloc(L(W ),TP (µ, σ2)) = O({np2(1− p)2}−1).

Proof. Define X := (I2, I4, . . . , I2n). Then, conditional on X = (x2, x4, . . . , x2n) ∈
{0, 1}n, we have

W = x2I1 + (x2 + x4)I3 + · · ·+ (x2n−2 + x2n)I2n−1,

a sum of independent integer valued random variables, with overlap χ2
x satisfying

χ2
x ≥

1
4
N1(x){p ∧ (1− p)}, (6.31)

where N1(x) := x2 +
∑n
j=2 1{1}(x2j−2 + x2j), and with Λx ≤ 2 for all x. Now

EN1(X) = p+ 2(n− 1)p(1− p) and Var (N1(X)) ≤ 5(n− 1)p(1− p),

where the latter inequality requires some calculation, and we assume that (n−1)p(1−p) ≥
1, which is unimportant for the bound we are proving. Arguing as for (6.30), it thus follows
that

E min{1, N1(X)−1/2} ≤ 6√
(n− 1)p(1− p)

; E min{1, N1(X)−1} ≤ 6
(n− 1)p(1− p)

,

and hence, from Corollary 6.6, that

EDTV (X) = O(1/p(1− p)
√

(n− 1)); EDloc(X) = O(1/{p(1− p)}2(n− 1)), (6.32)

with µX := p{X2n + 2
∑n−1
j=1 X2j} and σ2

X := p(1− p){X2
2 +

∑n
j=2(X2(j−1) +X2j)2}.

Some calculation now shows that

ν2 := Var (σ2
X) ≤ 11(n− 1)p3(1− p)3;

ρ2 := E(σ2
X) = p2(1− p){1 + 2(n− 1)(1 + p)} ∼ 2(n− 1)p2(1− p2);

τ2 := Var (µX) = (4n− 3)p3(1− p),

with σ2 = ρ2 + τ2, and, by Stein’s method for the normal distribution,

τ3ε ≤ 3
2

(8n− 7)p4(1− p).

Putting these values into the bound given in Theorem 6.4, and recalling (6.32), the theorem
follows.
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