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Abstract
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1 Overview and motivation

These lecture notes are an introduction to some new techniques (developed in the recent series
of papers [57]�[61], [64] and [70]), bringing together Stein�s method for normal and non-normal
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approximation (see e.g. [14], [80], [88] and [89]) and Malliavin calculus (see e.g. [35], [42],
[43] and [65]). We shall see that the two theories �t together admirably well, and that their
interaction leads to some remarkable new results involving central and non-central limit theorems
for functionals of in�nite-dimensional Gaussian �elds.

Roughly speaking, the Gaussian Malliavin calculus is an in�nite-dimensional di¤erential
calculus, involving operators de�ned on the class of functionals of a given Gaussian stochastic
process. Its original motivation (see again [42], [43] and [65]) has been the obtention of a
probabilistic proof of the so-called Hörmander�s theorem for hypoelliptic operators. One of
its most striking and well-established applications (which is tightly related to Hörmander�s
theorem) is the study of the regularity of the densities of random vectors, especially in connection
with solutions of stochastic di¤erential equations. Other crucial domains of application are:
mathematical �nance (see e.g. [44]), the non-anticipative stochastic calculus (see e.g. [65,
Chapter 3]), the study of fractional processes (see e.g. [18] and [65, Chapter 5]) and, of course,
limit theorems for sequences of functionals of Gaussian �elds.

At the core of the Malliavin calculus lies the algebra of the so-called Malliavin operators,
such as the derivative operator, the divergence operator and the Ornstein-Uhlenbeck semigroup.
We will see that all these objects can be successfully characterized in terms of the chaotic
representation property, stating that every square-integrable functional of a given Gaussian �eld
is indeed an in�nite orthogonal series of multiple stochastic Wiener-Itô integrals of increasing
orders. As discussed in Section 7, the Malliavin operators are linked by several identities, all
revolving around a fundamental result known as the (in�nite-dimensional) integration by parts
formula. It is interesting to note that this formula contains as a special case the �Stein�s identity�

E
�
f 0 (N)�Nf (N)

�
= 0; (1.1)

where N � N (0; 1) and f is a smooth function verifying E jf 0 (N)j < 1: Also, we will see in
Section 7.1 that equation (1.1) enters very naturally in the proof of one of the basic results of
Malliavin calculus, that is, the closability of derivative operators (see Propostion 7.1 below).
Other connections between Stein�s method and Malliavin-type operators can be found in the
papers by Hsu [32] and Decresuefond and Savy [17].

We will start our journey by describing a speci�c example involving quadratic functionals
of a Brownian motion, and we will discuss the di¢ culties and drawbacks that are related with
techniques that are not based on Stein�s method, like for instance the method of moments and
cumulants.

We stress that the applications of the theory presented in this paper go far beyond the
examples that are discussed below: in particular, a great impetus is given by applications to
limit theorems for functionals of fractional Gaussian processes. See for instance [57], [58], [60],
or the lecture notes [53], for a discussion of this issue. We also point out the monograph [59] (in
preparation).

In what follows, all random elements are implicitly de�ned on a suitable probability space
(
;F ;P) :

Acknowledgements. I thank A. Barbour, L. Chen and K. P. Choi for their kind invitation
and for their generous hospitality and support. I am grateful to I. Nourdin for useful remarks.
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2 Preliminary example: exploding quadratic Brownian func-
tionals without Stein�s method

As anticipated in the Introduction, the theory developed in these lectures allows to apply Stein�s
method and Malliavin calculus to the study of the Gaussian and non-Gaussian approximation
of non-linear functionals of in�nite-dimensional Gaussian �elds. By an in�nite-dimensional
Gaussian �eld we simply mean an in�nite collection of jointly Gaussian real-valued random
variables, such that the associated linear Gaussian space contains an in�nite i.i.d. (Gaussian)
sequence. We will implicitly prove in Section 4.1 that any in�nite-dimensional Gaussian �eld
can be represented in terms of an adequate Gaussian measure or, more generally, of an isonormal
Gaussian process.

As a simple illustration of the problems we are interested in, we now present a typical
situation where one can take advantage of Stein�s method, that is: the asymptotic study of the
quadratic functionals of a standard Brownian motion. We shall �rst state a general problem, and
then describe two popular methods of solution (along with their drawbacks) that are not based
on Stein�s method. We will see in Section 9 that our Stein/Malliavin techniques can overcome
the disadvantages of both approaches.

Observe that, in what follows, we shall sometimes use the notion of cumulant. Recall that,
given a random variable Y with �nite moments of all orders and with characteristic function
 Y (t) = E [exp (itY )] (t 2 R), one de�nes the sequence of cumulants (sometimes known as
semi-invariants) of Y , noted f�n (Y ) : n � 1g, as

�n (Y ) = (�i)n
dn

dtn
log Y (t) jt=0 , n � 1. (2.1)

For instance, �1 (Y ) = E (Y ), �2 (Y ) = E [Y � E (Y )]2 = Var (Y ),

�3 (Y ) = E
�
Y 3
�
� 3E

�
Y 2
�
E (Y ) + 2E (Y )3 ;

and so on. In general, one deduces from (2.1) that for every n � 1 the �rst n moments of Y can
be expressed as polynomials in the �rst n cumulants (and viceversa). Note that (2.1) also implies
that the cumulants of order n � 3 of a Gaussian random variable are equal to zero (recall also
that the Gaussian distribution is determined by its moments, and therefore by its cumulants).
We refer the reader to [72, Section 3] (but see also [83]) for a self-contained introduction to the
basic combinatorial properties of cumulants.

2.1 Statement of the problem

Let W = fWt : t � 0g be a standard Brownian motion started from zero. This means that W is
a centered Gaussian process such thatW0 = 0,W has continuous paths, and E [WtWs] = t^s for
every t; s � 0. See e.g. Revuz and Yor [82] for an exhaustive account of results and techniques
related to Brownian motion.

In what follows, we shall focus on a speci�c property of the paths of W (�rst pointed out,
in a slightly di¤erent form, in [37]), namely thatZ 1

0

W 2
t

t2
dt =1, a.s.-P. (2.2)
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As discussed in [37], and later in [36], relation (2.2) has deep connections with the theory of
the (Gaussian) initial enlargements of �ltrations in continuous-time stochastic calculus. See also
[74] and [75] for applications to the study of Brownian local times.

Remark. De�ne the process Ŵ as Ŵ0 = 0 and Ŵu = uW1=u for u > 0. A trivial covariance
computation shows that Ŵ is also a standard Brownian motion. By using the change of variable
u = 1=t, it now follows that property (2.2) is equivalent to the following statement:Z 1

1

W 2
u

u2
du =1, a.s.-P.

One natural question arising from (2.2) is therefore how to characterize the �rate of explo-
sion�, as "! 0, of the quantities

B" =

Z 1

"

W 2
t

t2
dt, " 2 (0; 1) . (2.3)

One typical answer can be obtained by proving that some suitable renormalization of B" con-
verges in distribution to a standard Gaussian random variable. By a direct computation, one
can prove that E [B"] = log 1=" and Var (B") � 4 log 1=" 1. By setting

eB" = B" � log 1="p
4 log 1="

, " 2 (0; 1) ; (2.4)

one can therefore meaningfully state the following problem.

Problem I. Prove that, as "! 0,

eB" Law�! N � N (0; 1) ; (2.5)

where, here and for the rest of the paper, N (�; �) denotes a one-dimensional Gaussian distrib-
ution with mean � and variance � > 0.

We shall solve Problem I by using both the classic method of cumulants and a stochastic
calculus technique, known as random time-change. We will see below that both approaches
su¤er of evident drawbacks, and also that these di¢ culties can be successfully eliminated by
means of our Stein/Malliavin approach.

2.2 The method of cumulants

The method of (moments and) cumulants is a very popular approach to the proof of limit results
involving non-linear functionals of Gaussian �elds. Its success relies mainly on the following two
facts: (1) square-integrable functionals of Gaussian �elds can always be represented in terms of
(possibly in�nite) series of multiple Wiener-Itô integrals (see e.g. Section 4 below and [41]), and
(2) moments and cumulants of multiple integrals can be computed (at least formally) by means
of well-established combinatorial devices, known as diagram formulae (see e.g. [72]). Classic

1 In what follows, we shall write  (") � ' ("), whenever (")
'(")

! 1, as "! 0.
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references for the method of cumulants in a Gaussian framework are [5], [7], [27] and, more
recently, [26] and [46]. See the surveys by Peccati and Taqqu [72] and Surgailis [92] for more
references and more detailed discussions.

In order to apply the method of cumulants to the proof of (2.4), one should start with the
classic Itô formula W 2

t = 2
R t
0 WsdWs + t, t 2 [0; 1], and then write

eB" = B" � log 1="p
4 log 1="

=
2
R 1
"

hR t
0 WsdWs

i
t�2dtp

4 log 1="
, " 2 (0; 1) . (2.6)

It is a standard result of stochastic calculus that one can interchange deterministic and stochastic
integration on the RHS of (2.6) as follows:Z 1

"

�Z t

0
WsdWs

�
dt

t2
=

Z 1

"

�Z 1

0
1fs<tgWsdWs

�
dt

t2
=

Z 1

0

�Z 1

"
1fs<tg

dt

t2

�
WsdWs

=

Z 1

0

h
(s _ ")�1 � 1

i
WsdWs.

As a consequence,

eB" = 2
R 1
0

h
(s _ ")�1 � 1

i
WsdWsp

4 log 1="
= 2

Z 1

0

Z s

0
f" (s; u) dWudWs, (2.7)

where f" is the symmetric and Lebesgue square-integrable function on [0; 1]
2 given by

f" (s; u) = 2
h
(s _ u _ ")�1 � 1

i
� (4 log 1=")�1=2 : (2.8)

By anticipating the terminology introduced in Section 4, formula (2.7) simply implies that each
random variable eB" is a member of the second Wiener chaos associated with W . We can now
combine this fact with the results discussed e.g. in [35, Chapter VI] (see also Section 5 below),

to deduce that, since the application " 7! Var
� eB"� is bounded, then, for every n � 2,

sup
">0

E
��� eB"���n <1. (2.9)

Since E
� eB"� = 0 and Var

� eB"� ! 1, relation (2.9) implies immediately that (2.5) is proved

once it is shown that, as "! 0,

�n

� eB"�! 0, for every n � 3. (2.10)

To prove (2.10) we make use of a result by Fox and Taqqu [25] (see also [72] for an alter-
nate combinatorial proof), stating that, for every �xed n � 3, the nth cumulant of eB" =
2
R 1
0

R s
0 f" (s; u) dWudWs is given by the following �chained integral�

�n

� eB"� = 2n�1 (n� 1)!Z
[0;1]n

f" (t1; t2) f" (t2; t3) � � �f" (tn�1; tn) f" (tn; t1) dx1 � � �dxn; (2.11)
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obtained by juxtaposing n copies of the kernel f". By plugging (2.8) into (2.11), and after some
lengthy (but standard) computations, one obtains that, as "! 0,

�n

� eB"� � cn �
�
log

1

"

�1�n
2

, for every n � 3, (2.12)

where cn > 0 is a �nite constant independent of ". This yields (2.10) and therefore (2.5). The
implication (2.12) ) (2.10) ) (2.5) is a typical application of the method of cumulants to the
proof of Central Limit Theorems (CLTs) for functionals of Gaussian �elds. In particular, one
should note that (2.11) can be equivalently expressed in terms of diagram formulae.

In the following list we pinpoint some of the main disadvantages of this approach. As already
discussed, all these di¢ culties disappear when using the Stein/Malliavin techniques developed
in Section 9 below.

D1 Formulae (2.11) and (2.12) characterize the speed of convergence to zero of the cumulants
of eB". However, there is no way to deduce from (2.12) an estimate for quantities of the

type d
� eB"; N�, where d indicates some distance between the law of eB" and the law of

N (d can be for instance the total variation distance, or the Wasserstein distance �see
Section 8.1 below)2.

D2 Relations (2.10) and (2.11) require that, in order to prove the CLT (2.5), one veri�es an
in�nity of asymptotic relations, each one involving the estimate of a multiple deterministic
integral of increasing order. This task can be computationally quite demanding. Here,
(2.12) is obtained by exploiting the elementary form of the kernels f" in (2.8).

D3 If one wants to apply the method of cumulants to elements of higher chaoses (for instance,
by considering functionals involving Hermite polynomials of degree greater than 3), then
one is forced to use diagram formulae that are much more involved than the Fox-Taqqu
formula (2.11). Some examples of this situation appear e.g. in [5], [27] and [46]. See [72,
Section 3 and Section 7] for an introduction to general diagram formulae for non-linear
functionals of random measures.

2.3 Random time-changes

This technique has been used in [74] and [75]; see also [71] and [96] for some analogous results
in the context of stable convergence.

Our starting point is once again formula (2.7), implying that, for each " 2 (0; 1), the random
variable eB" coincides with the value at the point t = 1 of the continuous Brownian martingale

t 7!M "
t = 2

Z t

0

Z s

0
f" (s; u) dWudWs, t 2 [0; 1] . (2.13)

It is well-known that the martingale M "
t has a quadratic variation equal to

hM ";M "it = 4
Z t

0

�Z s

0
f" (s; u) dWu

�2
ds; t 2 [0; 1] :

2This assertion is not accurate, although it is kept for dramatic e¤ect. Indeed, we will show in Section 10.2
that the combination of Stein�s method and Malliavin calculus exactly allows to deduce Berry-Esséen bounds
from estimates on cumulants.
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By virtue of a classic stochastic calculus result, known as the Dambis-Dubins-Schwarz Theorem
(DDS Theorem � see [82, Ch. V]), for every " 2 (0; 1) there exists (on a possibly enlarged
probability space) a standard Brownian motion �", initialized at zero and such that

M "
t = �"hM";M"it

, t 2 [0; 1] : (2.14)

It is important to stress that the de�nition of �" strongly depends on ", and that �" is in general
not adapted to the natural �ltration of W . Moreover, one has that there exists a (continuous)
�ltration G"s , s � 0, such that �"s is a G"s -Brownian motion and (for every �xed t) the positive
random variable hM ";M "it is a G"s -stopping time. Formula (2.14) yields in particular thateB" =M "

1 = �"hM";M"i1
:

Now consider a Lipschitz function h such that kh0k1 � 1, and observe that, for every " > 0,
�"1

Law
= N � N (0; 1). A careful application of the Burkholder-Davis-Gundy (BDG) inequality

(in the version stated in [82, Corollary 4.2, Ch. IV ]) yields the following estimates:���E[h( eB")]� E [h (N)]��� =
���E[h(�"hM";M"i1

)]� E [h (�"1)]
��� (2.15)

� E
h����"hM";M"i1

� �"1
���i

� E
�����"hM";M"i1

� �"1
���4� 14

� CE
h
jhM ";M "i1 � 1j

2
i 1
4

= CE

24�����4
Z 1

0

�Z s

0
f" (s; u) dWu

�2
ds� 1

�����
2
35 1
4

,

where C is some universal constant independent of ". The CLT (2.5) is now obtained from (2.15)
by means of a direct computation, yielding that, as "! 0,

E

24�����4
Z 1

0

�Z s

0
f" (s; u) dWu

�2
ds� 1

�����
2
35 � �

log 1="
! 0; (2.16)

where � > 0 is some constant independent of ".
Note that this approach is more satisfactory than the method of cumulants. Indeed, the

chain of relations starting at (2.15) allows to assess explicitly the Wasserstein distance between
the law of eB" and the law of N 3 (albeit the implied rate of (log 1=")�1=4 is suboptimal �see
Section 11.1). Moreover, the proof of (2.5) is now reduced to a single asymptotic relation,
namely (2.16). However, at least two crucial points make this approach quite di¢ cult to apply
in general situations.

3Recall that the Wasserstein distance between the law of two variables X1; X2 is given by dW (X1; X2) =
sup jE [h (X1)]� E [h (X2)]j, where the supremum is taken over all Lipschitz functions such that kh0k1 � 1. See
Section 8.1 below.
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D4 The application of the DDS Theorem and of the BDG inequality requires an explicit un-
derlying (Brownian) martingale structure. Although it is always possible to represent a
given Gaussian �eld in terms of a Brownian motion, this operation is often quite unnat-
ural and can render the asymptotic analysis very hard. For instance, what happens if one
considers quadratic functionals of a multiparameter Gaussian process, or of a Gaussian
process which is not a semimartingale (for instance, a fractional Brownian motion with
Hurst parameter H 6= 1=2)? See [71] for some further applications of random time-changes
in a general Gaussian setting.

D5 It is not clear whether this approach can be used in order to deal with expressions of the
type (2.15), when h is not Lipschitz (for instance, when h equals the indicator of a Borel
set), so that it seems di¢ cult to use these techniques in order to assess other distances,
like the total variation distance or the Kolmogorov distance.

Starting from the next section, we will describe the main objects and tools of stochastic
analysis that are involved in our techniques.

3 Gaussian measures

Let (Z;Z) be a Polish space, with Z the associated Borel �-�eld, and let � be a positive �-�nite
measure over (Z;Z) with no atoms (that is, � (fzg) = 0, for every z 2 Z). We denote by Z� the
class of those A 2 Z such that � (A) <1. Note that, by �-additivity, the �-�eld generated by
Z� coincides with Z.

De�nition 3.1 A Gaussian measure on (Z;Z) with control � is a centered Gaussian family
of the type

G = fG (A) : A 2 Z�g , (3.1)

verifying the relation

E [G (A)G (B)] = � (A \B) , 8A;B 2 Z�. (3.2)

The Gaussian measure G is also called a white noise based on �.

Remarks. (a) A Gaussian measure such as (3.1)�(3.2) always exists (just regard G as a
centered Gaussian process indexed by Z�, and then apply the usual Kolmogorov criterion).

(b) Relation (3.2) implies that, for every pair of disjoint sets A;B 2 Z�, the random variables
G (A) and G (B) are independent. When this property is veri�ed, one usually says that G is
a completely random measure (or, equivalently, an independently scattered random measure).
The concept of a completely random measure can be traced back to Kingman�s seminal paper
[38]. See e.g. [39], [72], [92] and [93] for a discussion around general (for instance, Poisson)
completely random measures.
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(c) Let B1; :::; Bn; ::: be a sequence of disjoint elements of Z�, and let G be a Gaussian
measure on (Z;Z) with control �. Then, for every �nite N � 2, one has that [Nn=1Bn 2 Z�,
and, by using (3.2)

E

24 G �[Nn=1Bi�� NX
n=1

G (Bn)

!235 = �
�
[Nn=1Bn

�
�

NX
n=1

� (Bn) = 0, (3.3)

because � is a measure, and therefore it is �nitely additive. Relation (3.3) implies in particular
that

G
�
[Nn=1Bn

�
=

NX
n=1

G (Bn) , a.s.-P. (3.4)

Now suppose that [1n=1Bn 2 Z�. Then, by (3.4) and again by virtue of (3.2),

E

24 G ([1n=1Bn)� NX
n=1

G (Bn)

!235 = E
h�
G ([1n=1Bn)�G

�
[Nn=1Bi

��2i
= �

�
[1n=N+1Bn

�
!

N!1
0,

because � is �-additive. This entails in turn that

G ([1n=1Bn) =
1X
n=1

G (Bn) ; a:s:� P; (3.5)

where the series on the RHS converges in L2 (P). Relation (3.5) simply means that the applica-
tion

Z� ! L2 (P) : B 7! G (B) ,

is �-additive, and therefore that the Gaussian measure G is a �-additive measure with values in
the Hilbert space L2 (P). This remarkable feature of G is the starting point of the combinato-
rial theory of multiple stochastic integration (also applying to more general random measures)
developed by Engel [24] and Rota and Wallstrom [84]. In particular, the crucial facts used in
[84] are the following: (1) for every n � 2, one can canonically associate with G a L2 (P)-valued
�-additive measure on the product space (Zn;Zn), and (2) one can completely develop a theory
of stochastic integration with respect to G by exploiting the isomorphism between the diagonal
subsets of Zn and the lattice of partitions of the set f1; :::; ng, and by using the properties of
the associated Möbius function. In what follows we will not adopt this (rather technical) point
of view. See the survey by Peccati and Taqqu [72] for a detailed and self-contained account of
the Engel-Rota-Wallstrom theory.

(d) Note that it is not true that, for a Gaussian measure G and for a �xed ! 2 
, the
application

Z� ! R : B 7! G (B) (!)

is a �-additive real-valued (signed) measure.

10



Notation. For the rest of the paper, we shall write (Zn;Zn) = (Z
n;Z
n), n � 2, and
also

�
Z1;Z1

�
=
�
Z
1;Z
1

�
= (Z;Z). Moreover, we set

Zn� = fC 2 Zn : �n (C) <1g :

Examples. (i) Let Z = R, Z = B (R), and let � be the Lebesgue measure. Consider
a Gaussian measure G with control �: then, for every Borel subsets A;B 2 B (R) with �nite
Lebesgue measure, one has that

E [G (A)G (B)] = � (A \B) =
Z
A\B

� (dx) : (3.6)

In particular, the random function

t 7!Wt , G ([0; t]) , t � 0, (3.7)

de�nes a centered Gaussian process such that W0 = 0 and E [WtWs] = � ([0; t] \ [0; s]) = s ^ t,
that is, W is a standard Brownian motion started from zero. Note that, in order to meet the
usual de�nition of a standard Brownian motion, one should select an appropriate continuous
version of the process W appearing in (3.7).

(ii) Fix d � 2, let Z = Rd, Z = B
�
Rd
�
, and let �d be the Lebesgue measure on Rd. If G is a

Gaussian measure with control �d, then, for every A;B 2 B
�
Rd
�
with �nite Lebesgue measure,

one has that

E [G (A)G (B)] =
Z
A\B

�d (dx1; :::; dxd) :

It follows that the application

(t1; :::td) 7!W (t1; :::; td) , G ([0; t1]� � � � � [0; td]) , ti � 0, (3.8)

de�nes a centered Gaussian process such that

E [W (t1; :::; td)W (s1; :::; sd)] =

dY
i=1

(si ^ ti) ;

that is,W is a standard Brownian sheet on Rd+.

4 Wiener-Itô integrals

In this section, we de�ne single and multiple Wiener-Itô integrals with respect to Gaussian
measures. The main interest of this construction will be completely unveiled in Section 5.3,
where we will prove that Wiener-Itô integrals are indeed the basic building blocks of any square-
integrable functional of a given Gaussian measure. Our main reference is Chapter 1 in Nualart�s
monograph [65]. Other strongly suggested readings are the books by Dellacherie et al. [19] and
Janson [35]. See also the original paper by Itô [34] (but beware of the diagonals! �see Masani
[49]), as well as [24], [39], [41], [43], [82], [84], [92], [93].
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4.1 Single integrals and the �rst Wiener chaos

Let (Z;Z; �) be a Polish measure space, with � �-�nite and non-atomic. We denote by
L2 (Z;Z; �) = L2 (�) the Hilbert space of real-valued functions on (Z;Z) that are square-
integrable with respect to �. We also write E (�) to indicate the subset of L2 (�) composed
of elementary functions, that is, f 2 E (�) if and only if

f (z) =
MX
i=1

ai1Ai (z) , z 2 Z, (4.1)

where M � 1 is �nite, ai 2 R, and the sets Ai are pairwise disjoint elements of Z�. Plainly,
E (�) is a linear space and E (�) is dense in L2 (�).

Now consider a Gaussian measure G on (Z;Z), with control �. The next result establishes
the existence of single Wiener-Itô integrals with respect to G.

Proposition 4.1 There exists a unique linear isomorphism f 7! G (f), from L2 (�) into L2 (P),
such that

G (f) =

MX
i=1

ai �G (Ai) (4.2)

for every elementary function f 2 E (�) of the type (4.1).

Proof. For every f 2 E (�), set G (f) to be equal to (4.2). Then, by using (3.2) one has
that, for every pair f; f 0 2 E (�),

E
�
G (f)G

�
f 0
��
=

Z
Z
f (z) f 0 (z)� (dz) . (4.3)

Since E (�) is dense in L2 (�), the proof is completed by the following (standard) approximation
argument. If f 2 L2(�) and ffng is a sequence of elementary kernels converging to f , then
(4.3) implies that fG(fn)g is a Cauchy sequence in L2(P), and one de�nes G(f) to be the L2(P)
limit of G(fn). One easily veri�es that the de�nition of G(f) does not depend on the chosen
approximating sequence ffng. The application f 7! G(f) is therefore well-de�ned, and (by
virtue of (4.3)) it is a linear isomorphism from L2 (�) into L2 (P).

The random variable G (f) is usually written asZ
Z
f (z)G (dz) ,

Z
Z
fdG; IG1 (f) or I1 (f) , (4.4)

(note that in the last formula the symbol G is omitted) and it is called theWiener-Itô stochastic
integral of f with respect to G. By inspection of the previous proof, one sees that Wiener-Itô
integrals verify the isometric relation

E [G (f)G (h)] =
Z
Z
f (z)h (z)� (dz) = hf; hiL2(�) , 8f; h 2 L2 (�) . (4.5)

Observe also that E [G (f)] = 0, and therefore (4.5) implies that every random vector of the type
(G (f1) ; :::; G (fd)), fi 2 L2 (�), is a d-dimensional centered Gaussian vector with covariance

12



matrix � (i; j) = hfi; fjiL2(�), 1 � i; j � d. If B 2 Z�, we write interchangeably G (B) or G (1B)
(the two objects coincide, thanks to (4.2)). Plainly, the Gaussian family

C1 (G) =
�
G (f) : f 2 L2 (�)

	
(4.6)

coincides with the L2 (P)-closed linear space generated by G. One customarily says that (4.6) is
the �rst Wiener chaos associated with G. Observe that, if fei : i � 1g is an orthonormal basis of
L2 (�), then fG (ei) : i � 1g is an i.i.d. Gaussian sequence with zero mean and common unitary
variance.

4.2 Multiple integrals

For every n � 2, we write L2 (Zn;Zn; �n) = L2 (�n) to indicate the Hilbert space of real-valued
functions that are square-integrable with respect to �n. Given a function f 2 L2 (�n), we denote
by ef its canonical symmetrization, that is

ef (z1; :::; zn) = 1

n!

X
�

f
�
z�(1); :::z�(n)

�
, (4.7)

where the sum runs over all permutations � of the set f1; :::; ng. Note that, by the triangle
inequality,

k ef kL2(�n)� kfkL2(�n) : (4.8)

We will consider the following three subsets of L2 (�n) :

� L2s (Zn;Zn; �n) = L2s (�
n) is the closed linear subspace of L2 (�n) composed of symmetric

functions, that is, f 2 L2s (�n) if and only if: (i) f is square integrable with respect to �n,
and (ii) for d�n-almost every (z1; :::; zn) 2 Zn;

f (z1; :::; zn) = f
�
z�(1); :::; z�(n)

�
,

for every permutation � of f1; :::; ng.

� E (�n) is the subset of L2 (�n) composed of elementary functions vanishing on diagonals,
that is, f 2 E (�n) if and only if f is a �nite linear combination of functions of the type

(z1; :::; zn) 7! 1A1 (z1)1A2 (z2) � � � 1An (zn) (4.9)

where the sets Ai are pairwise disjoint elements of Z�.

� Es (�n) is the subset of L2s (�n) composed of symmetric elementary functions vanishing
on diagonals, that is, g 2 Es (�n) if and only if g = ef for some f 2 E (�n), where the
symmetrization ef is de�ned according to (4.7).

The following technical result will be used throughout the sequel.

Lemma 4.1 Fix n � 2. Then, E (�n) is dense in L2 (�n), and Es (�n) is dense in L2s (�n).
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Proof. Since, for every h 2 L2s (�) and every f 2 E (�n), by symmetry,

hh; fiL2(�n) = hh; efiL2(�n),
it is enough to prove that E (�n) is dense in L2 (�n). We shall only provide a detailed proof for
n = 2 (the general case is analogous �see e.g. [65, Section 1.1.2]). To prove the desired claim,
it is therefore su¢ cient to show that every function of the type h (z1; z2) = 1A (z1)1B (z2), with
A;B 2 Z�, is the limit in L2 (�) of linear combinations of products of the type 1D1 (z1)1D2 (z2),
with D1; D2 2 Z� and D1 \D2 = ;. To do this, de�ne C1 = AnB, C2 = BnA and C3 = A \B,
so that

h = 1C11C2 + 1C11C3 + 1C31C2 + 1C31C3 .

If � (C3) = 0, there is nothing to prove. If � (C3) > 0, since � is non-atomic, for every N � 2
we can �nd disjoint sets C3 (i;N) � C3, i = 1; :::; N , such that � (C3 (i;N)) = � (C3) =N and
[Ni=1C3 (i;N) = C3. It follows that

1C3 (z1)1C3 (z2) =
X

1�i6=j�N
1C3(i;N) (z1)1C3(j;N) (z2) +

NX
i=1

1C3(i;N) (z1)1C3(i;N) (z2)

= h1 (z1; z2) + h2 (z1; z2) .

Plainly, h1 2 E (�n), and

kh2k2L2(�n) =
NX
i=1

� (C3 (i;N))
2 =

� (C3)
2

N
.

Since N is arbitrary, we deduce the desired conclusion.

Fix n � 2. It is easily seen that every f 2 E (�n) admits a (not necessarily unique) repre-
sentation of the form

f (z1; :::; zn) =
X

1�i1;:::;in�M
ai1���in1Ai1 (z1) � � � 1Ain (zn) (4.10)

where M � n, the real coe¢ cients ai1���in are equal to zero whenever two indices ik; il are equal
and A1; :::; AM are pairwise disjoint elements of Z�. For every f 2 E (�n) with the form (4.10)
we set

In (f) =
X

1�i1;:::;in�M
ai1���inG (Ai1) � � �G (Ain) , (4.11)

and we say that In (f) is the multiple stochastic Wiener-Itô integral (of order n) of f with
respect to G. Note that In (f) has �nite moments of all orders, and that the de�nition of In (f)
does not depend on the chosen representation of f . The following result shows in particular that
In can be extended to a continuous linear operator from L2 (�n) into L2 (P). Note that the third
point of the following statement also involves random variables of the form I1 (g), g 2 L2 (�).

Proposition 4.2 The random variables In (f), n � 1, f 2 E (�n), enjoy the following properties
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1. For every n, the application f 7! In (f) is linear.

2. For every n, one has E (In (f)) = 0 and In (f) = In( ef):
3. For every n � 2 and m � 1, for every f 2 E (�n) and g 2 E (�m) (if m = 1, one can take

g 2 L2 (�)),

E [In (f) Im (g)] =
�
0 if n 6= m

n!h ef; egiL2(�n) if n = m:
(4.12)

The proof of Proposition 4.2 follows almost immediately from the defnition (4.11); see e.g.
[65, Section 1.1.2] for a complete discussion. By combining (4.12) with (4.8), one infers that In
can be extended to a linear continuous operator, from L2 (�n) into L2 (P), verifying properties
1, 2 and 3 in the statement of Proposition 4.2. Moreover, the second line on the RHS of (4.12)
yields that the application

In : L
2
s (�

n)! L2 (P) : f 7! In (f)

(that is, the restriction of In to L2s (�
n)) is an isomorphism from L2s (�

n), endowed with the
modi�ed scalar product n! h�; �iL2(�n), into L2 (P). For every n � 2, the L2 (P)-closed vector
space

Cn (G) =
�
In (f) : f 2 L2 (�n)

	
(4.13)

is called the nth Wiener chaos associated with G. One conventionally sets

C0 (G) = R. (4.14)

Note that (4.12) implies that Cn (G) ? Cm (G) for n 6= m, where � ? �indicates orthogonality
in L2 (P) :

Remark (The case of Brownian motion). We consider the case where (Z;Z) = (R+;B (R+))
and � is equal to the Lebesgue measure. As already observed, one has that the process t 7!Wt =
G ([0; t]), t � 0, is a standard Brownian motion started from zero. Also, for every f 2 L2 (�),

I1 (f) =

Z
R+
f (t)G (dt) =

Z 1

0
f (t) dWt; (4.15)

where the RHS of (4.15) indicates a standard Itô integral with respect to W . Moreover, for
every n � 2 and every f 2 L2 (�n)

In (f) = n!

Z 1

0

�Z t1

0

Z t2

0
� � �
Z tn�1

0

ef (t1; :::; tn) dWtn � � � dWt2

�
dWt1 ; (4.16)

where the RHS of (4.16) stands for a usual Itô-type stochastic integral, with respect to W , of
the stochastic process

t 7! ' (t) = n!

Z t

0

Z t2

0
� � �
Z tn�1

0

ef (t1; :::; tn) dWtn � � � dWt2 , t1 � 0.
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Note in particular that ' (t) is adapted to the �ltration � fWu : u � tg, t � 0, and also

E
�Z 1

0
'2 (t) dt

�
<1:

Both equalities (4.15) and (4.16) can be easily proved for elementary functions that are constant
on intervals (for (4.15)) or on rectangles (for (4.16)), and the general results are obtained by
standard density arguments.

Remark (One more digression on the Engel-Rota-Wallstrom theory). As already evoked
on page 10, in [24] and [84] it is proved that one can canonically associate to G a �-additive
L2 (P)-valued product measure on (Zn;Zn), say Gn. One can therefore prove that, for every
n � 2 and every f 2 L2 (�n), the random variable In (f) has indeed the form

In (f) =

Z
Zn
f (z1; :::; zn)1Dn

0
(z1; :::; zn)G

n (dz1; :::; dzn) (4.17)

=

Z
Dn
0

f (z1; :::; zn)G
n (dz1; :::; dzn) ;

where Dn
0 indicates the purely non-diagonal set

Dn
0 = f(z1; :::; zn) : zi 6= zj 8i 6= jg :

See [72] for a complete discussion of this point.

5 Multiplication formulae

5.1 Contractions and multiplications

The concept of contraction plays a fundamental role in the theory developed in this paper.

De�nition 5.1 Let � be a �-�nite and non-atomic measure on the Polish space (Z;Z). For
every q; p � 1, f 2 L2s (�p), g 2 L2s (�q) and every r = 0; :::; q ^ p, the contraction of order r
of f and g is the function f 
r g of p + q � 2r variables de�ned as follows: for r = 1; :::; p ^ q
and (t1; : : : ; tp�r; s1; : : : ; sq�r) 2 Zp+q�2r,

f 
r g(t1; : : : ; tp�r; s1; : : : ; sq�r)

=

Z
Zr
f(z1; : : : ; zr; t1; : : : ; tp�r)g(z1; : : : ; zr; s1; : : : ; sq�r)�

r (dz1:::dzr) ; (5.1)

and, for r = 0,

f 
r g(t1; : : : ; tp; s1; : : : ; sq) = f 
 g(t1; : : : ; tp; s1; : : : ; sq) (5.2)

= f(t1; : : : ; tp�r)g(s1; : : : ; sq�r):

Note that, if p = q, then f 
p g = hf; giL2(�p). For instance, if p = q = 2, one has

f 
1 g (t; s) =

Z
Z
f (z; t) g (z; s)� (dz) , (5.3)

f 
2 g =

Z
Z2
f (z1; z2) g (z1; z2)�

2 (dz1; dz2) : (5.4)
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By an application of the Cauchy-Schwarz inequality, it is straightforwrd to prove that, for
every r = 0; :::; q ^ p, the function f 
r g is an element of L2

�
�p+q�2r

�
. Note that f 
r g

is in general not symmetric (although f and g are): we shall denote by f e
rg the canonical
symmetrization of f 
r g, as given in (4.7).

For the rest of this section, G is a Gaussian measure on the Polish space (Z;Z), with non-
atomic and �-�nite control �; Ip indicates a multiple Wiener-Itô integral with respect to G,
as de�ned in Section 4.2. The next result is a multiplication formula for multiple Wiener-Itô
integrals. It will be crucial for the rest of this paper.

Theorem 5.1 For every p; q � 1 and every f 2 L2 (�p), g 2 L2 (�q);

Ip (f) Iq (g) =

p^qX
r=0

r!

�
p

r

��
q

r

�
Ip+q�2r

� ef 
r eg� : (5.5)

Theorem 5.1, whose proof is omitted, can be established by at least two routes, namely by
induction (see [65, Proposition 1.1.3]), or by using the concept of �diagonal measure� in the
context of the Engel-Rota-Wallstrom theory (see [72, Section 6.4]).

Remark. Recall the notation (4.6), (4.13) and (4.14). Formula (5.5) implies that, for every
m � 1, a random variable belonging to the space �mj=0Cj (G) (where � � � stands for an
orthogonal sum in L2 (P)) has �nite moments of any order. More precisely, for every p > 2 and
every n � 1, one can prove that there exists a universal constant cp;n > 0, such that

E [jIn (f)jp]1=p � cn;pE
h
In (f)

2
i1=2

, (5.6)

8 f 2 L2 (�n) (see e.g. [35, Ch. V]). Finally, on every �nite sum of Wiener chaoses �mj=0Cj (G)
and for every p � 1, the topology induced by the Lp (P) convergence is equivalent to the L0-
topology induced by convergence in probability, that is, convergence in probability is equivalent
to convergence in Lp, for every p � 1. This fact has been �rst proved by Schreiber in [86] �see
also [35, Chapter VI]. One can also prove that the law of a non-zero random variable living in
a �nite sum of Wiener chaoses always admits a density.

5.2 Multiple stochastic integrals as Hermite polynomials

De�nition 5.2 The sequence of Hermite polynomials fHq : q � 0g on R, is de�ned via the
following relations: H0 � 1 and, for q � 1,

Hq (x) = (�1)q e
x2

2
dq

dxq
e�

x2

2 , x 2 R. (5.7)

For instance, H1 (x) = 1, H2 (x) = x2 � 1 and H3 (x) = x3 � 3x.

Recall that the sequence f(q!)�1=2Hq : q � 0g is an orthonormal basis of L2(R; (2�)�1=2

e�x
2=2dx): Several relevant properties of Hermite polynomials can be deduced from the following

formula, valid for every t; x 2 R,

exp

�
tx� t2

2

�
=

1X
n=0

tn

n!
Hn (x) : (5.8)
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For instance, one deduces immediately from the previous expression that

d

dx
Hn (x) = nHn�1 (x) , n � 1, (5.9)

Hn+1 (x) = xHn (x)� nHn�1 (x) , n � 1. (5.10)

The next result uses (5.5) and (5.10) in order to establish an explicit relation between multiple
stochastic integrals and Hermite polynomials.

Proposition 5.1 Let h 2 L2 (�) be such that khkL2(�) = 1, and, for n � 2, de�ne

h
n (z1; ::; zn) = h (z1)� � � � � h (zn) , (z1; :::; zn) 2 Zn.

Then,

In
�
h
n

�
= Hn (G (h)) = Hn (I1 (h)) : (5.11)

Proof. Of course, H1 (I1 (h)) = I1 (h). By the multiplication formula (5.5), one has therefore
that, for n � 2,

In
�
h
n

�
I1 (h) = In+1

�
h
n+1

�
+ nIn�1

�
h
n�1

�
;

and the conclusion is obtained from (5.10), and by recursion on n.

Remark. By using the relation E [In (h
n) In (g
n)] = n! hh
n; g
niL2(�n) = n! hh; ginL2(�),
we infer from (5.11) that, for every jointly Gaussian random variables (U; V ) with zero mean
and unitary variance,

E [Hn (U)Hm (V )] =
�
0 if m 6= n
n!E [UV ]n if m = n:

5.3 Chaotic decompositions

By combining (5.8) and (5.11), one obtains the following fundamental decomposition of the
square-integrable functionals of G.

Theorem 5.2 (Chaotic decomposition) For every F 2 L2 (� (G) ;P) (that is, F is a square-
integrable functional of G), there exists a unique sequence ffn : n � 1g, with fn 2 L2s (�n), such
that

F = E [F ] +
1X
n=1

In (fn) , (5.12)

where the series converges in L2 (P).

Proof. Fix h 2 L2 (�) such that khkL2(�) = 1, as well as t 2 R. By using (5.8) and (5.11),
one obtains that

exp

�
tG (h)� t2

2

�
=

1X
n=0

tn

n!
Hn (G (h)) = 1 +

1X
n=1

tn

n!
In
�
h
n

�
: (5.13)
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Since E
h
exp

�
tG (h)� t2

2

�i
= 1, one deduces that (5.12) holds for every random variable of the

form F = exp
�
tG (h)� t2

2

�
, with fn = tn

n!h

n. The conclusion is obtained by observing that

the linear combinations of random variables of this type are dense in L2 (� (G) ;P) :

Remarks. (1) Proposition 4.2, together with (5.12), implies that

E
�
F 2
�
= E [F ]2 +

1X
n=1

n! kfnk2L2(�n) . (5.14)

(2) By using the notation (4.6), (4.13) and (4.14), one can reformulate the statement of
Theorem 5.2 as follows:

L2 (� (G) ;P) =
1M
n=0

Cn (G) ,

where � � �indicates an in�nite orthogonal sum in L2 (P).
(3) By inspection of the proof of Theorem 5.2, we deduce that the linear combinations of

random variables of the type In (h
n), with n � 1 and khkL2(�) = 1, are dense in L2 (� (G) ;P).
This implies in particular that the random variables In (h
n) generate the nth Wiener chaos
Cn (G).

(4) The �rst proof of (5.12) dates back to Wiener [99]. See also McKean [50], Nualart and
Schoutens [68] and Stroock [91]. See e.g. [19], [35], [39], [43] and [72] for further references and
results on chaotic decompositions.

6 Isonormal Gaussian processes

In this section we brie�y show how to generalize the previous results to the case of an isonormal
Gaussian process. These objects have been introduced by Dudley in [22], and are a natural
generalization of the Gaussian measures introduced above. In particular, the concept of an
isonormal Gaussian process can be very useful in the study of fractional �elds. See e.g. Pipiras
and Taqqu [76, 77, 78], or the second edition of Nualart�s book [65]. For a general approach to
Gaussian analysis by means of Hilbert space techniques, and for further details on the subjects
discussed in this section, the reader is referred to Janson [35].

6.1 General de�nitions and examples

Let H be a real separable Hilbert space with inner product h�; �iH. In what follows, we will denote
by

X = X (H) = fX (h) : h 2 Hg

an isonormal Gaussian process over H. This means that X is a centered real-valued Gaussian
family, indexed by the elements of H and such that

E
�
X (h)X

�
h0
��
=


h; h0

�
H
, 8h; h0 2 H: (6.1)
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In other words, relation (6.1) means that X is a centered Gaussian Hilbert space (with respect
to the inner product canonically induced by the covariance) isomorphic to H.

Example (Euclidean spaces). Fix an integer d � 1, set H = Rd and let (e1; :::; ed) be an
orthonormal basis of Rd (with respect to the usual Euclidean inner product). Let (Z1; :::; Zd) be
a Gaussian vector whose components are i.i.d. N (0; 1). For every h =

Pd
j=1 cjej (where the cj

are real and uniquely de�ned), set X (h) =
Pd
j=1 cjZj and de�ne X =

�
X (h) : h 2 Rd

	
. Then,

X is an isonormal Gaussian process over Rd.

Example (Gaussian measures). Let (Z;Z; �) be a measure space, where � is positive, �-
�nite and non-atomic. Consider a completely random Gaussian measure G = fG (A) : A 2 Z�g
(as de�ned in Section 3), where Z� = fA 2 Z : � (A) <1g. Set H = L2 (Z;Z; �) (thus, for
every h; h0 2 H, hh; h0iH =

R
Z h(z)h

0(z)�(dz)) and, for every h 2 H, de�ne X (h) = I1 (h) to be
the Wiener-Itô integral of h with respect to G, as de�ned in (4.4). Recall that X (h) is a centered
Gaussian random variable with variance given by khk2H. Then, relation (4.5) implies that the
collection X =

�
X (h) : h 2 L2 (Z;Z; �)

	
is an isonormal Gaussian process over L2 (Z;Z; �).

Example (Isonormal processes built from covariances). Let Y = fYt : t � 0g be a real-
valued centered Gaussian process indexed by the positive axis, and set R (s; t) = E [YsYt] to be
the covariance function of Y . Then, one can embed Y into some isonormal Gaussian process as
follows: (i) de�ne E as the collection of all �nite linear combinations of indicator functions of
the type 1[0;t], t � 0; (ii) de�ne H = HR to be the Hilbert space given by the closure of E with
respect to the inner product

hf; hiR :=
X
i;j

aicjR (si; tj) ,

where f =
P
i ai1[0;si] and h =

P
j cj1[0;tj ] are two generic elements of E ; (iii) for h =P

j cj1[0;tj ] 2 E , set X (h) =
P
j cjYtj ; (iv) for h 2 HR, set X (h) to be the L2 (P) limit of

any sequence of the type X (hn), where fhng � E converges to h in HR. Note that such a
sequence fhng necessarily exists and may not be unique (however, the de�nition of X (h) does
not depend on the choice of the sequence fhng). Then, by construction, the Gaussian space
fX (h) : h 2 Hg is an isonormal Gaussian process over HR. See Janson [35, Ch. 1] or Nualart
[65] for more details on this construction.

Example (Even functions and symmetric measures). Other classic examples of isonormal
Gaussian processes are given by objects of the type

X� = fX� ( ) :  2 HE;�g ;

where � is a real non-atomic symmetric measure on (��; �] (that is, � (dx) = � (�dx)), and

HE;� = L2E ((��; �] ; d�) (6.2)

stands for the collection of real linear combinations of complex-valued even functions that are
square-integrable with respect to � (recall that a complex-valued function  is even if  (x) =
 (�x)). The class HE;� is indeed a real separable Hilbert space, endowed with the inner product

h 1;  2i� =
Z �

��
 1 (x) 2 (�x)� (dx) 2 R: (6.3)
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This type of construction is used in the spectral theory of time series, and is often realized by
means of a complex-valued Gaussian measure (see e.g., [7, 27, 41, 92]) .

6.2 Hermite polynomials and Wiener chaos

We shall now show how to extend the notion of Wiener chaos to the case of an isonormal
Gaussian process.

De�nition 6.1 From now on, the symbol A1 will denote the class of those sequences � =
f�i : i � 1g such that: (i) each �i is a nonnegative integer, (ii) �i is di¤erent from zero only for
a �nite number of indices i. A sequence of this type is called a multiindex. For � 2 A1, we
use the notation j�j =

P
i �i. For q � 1, we also write

A1;q = f� 2 A1 : j�j = qg :

Remark on notation. Fix q � 2. Given a real separable Hilbert space H, we denote by
H
q and H�q, respectively, the qth tensor power of H and the qth symmetric tensor power of H
(see e.g. [35]). We conventionally set H
1 = H�1 = H.

We recall four classic facts concerning tensors powers of Hilbert spaces (see e.g. [35]).

(I) The spaces H
q and H�q are real separable Hilbert spaces, such that H�q � H
q.

(II) Let fej : j � 1g be an orthonormal basis of H; then, an orthonormal basis of H
q is given
by the collection of all tensors of the type

ej1 
 � � � 
 ejq , j1; :::; jd � 1:

(III) Let fej : j � 1g be an orthonormal basis of H and endow H�q with the inner product
(�; �)H
q ; then, an orthogonal (and, in general, not orthonormal) basis of H�q is given by
all elements of the type

e (j1; :::; jq) = sym
�
ej1 
 � � � 
 ejq

	
, 1 � j1 � ::: � jq <1; (6.4)

where sym f�g stands for a canonical symmetrization.

(IV) If H = L2 (Z;Z; �), where � is �-�nite and non-atomic, then H
q can be identi�ed with
L2 (Zq;Zq; �q) and H�q can be identi�ed with L2s (Zq;Zq; �q), where L2s (Zq;Zq; �q) is the
subspace of L2 (Zq;Zq; �q) composed of symmetric functions.

Now observe that, once an orthonormal basis of H is �xed and due to the symmetrization,
each element e (j1; :::; jq) in (6.4) can be completely described in terms of a unique multiindex
� 2 A1;q, as follows: (i) set �i = 0 if i 6= jr for every r = 1; :::; q, (ii) set �j = k for every
j 2 fj1; :::; jqg such that j is repeated exactly k times in the vector (j1; :::; jq) (k � 1).

Examples. (i) The multiindex (1; 0; 0; ::::) is associated with the element of H given by e1.
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(ii) Consider the element e (1; 7; 7). In (1; 7; 7) the number 1 is not repeated and 7 is repeated
twice, hence e (1; 7; 7) is associated with the multiindex � 2 A1;3 such that �1 = 1, �7 = 2 and
�j = 0 for every j 6= 1; 7, that is, � = (1; 0; 0; 0; 0; 0; 2; 0; 0; :::).

(iii) The multindex � = (1; 2; 2; 0; 5; 0; 0; 0; :::) is associated with the element of H�10 given
by e (1; 2; 2; 3; 3; 5; 5; 5; 5; 5).

In what follows, given � 2 A1;q (q � 1), we shall write e (�) in order to indicate the element
of H�q uniquely associated with �.

De�nition 6.2 For every h 2 H, we set IX1 (h) = I1 (h) = X (h). Now �x an orthonormal basis
fej : j � 1g of H: for every q � 2 and every h 2 H�q such that

h =
X

�2A1;q

c�e (�)

(with convergence in H�q, endowed with the inner product h�; �iH
q), we set

IXq (h) = Iq (h) =
X

�2A1;q

c�
Y
j

H�j (X (ej)) , (6.5)

where the products only involve the non-zero terms of each multiindex �, and Hm indicates the
mth Hermite polynomial . For q � 1, the collection of all random variables of the type Iq (h),
h 2 H�q, is called the qth Wiener chaos associated with X and is denoted by Cq (X). One
sets conventionally C0 (X) = R.

Examples. (i) If h = e (�), where � = (1; 1; 0; 0; 0; :::) 2 A1;2, then

I2 (h) = H1 (X (e1))H1 (X (e2)) = X (e1)X (e2) .

(ii) If � = (1; 0; 1; 2; 0; :::) 2 A1;4, then

I4 (h) = H1 (X (e1))H1 (X (e3))H2 (X (e4))

= X (e1)X (e3)
�
X (e4)

2 � 1
�

= X (e1)X (e3)X (e4)
2 �X (e1)X (e3) .

(iii) If � = (3; 1; 1; 0; 0; :::) 2 A1;5, then

I5 (h) = H3 (X (e1))H1 (X (e2))H1 (X (e3))

=
�
X (e1)

3 � 3X (e1)
�
X (e2)X (e3)

= X (e1)
3X (e2)X (e3)� 3X (e1)X (e2)X (e3) .

The following result collects some well-known facts concerning Wiener chaos and isonormal
Gaussian processes. In particular: the �rst point characterizes the operators IXq as isomorphisms;
the third point is an equivalent of the chaotic representation property for Gaussian measures, as
stated in formula (5.12); the fourth point establishes a formal relation between random variables
of the type IXq (h) and the multiple Wiener-Itô integrals introduced in Section 4.2 (see [65, Ch.
1] for proofs and further discussions of all these facts).
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Proposition 6.1 1. For every q � 1, the qth Wiener chaos Cq (X) is a Hilbert subspace of
L2 (P), and the application

h 7! Iq (h) , h 2 H�q,

de�nes a Hilbert space isomorphism between H�q, endowed with the scalar product q! h�; �iH
q ,
and Cq (X).

2. For every q; q0 � 0 such that q 6= q0, the spaces Cq (X) and Cq0 (X) are orthogonal in
L2 (P) :

3. Let F be a functional of the isonormal Gaussian process X satisfying E[F (X)2] < 1:
then, there exists a unique sequence ffq : q � 1g such that fq 2 H�q, and

F = E (F ) +
1X
q=1

Iq (fq) =
1X
q=0

Iq (fq) , (6.6)

where we have used the notation I0 (f0) = E (F ), and the series converges in L2 (P).

4. Suppose that H = L2 (Z;Z; �), where � is �-�nite and non-atomic. Then, for q � 2,
the symmetric power H�q can be identi�ed with L2s (Z

q;Zq; �q) and, for every f 2 H�q,
the random variable Iq (f) coincides with the Wiener-Itô integral of f with respect to the
Gaussian measure given by A 7! X (1A), A 2 Z�.

Remark. The combination of Point 1 and Point 2 in the statement of Proposition 6.1
implies that, for every q; q0 � 1,

E
�
Iq (f) Iq0

�
f 0
��
= 1q=q0q!



f; f 0

�
H
q

:

From the previous statement, one also deduces the following Hilbert space isomorphism:

L2 (� (X)) '
1M
q=0

H�q, (6.7)

where ' stands for a Hilbert space isomorphism, and each symmetric power H�q is endowed
with the modi�ed scalar product q! h�; �iH
q . The direct sum on the RHS of (6.7) is called the
symmetric Fock space associated with H.

6.3 Contractions and products

We start by introducing the notion of contraction in the context of powers of Hilbert spaces.

De�nition 6.3 Consider a real separable Hilbert space H, and let fei : i � 1g be an orthonormal
basis of H. For every n;m � 1, every r = 0; :::; n ^ m and every f 2 H�n and g 2 H�m, we
de�ne the contraction of order r, of f and g, as the element of H
n+m�2r given by

f 
r g =
1X

i1;:::;ir=1

hf; ei1 
 � � � 
 eiriH
r 
 hg; ei1 
 � � � 
 eiriH
r ; (6.8)

and we denote by f e
rg its symmetrization.
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Remark. One can prove the following result: if H = L2 (Z;Z; �), f 2 H�n = L2s (Z
n;Zn; �n)

and g 2 H�m = L2s (Z
m;Zm; �m), then the de�nition of the contraction f 
r g given in (6.8)

and the one given in (5.1) coincide.

The next result extends the product formula (5.5) to the case of isonormal Gaussian processes.
The proof (which is left to the reader) can be obtained from Theorem 5.1, by using the fact that
every real separable Hilbert space is isomorphic to a space of the type L2 (Z;Z; �), where � is
�-�nite and non-atomic.

Proposition 6.2 Let X be an isonormal Gaussian process over some real separable Hilbert
space H. Then, for every n;m � 1, f 2 H�n and g 2 H�m,

In (f) Im (g) =
m^nX
r=0

r!

�
m

r

��
n

r

�
In+m�2r

�
f e
rg� , (6.9)

where the symbol (e) indicates a symmetrization, the contraction f 
r g is de�ned in (6.8), and
for m = n = r, we write

I0
�
f e
ng� = hf; giH
n :

7 A handful of operators from Malliavin calculus

We shall now describe some Malliavin-type operators, that turn out to be fundamental tools for
the analysis to follow. For the sake of generality, we will �rst provide the de�nitions and the main
properties in the case of an isonormal Gaussian process, and then specialize our discussion to
Gaussian measures. Given an isonormal Gaussian process X = fX (h) : h 2 Hg, these operators
involve the following real Hilbert spaces:

� L2 (� (X) ;P) = L2 (� (X)) is the Hilbert space of real-valued integrable functionals of X,
endowed with the usual scalar product hF1; F2iL2(�(X)) = E [F1 � F2];

� For k � 1, L2
�
� (X) ;P;H
k

�
= L2

�
� (X) ;H
k

�
is the Hilbert space of H
k-valued func-

tionals of X, endowed with the scalar product hF1; F2iL2(�(X);H
k) = E
�
hF1; F2iH
k

�
.

In the particular case where H = L2 (Z;Z; �), the space L2
�
� (X) ;H
k

�
can be identi�ed

with the class of stochastic processes u (z1; :::; zk; !) that are Zk
� (X) - measurable, and verify
the integrability condition

E
�Z
Zk
u (z1; :::; zk)

2 �k (dz1; :::; dzk)

�
<1. (7.1)

Our presentation is voluntarily succinct and incomplete, as we prefer to focus on the com-
putations and results that are speci�cally relevant for the interaction with Stein�s method. It
follows that the content of this section cannot replace the excellent discussions around Malliavin
calculus that one can �nd in the probabilistic literature: see e.g. Janson [35], Malliavin [43] and
Nualart [65].

In what follows, we shall also use the following notation: for every n � 1,

24



� C1p (Rn) is the class of in�nitely di¤erentiable functions f on Rn such that f and its
derivatives have polynomial growth;

� C1b (Rn) is the class of in�nitely di¤erentiable functions f on Rn such that f and its
derivatives are bounded;

� C10 (Rn) is the class of in�nitely di¤erentiable functions f on Rn such that f has compact
support.

7.1 Derivatives

7.1.1 De�nition and characterization of the domain

Let X = fX (h) : h 2 Hg be an isonormal Gaussian process. The Malliavin derivative operator
of order k transforms elements of L2 (� (X)) into elements of L2

�
� (X) ;H
k

�
: Formally, one

starts by de�ning the class S (X) � L2 (� (X)) of smooth functionals of X, as the collection of
random variables of the type

F = f (X (h1) ; :::; X (hm)) , (7.2)

where f 2 C1p (Rn) and hi 2 H.

De�nition 7.1 Let F 2 S (X) be as in (7.2).

1. The derivative DF of F is the H-valued random element given by

DF =
mX
i=1

@

@xi
f (X (h1) ; :::; X (hm))hi; (7.3)

we shall sometimes use the notation DF = D1F .

2. For k � 2, the kth derivative of F , denoted by DkF , is the element of L2
�
� (X) ;H
k

�
given by

DkF =
kX

i1;:::;ik=1

@k

@xi1 � � � @xik
f (X (h1) ; :::; X (hm))hi1 
 � � � 
 hik . (7.4)

Example. Let h 2 H be such that khkH = 1. Then, for every q � 1, Iq (h) = Hq (X (h)),
where Hq is the qth Hermite polynomial, and one has therefore that

DkIq (h) =

�
q (q � 1) � � � (q � k + 1)Hq�k (X (h))h
k, if k � q
0, if k > q:

In particular, DX (h) = h.

Remarks. (a) The polynomial growth condition implies that for every F 2 S (X), every
k � 1 and every h 2 H
k, the real-valued random variables F and



DkF; h

�
H
k

have �nite
moments of all orders.

(b) If, F; J 2 S (X), then FJ 2 S (X) and

D (FJ) = J �DF + F �DJ: (7.5)
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Proposition 7.1 The operator Dm : S (X)! L2
�
� (X) ;H
k

�
is closable.

Proof. It is interesting to provide a complete proof of this result in the case k = 1, since
this involves the use (1.1) (the case k � 2 is analogous). All we have to prove is that, if
FN 2 S (X) is a sequence converging to zero in L2 (P) and DFN converges to � in L2 (� (X) ;H),
then necessarily � = 0.

We start by observing that for every F 2 S (X) and h 2 H, one has the following integration
by parts formula:

E
�
hDF; hiH

�
= E [FX (h)] : (7.6)

To prove (7.6), �rst observe that we can always assume (without loss of generality) that khkH = 1,
and that F has the form F = f (X (h1) ; X (h2) ; :::; X (hm)), where h1 = h and h1; h2:::; hm is an
orthonormal system in H. Now write �(x) = E [F j X (h) = x], denote by �0 the �rst derivative
of � with respect to x, and use (1.1) to obtain that

E [FX (h)] = E [� (X (h))X (h)] = E
�
�0 (X (h))

�
= E

�
E
�
@

@x1
f (X (h) ; :::; X (hm)) j X (h)

��
= E

�
@

@x1
f (X (h) ; :::; X (hm))

�
= E

"
mX
i=1

@

@xi
f (X (h1) ; :::; X (hm)) hhi; hiH

#
= E

�
hDF; hiH

�
,

where we have used the fact that h1 = h and h1; :::; hm is an orthonormal system. By considering
two smooth functionals F; J 2 S (X), and by using (7.5), we infer from (7.6) that

E
�
J hDF; hiH

�
= �E

�
F hDJ; hiH

�
+ E [FJX (h)] . (7.7)

We now go back to the variables FN , N � 1, and �, as de�ned at the beginning of the proof.
Fix h 2 H and F 2 S (X). By using the fact that F and hDF; hiH have �nite moments of all
orders and by exploiting (7.7) in the case J = FN , we have that��E �F h�; hiH��� = lim

N!1

��E �F hDFN ; hiH���
� lim

N!1

��E �FN hDF; hiH���+ lim
N!1

jE [FNFX (h)]j

= 0,

which gives h�; hiH = 0, a.s.-P. Since h is arbitrary and H is separable, we deduce the desired
conclusion.

De�nition 7.2 For every k � 1, the domain of the operator Dk in L2 (� (X)), customarily
denoted by Dk;2, is the closure of the class S (X) with respect to the seminorm

kFkk;2 =

24E �F 2�+ kX
j=1

DjF
2
H
j

35 1
2

: (7.8)
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We also set

D1;2 =
1\
k=1

Dk;2 (7.9)

Remark. One can actually de�ne more general domains Dk;p, p � 1, as the closure of Dk

in Lp (� (X)). See [65, pp. 26�27].

The following result provides an important characterization of Dk;2, namely that F 2 Dk;2
if and only if the norms of its chaotic projections decrease su¢ cienlty fast. The proof can be
found in [65, Proposition 1.2.2], and uses the representation (6.5).

Proposition 7.2 Fix k � 1. A random variable F 2 L2 (� (X)) with a chaotic representation
(6.6) is an element of Dk;2 if and only if the kernels ffqg verify

1X
q=1

qkq! kfqk2H
q <1, (7.10)

and in this case

E
DkF

2
H
k

=

1X
q=k

(q)k � q! kfqk
2
H
q ,

where (q)k = q (q � 1) � � � (q � k + 1) is the Pochammer symbol.

Note that the previous result implies that random variables belonging to a �nite sum of
Wiener chaoses are in Dk;2, for every k � 1 (they are actually in Dk;p, for every k; p � 1)

7.1.2 The case of Gaussian measures

We now focus on the case where H = L2 (Z;Z; �), so that each symmetric power H�q can be
identi�ed with the space of symmetric functions L2s (�

q), and the integrals Iq (f), f 2 L2s (�q), are
just (multiple) Wiener-Itô integrals of f with respect to the Gaussian measure G (A) = X (1A),
where � (A) <1:

As already observed in this case the derivative DkF of F 2 Dk;2 takes the form of a stochastic
process

(z1; :::; zk) 7! Dk
z1;:::;zk

F ,

verifying moreover

E
�Z
Zk

�
Dk
z1;:::;zk

F
�2
� (dz1; :::; dzk)

�
<1:

The following statement provides a neat algorithm allowing to deduce the explicit form of the
�rst derivative of a general random variable in D1;2: This result can be proved by �rst focusing
on smooth random variables of the type (4.11), and then by using (7.3) as well as a density
argument. Note that a similar statement (that one can deduce by recursion �Exercise!) holds
also for derivatives of order greater than 1.
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Proposition 7.3 Suppose that H = L2 (Z;Z; �), and assume that F 2 D1;2 admits the chaotic
expansion (5.12). Then, a version of the derivative DF = fDzF : z 2 Zg is given by

DzF =
1X
n=1

nIn�1 (fn (�; z)) ; z 2 Z,

where, for each n and z, the integral In�1 (fn (�; z)) is obtained by integrating the function on
Zn�1 given by (z1; :::; zn�1) 7! fn (z1; :::; zn�1; z).

7.1.3 Remarkable formulae

We now state, without proofs, four important formulae involving Malliavin derivatives. The
�rst three are called �chain rules�and allow to di¤erentiate random variables that are smooth
transformations of di¤erentiable functionals (the proof is based on approximation arguments �
see [65, Proposition 1.2.3 and Proposition 1.2.4]). The fourth result has been proved by Stroock
in [91], and it is often a very useful tool in order to deduce the chaotic decomposition of a given
functional (see also McKean [50]). Finally, we point out some computations related to maxima
of Gaussian processess: for instance, this result is one of the staples of the recent remarkable
paper by Nourdin and Viens [64].

Chain rule #1. Let ' : Rm ! R be a continuosly di¤erentiable function with bounded partial
derivatives. Assume that F = (F1; :::; Fm) is a vector of elements of D1;2. Then, ' (F ) 2
D1;2, and

D' (F ) =
mX
i=1

@

@xi
' (F )DFi. (7.11)

Note that (7.11) is consistent with (7.3).

Chain rule #2. Let ' : Rm ! R be Lipschitz. Assume that F = (F1; :::; Fm) is a vector of
elements of D1;2 such that the law of F is absolutely continuous on Rm. Then, ' (F ) 2 D1;2,
and formula (7.11) holds.

Chain rule #3. Let F be a �nite sum of multiple stochastic integrals. Then, the multiplication
formula (6.9) implies that Fn 2 D1;2 for every n � 1, and moreover

D (Fn) = nFn�1DF: (7.12)

Stroock formula. Suppose that H = L2 (Z;Z; �), and assume that F 2 D1;2 (see (7.9))
admits the chaotic expansion (5.12). Then,

fn (z1; :::; zn) =
1

n!
E
�
Dn
z1;:::;znF

�
, n � 1: (7.13)

For instance, consider F = exp
�
tX (h)� t2

2

�
, where khkL2(�) = 1. Then, E [F ] = 1;

Dn
z1;:::;znF = tnh
n (z1; :::; zn)F , and

E
�
Dn
z1;:::;znF

�
= tnh
n (z1; :::; zn) .

By using (7.13) we therefore obtain an alternate proof of formula (5.13).
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Maxima. Suppose that X (hi), i = 1; :::;m and hi 2 H, is a �nite subset of some isonormal
Gaussian process, such that the span of hi has dimension m. Consider

F = max
i=1;:::;m

X (hi) :

Then, F 2 D1;2 (indeed, (z1; :::; zm) 7! max zi is Lipschitz), the random variable

I0 = arg max
i=1;:::;m

X (hi)

is well de�ned, and one has that

DF = hI0 .

This kind of results can also be extended to continuous-time Gaussian processes. For
isntance, if W = fWt : t 2 [0; 1]g is a standard Brownian motion initialized at zero, then
M = supt2[0;1]Wt 2 D1;2, and

DtM = 1[0;T ] (t) ,

where T is the unique random point where W attains its maximum.

7.2 Divergences

7.2.1 De�nition and characterization of the domain

Let X = fX (h) : h 2 Hg be an isonormal Gaussian process over some real separable Hilbert
space H. We will now study the divergence operator �, which is de�ned as the adjoint of the
derivative D. Recall that D is a closed and unbounded operator from D1;2 � L2 (� (X)) into
L2 (� (X) ;H), so that the domain of the operator � will be some suitable subset of L2 (� (X) ;H).

De�nition 7.3 The domain of the divergence operator �, denoted by dom (�), is the collection
of all random elements u 2 L2 (� (X) ;H) such that, for every F 2 D1;2,��E �hu;DF iH��� � cE

�
F 2
�1=2

, (7.14)

where c is a constant depending on u (and not on F ). For every u 2 dom (�), the random
variable � (u) is therefore de�ned as the unique element of L2 (� (X)) verifying

E
�
hu;DF iH

�
= E [F� (u)] ; (7.15)

for every F 2 D1;2 (note that the existence of � (u) is ensured by (7.14) and by the Riesz
Representation Theorem). Relation (7.15) is called an integration by parts formula.

Remark. By selecting F = 1 in (7.15), one deduces that E [� (u)] = 0, for every u 2 dom (�).

Example. Fix h 2 H. Since, by Cauchy-Schwarz,
��E �hh;DF iH��� � khkH E

�
F 2
�1=2, we

deduce that h 2 dom (�) and also, thanks to (7.6), that � (h) = X (h).
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7.2.2 The case of Gaussian measures

We now consider the case H = (Z;Z; �), where (Z;Z) is a Polish space endowed with a �-�nite
and non-atomic measure �. Recall that the aplication A 7! X (1A) = G (A) de�nes a Gaussian
measure with control �. In this case, the random variable � (u) is called the Skorohod integral
of u with respect to G. As already observed, in this framework the space L2 (� (X) ;H) can be
identi�ed with the class of stochastic processes u (z; !) that are Z 
 � (X) - measurable, and
verify the integrability condition

E
�Z
Zk
u (z)2 � (dz)

�
<1. (7.16)

By combining (7.16) with (5.12) (and some standard measurability arguments) we infer that
every u 2 L2 (� (X) ;H) admits a representation of the type

u (z) = h0 (z) +
1X
n=1

In (hn (�; z)) , (7.17)

where h0 2 L2 (�) and, for every n � 1, hn is a function on Zn+1 which is symmetric in the �rst
n variables, and moreover

E
�Z
Zk
u (z)2 � (dz)

�
=

1X
n=0

n! khnk2L2(�n+1) <1. (7.18)

The next result provides a characterization of the operator � as well as of its domain, in
terms of chaotic decompositions. The proof can be found in [65, Section 1.3.2].

Proposition 7.4 Let H = (Z;Z; �) as above, and let u 2 L2 (� (X) ;H) verify (7.16)�(7.18).
Then, u 2 dom (�) if and only if

1X
n=0

(n+ 1)!
ehn2

L2(�n+1)
<1, (7.19)

where ehn indicates the canonical symmetrization of hn. In this case, one has moreover that
� (u) =

1X
n=0

In+1

�ehn� ,
where, thanks to (7.19), the series converges in L2 (P).

Examples. (1) Suppose � (Z) < 1, and let u (z) = X (1Z)1Z (z) = G (Z)1Z (z). Then,
� (u) = I2 (1Z 
 1Z) = G (Z)2 � � (Z).

(2) Suppose � (Z) <1, let Z0 � Z and de�ne u (z) = X (1Z)1Z0 (z) = G (Z)1Z0 (z). Then,
� (u) = 2�1I2 (1Z 
 1Z0 + 1Z0 
 1Z).

Remark. Suppose that (Z;Z; �) = ([0; 1] ;B ([0; 1]) ; dt), where dt stands for the Lebesgue
measure, and write Wt, t 2 [0; 1], to indicate the standard Brownain motion t 7! G ([0; t]). We
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denote by Ft the �ltration generated by W and by the P-null sets of � (G), and we say that
a stochastic process u (t; !) is adapted, if u (t) 2 Ft for every t 2 [0; 1]. If u is adapted and
E
�R 1
0 u (t)

2 dt
�
< 1, then the Itô stochastic integral

R 1
0 u (t) dWt is a well-de�ned element of

L2 (� (X)). Moreover, in this case one has that

� (u) =

Z 1

0
u (t) dWt

(see [65, Proposition 1.3.11]).

7.2.3 A formula on products

We conclude with a general (useful) formula involving products of Malliavin di¤erentiable ran-
dom variables and elements of dom (�). The framework is that of a general isonormal process
X = fX (h) : h 2 Hg.

Proposition 7.5 Let F 2 D1;2 and u 2 dom (�) be such that: (i) Fu 2 L2 (� (X) ;H), (ii)
F� (u) 2 L2 (� (X)), and (iii) hDF; uiH 2 L2 (� (X)). Then, Fu 2 dom (�), and also

� (Fu) = F� (u)� hDF; uiH : (7.20)

Proof. Consider a random variable G equal to the RHS (7.2), with f 2 C10 (Rm). Then,

E
�
hDG;FuiH

�
= E

�
hFDG; uiH

�
= E

�
hD (FG)�GDF; uiH

�
= E

��
F� (u)� hDF; uiH

�
G
�
.

Since random variables such as G generate � (X), the conclusion is obtained.

7.3 The Ornstein-Uhlenbeck Semigroup and Mehler�s formula

7.3.1 De�nition, Mehler�s formula and vector-valued Markov processes

Let X = fX (h) : h 2 Hg be an isonormal Gaussian process over some real separable Hilbert
space H.

De�nition 7.4 The Ornstein-Uhlenbeck semigroup fTt : t � 0g is the set of contraction
operators de�ned as

Tt (F ) = E (F ) +
1X
q=1

e�qtIq (fq) =
1X
q=0

e�qtIq (fq) ; (7.21)

for every t � 0 and every F 2 L2 (� (X)) as in (6.6):

The Ornstein-Uhlenbeck semigroup plays a fundamental role in our theory. Its relevance for
Stein�s method is not new: see for instance the so-called �Barbour-Götze generator approach�,
introduced in [2] and [29] (see [80] for a survey). As another example, see [57], [62] and the
discussion contained in Section 9, where it is shown that the use of the semigroup fTtg leads
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to in�nite-dimensional generalizations of the second order Stein/Poincaré inequalities proved
by Chatterjee in [9]. Another striking connection between Stein�s method and the Ornstein-
Uhlenbeck semigroup will be exploited in Section 9.2, where we will use the properties of the
generator of fTtg in order to provide a proof of a multi-dimensional Stein�s Lemma which is
completely based on Malliavin calculus.

We shall now present two alternative representations of the operators Tt. The �rst one is
known as Mehler�s formula, and provides a mixture-type characterization of the operator Tt.
The second implies that the semigroup fTtg is indeed associated with a Markov process with
values in RH.

First representation: Mehler�s formula. We consider an independent copy of X, noted X 0,
and we suppose that the two isonormal processes X and X 0 are de�ned on the same
probability space. Note that X and X 0 are indeed random elements with values in RH
(the space of real-valued functions on H), and that every random variable F 2 L2 (� (X))
can be indeed identi�ed with a � (X)-measurable mapping F : RH ! R, which is uniquely
de�ned up to elements of � (X) with P-measure zero. We now �x t � 0 and consider the
process

Zt (h) = e�tX (h) +
p
1� e�2tX 0 (h) , h 2 H.

It is clear that Zt is another isonormal process over H, and therefore Zt
Law
= X. Given

F 2 L2 (� (X)), we can therefore meaningfully consider the random variable F (Zt) =

F
�
e�tX +

p
1� e�2tX 0

�
, obtained by applying to Zt a version of the mapping (from RH

into R) associated with F . Now write, for t � 0,

�tF (x) = E [F (Zt) j X = x] , x 2 RH, (7.22)

and let the class of operators fTtg be de�ned as in (7.21). The following representation of
fTtg is known as Mehler�s formula: for every t � 0 and every F 2 L2 (� (X)),

�tF (X) = Tt (F ) , (7.23)

or, equivalently,

Tt (F ) = E
h
F
�
e�ta+

p
1� e�2tX 0

�i���
a=X

. (7.24)

To prove (7.23), one should �rst observe that, for every t � 0, one has that

E
�
�tF (X)

2
�
� E

�
F 2
�

and E
�
Tt (F )

2
�
� E

�
F 2
�
,

that is, both �t and Tt are contraction operators from L2 (� (X)) into itself. By a density
argument, it is now su¢ cient to verify that �tF and TtF agree for every random variable

of the type F = exp
�
uX (h)� u2

2

�
, where u 2 R and khkH = 1. Indeed, from (5.13) and

(7.21) we infer that

Tt (F ) = 1 +

1X
q=1

e�qt
uq

q!
Iq
�
h
q

�
;
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on the other hand, by using (5.8), (5.11) and (6.5),

�tF (X) = exp

�
e�tuX (h)� u2

2
e�2t

�
=

1X
q=0

e�qtuq

q!
Hq (X (h))

= 1 +

1X
n=1

e�qt
uq

q!
Iq
�
h
q

�
,

yielding the desired conclusion.

Second representation: vector-valued Markov process. We now give a representation of
fTtg as the semigroup associated with a Markov process with values in RH. To do this,
we consider an auxiliary isonormal Gaussian process B over bH = H 
 L2 (R;B (R) ; 2dx)
(note the factor 2), where dx stands for the Lebesgue measure. Also, for t � 0 we denote
by et the element of L2 (R;B (R) ; 2dx) given by the mapping x 7! e�(t�x)1x<t. We de�ne
a process Xt (h), on R+ � H, as

Xt (h) = B (h
 et) , t � 0, h 2 H.

We easily verify that: (i) for every �xed h 2 H, the process t 7! Xt (h) is a centered
Gaussian process with covariance function E (Xt (h)Xs (h)) = exp (� jt� sj) khk2H, that is,
t 7! Xt (h) is a real-valued Ornstein-Uhlenbeck process with parameters 1 and khk2H, and
(ii) for every �xed t � 0, the Gaussian family Xt = fXt (h) : h 2 Hg de�nes an isonormal
Gaussian process over H (that is, Xt

Law
= X). Now �x F 2 L2 (� (X)), and consider the

previously described associated mapping F : RH ! R. One can verify the following (see
[65, p. 57]) alternative representation of fTtg: for every t; s � 0;

E [F (Xt+s) j Xu (h) : u � s, h 2 H] = Tt (F ) (Xs) .

Note that in the previous formula we have identi�ed Tt (F ) with a suitable mapping from
RH into R.

The reader is also referred to the paper by Meyer [51] for further discussions around the
Ornstein-Uhlenbeck semigroup.

7.3.2 The generator of the Ornstein-Uhlenbeck semigroup and its inverse

We shall now de�ne the operator L, known as the generator of the Ornstein-Uhlenbeck semi-
group, in the framework of an isonormal Gaussian process X = fX (h) : h 2 Hg.

De�nition 7.5 Let F 2 L2 (� (X)) admit the representation (6.6). We de�ne the operator L
as

LF = �
1X
q=0

qIq (fq) , (7.25)
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provided the previous series converges in L2 (P). This implies that the domain of L, denoted by
dom (L), is given by

dom (L) =

8<:F 2 L2 (� (X)) ; F =
1X
q=0

Iq (fq) :

1X
q=1

q2q! kfqk2H
q <1

9=; . (7.26)

The following result is proved [65, Proposition 1.4.2].

Proposition 7.6 Let fTtg be given by (7.21). For every F 2 L2 (� (X)), the following two
statements are equivalent.

1. F 2 dom (L) :

2. As t ! 0, t�1 (Tt (F )� F ) converges in L2 (P), and the limit equals the series appearing
on the RHS of (7.25).

It follows that L is the in�nitesimal generator of the Ornstein-Uhlenbeck semigroup
fTtg.

Now note that the image of L coincides with the set

L20 (� (X)) =
�
F 2 L2 (� (X)) : E (F ) = 0

	
;

and also that LF = L (F � E (F )). This last property implies that the mapping L : L2 (� (X))!
L20 (� (X)) is not injective. It is nonetheless possible to de�ne the application L

�1 : L20 (� (X))!
L20 (� (X)), which is the inverse mapping of the restriction of L to the set L

2
0 (� (X)).

De�nition 7.6 Let F 2 L20 (� (X)) admit the representation (6.6), with E (F ) = I0 (f0) = 0.
We de�ne the operator L�1 as

L�1F = �
1X
q=1

1

q
Iq (fq) . (7.27)

Note that the series on the RHS of (7.27) is convergent in L2 (P) for every F 2 L20 (� (X)).
The following property is easily veri�ed: for every F 2 L20 (� (X)), one has that L�1F 2 dom (L),
and LL�1F = F (L�1 is sometimes called the pseudo-inverse of L �see e.g. [53]).

7.4 The connection between �, D and L: �rst consequences

Let X = fX (h) : h 2 Hg be an isonormal Gaussian process. The following result provides a
neat connection between the three operators D; � and L, and is the actual �bridge� between
Stein�s method and Malliavin calculus. Needless to say, it is one of the staples of the analysis
to follow.
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Theorem 7.1 For every F 2 L2 (� (X)), one has that F 2 dom (L) if and only if F 2 D1;2 and
DF 2 dom (�). In this case, one has moreover that

�DF = �LF . (7.28)

Proof. It is enough to prove this result for H = L2 (Z;Z; �), where � is �-�nite and non-
atomic. In this case, the �rst part of the statement is easily proved by using the characterizations
of D1;2 and dom (�) given respectively in (7.10) (for k = 1) and (7.19), that one shall combine
with (7.26) and the representation

DzF =
X
q=1

qIq�1 (fq (�; z)) , z 2 Z

(where F =
P
Iq (fq) is the chaotic decomposition of F ). To prove (7.28), we observe that, by

a density argument, it is su¢ cient to consider a random variable having the form F = Iq (fq),
where q � 1. In this case,

DzF = qIq�1 (fq (�; z)) ;

and, since fq is symmetric, �DF = qIq (fq) = �LF . This yields the desired conclusion.

We now present three crucial consequences of Theorem 7.1. The �rst one characterizes L as
a second-order di¤erential operator.

Proposition 7.7 Let F 2 S have the form F = f (X (h1) ; :::; X (hd)), with f 2 C1p
�
Rd
�
.

Then, F 2 dom (L), and moreover

LF =
dX

i;j=1

@2

@xi@xj
f (X (h1) ; :::; X (hd)) hhi; hjiH � (7.29)

dX
i=1

@

@xi
f (X (h1) ; :::; X (hd))X (hi) .

Proof. We know that F 2 D1;2 and also

DF =
dX
i=1

@

@xi
f (X (h1) ; :::; X (hd))hi.

By using Proposition 7.5, one sees immediately that DF 2 dom (�), and moreover

�DF =

dX
i=1

@

@xi
f (X (h1) ; :::; X (hd))X (hi)

�
dX

i;j=1

@2

@xi@xj
f (X (h1) ; :::; X (hd)) hhi; hjiH .

The conclusion follows from (7.28).

The next result will be fully exploited in Section 9: it is the starting point of the paper [57].
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Theorem 7.2 (See [57]) Let F 2 D1;2 be such that E (F ) = 0, and consider a function g :
R! R. Assume that

� either g is continuously di¤erentiable with a bounded �rst derivative

� or g is Lipschitz and the law of F is absolutely continuous.

Then,

E [Fg (F )] = E
h
g0 (F )



DF;�DL�1F

�
H

i
= E

h
g0 (F )E

h

DF;�DL�1F

�
H
j F
ii

(7.30)

If, F = Iq (f), where q � 1 and f 2 H�q, then L�1F = �q�1F , and (7.30) becomes

E [Fg (F )] =
1

q
E
h
g0 (F ) kDFk2H

i
=
1

q
E
h
g0 (F )E

h
kDFk2H j F

ii
(7.31)

Proof. Observe that, thanks to (7.11), g (F ) 2 D1;2 and Dg (F ) = g0 (F )DF . Now write
F = LL�1F = ��DL�1F = �

�
�DL�1F

�
, so that by (7.15),

E [Fg (F )] = E
�
�
�
�DL�1F

�
g (F )

�
= E

h

Dg (F ) ;�DL�1F

�
H

i
= E

h
g0 (F )



DF;�DL�1F

�
H

i
= E

h
g0 (F )E

h

DF;�DL�1F

�
H
j F
ii

The last part of the statement is straightforward.

Remarks. (1) The quantity


DF;�DL�1F

�
H
will be crucial for the rest of the paper. Ob-

serve that this object can be directly represented in terms of the Ornstein-Uhlenbeck semigroup
as follows


DF;�DL�1F
�
H
=

Z 1

0
hDF; TtDF iH e

�tdt; (7.32)

or, with a more probabilistic twist,

DF;�DL�1F

�
H
= E

�
hDF; TYDF iH j X

�
; (7.33)

where Y is an exponential random variable with unitary parameter, independent of X.
(2) By using the second equality in (7.30), it is not di¢ cult to prove that, for every F 2 D1;2,

E
h

DF;�DL�1F

�
H
j F
i
� 0, a.s.-P (7.34)

(see [57]).
(3) According to Goldstein and Reinert [28], for F as in the statement of Theorem 7.2, there

exists a random variable F � having the F -zero biased distribution, that is, F � is such that, for
every smooth function g,

E[g0 (F �)] = E[Fg(F )]:

By using (7.30), one sees that

E[g0(F �)] = E[hDF;�DL�1F iHg0(F )]:
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This implies that the conditional expectation E[hDF;�DL�1F iHjF ] is a version of the Radon-
Nikodym derivative of the law of F � with respect to the law of F , whenever the two laws are
equivalent.

To conclude, we present a characterization of the moments of a random variable in a �xed
Wiener chaos.

Proposition 7.8 (See [56]) Fix an integer q � 2 and set F = Iq(f), with f 2 H�q. Then, for
every integer n � 0, we have

E
�
FnkDFk2H

�
=

q

n+ 1
E
�
Fn+2

�
: (7.35)

Proof. By using (7.12),

E
�
FnkDFk2H

�
= E [FnhDF;DF iH] =

1

n+ 1
E
�
hDF;D(Fn+1)iH

�
=

1

n+ 1
E
�
�DF � Fn+1

�
=

q

n+ 1
E
�
Fn+2

�
,

where we have used the fact that �DF = �LF = qF .

We will see that (7.35) can be a very e¤ective alternative to the combinatorial diagram
formulae that are customarily used in order to compute moments of chaotic random variables
(see e.g. [72] or [92]).

8 Enter Stein�s method

We are heading steadily towards the crux of these lectures, where we will show how to combine
Malliavin�s calculus with Stein�s method, in order to assess the accuracy of the normal and
non-normal approximation of functionals of isonormal Gaussian processes.

Before performing this task, it is necessary to recall some basic results involving Stein�s
method and distances between probability measures.

8.1 Distances between probability distributions

Let Y and Z be two random variables with values in Rd. In what follows, we shall focus on
distances; between the law of Y and the law of Z, having the following form

dG (Y; Z) = sup fjE [g (Y )]� E [g (Z)]j : g 2 Gg , (8.1)

where G is some suitable class of functions. Our choices for G will always refer to one of the
following examples.

� By taking G = fg : kgkL � 1g; where k�kL is the usual Lipschitz seminorm given by

kgkL = sup
x 6=y

jg(x)� g(y)j
kx� ykRd

,

(with k�kRd the usual Euclidian norm on Rd) one obtains theWasserstein (or Kantorovich-
Wasserstein) distance.
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� By taking G equal to the collection of all indicators 1B of Borel sets, one obtains the total
variation distance.

� By taking G equal to the class of all indicators functions 1(�1;z1] � � �1(�1;zd], (z1; :::; zd) 2
Rd, one has the Kolmogorov distance.

In what follows, we shall sometimes denote by dW (:; :), dTV (:; :) and dKol(:; :), respectively,
the Wasserstein, total variation and Kolmogorov distances. Observe that dTV (:; :) � dKol(:; :).
Moreover, the topologies induced by dW , dTV and dKol are stronger than the topology of con-
vergence in distribution (see e.g. [22, Ch. 11] for an account of results involving distances on
spaces of probability measures).

8.2 Stein�s method in dimension one

We shall now give a short account of Stein�s method, which is basically a set of techniques
allowing to evaluate distances of the type (8.1) by means of di¤erential operators. As already
recalled in the Introduction, this theory has been initiated by Stein in the path-breaking paper
[88], and then further developed in the monograph [89]. For a comprehensive introduction, see
the two surveys [14] and [80]. In this section, we will apply Stein�s method to two types of
one dimensional approximations, namely Gaussian and (centered) Gamma. As before, we shall
denote by N (0; 1) a standard Gaussian random variable. The centered Gamma random variables
we are interested in have the form

F (�)
Law
= 2G(�=2)� �; � > 0; (8.2)

where G(�=2) has a Gamma law with parameter �=2. This means that G(�=2) is a (a.s. strictly
positive) random variable with density

�(x) =
x
�
2
�1e�x

�(�=2)
1(0;1)(x);

where � is the usual Gamma function. Observe in particular that, if � � 1 is an integer, then
F (�) has a centered �2 distribution with � degrees of freedom.

Standard Gaussian distribution. LetN � N (0; 1). Consider a real-valued function g : R! R
such that the expectation E(g(N)) is well-de�ned. The Stein equation associated with g and N
is given by

g(x)� E(g(N)) = f 0(x)� xf(x); x 2 R: (8.3)

A solution to (8.3) is a function f which is Lebesgue a.e.-di¤erentiable, and such that there exists
a version of f 0 verifying (8.3) for every x 2 R. The following result is basically due to Stein
[88, 89]. The proof of point (i) (whose content is usually referred as Stein�s lemma) involves a
standard use of the Fubini theorem (see e.g. [14, Lemma 2.1]). Point (ii) is proved e.g. in [14,
Lemma 2.2]; point (iii) can be obtained by combining e.g. the arguments in [89, p. 25] and [9,
Lemma 5.1]; point (iv) is proved e.g. in [8, Lemma 4.3].
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Lemma 8.1 (i) Let W be a random variable. Then, W Law
= N � N (0; 1) if, and only if,

E[f 0(W )�Wf(W )] = 0; (8.4)

for every continuous and piecewise continuously di¤erentiable function f verifying the
relation Ejf 0(Z)j < 1.

(ii) If g(x) = 1(�1;z](x), z 2 R, then (8.3) admits a solution f which is bounded by
p
2�=4,

piecewise continuously di¤erentiable and such that kf 0k1 � 1.

(iii) If g is bounded by 1/2, then (8.3) admits a solution f which is bounded by
p
�=2, Lebesgue

a.e. di¤erentiable and such that kf 0k1 � 2.

(iv) If g is absolutely continuous with bounded derivative, then (8.3) has a solution f which is
twice di¤erentiable and such that kf 0k1 � kg0k1 and kf 00k1 � 2kg0k1.

We also recall the relation:

2dTV (X;Y ) = supfjE(u(X))� E(u(Y ))j : kuk1 � 1g: (8.5)

Note that point (ii) and (iii) (via (8.5)) imply the following bounds on the Kolmogorov and total
variation distance between Z and an arbitrary random variable Y :

dKol(Y; Z) � sup
f2FKol

jE(f 0(Y )� Y f(Y ))j (8.6)

dTV (Y; Z) � sup
f2FTV

jE(f 0(Y )� Y f(Y ))j (8.7)

where FKol and FTV are, respectively, the class of piecewise continuously di¤erentiable functions
that are bounded by

p
2�=4 and such that their derivative is bounded by 1, and the class of

piecewise continuously di¤erentiable functions that are bounded by
p
�=2 and such that their

derivative is bounded by 2.
Analogously, by using (v) along with the relation khkL = kh0k1, one obtains

dW (Y; Z) � sup
f2FW

jE(f 0(Y )� Y f(Y ))j; (8.8)

where FW is the class of twice di¤erentiable functions, whose �rst derivative is bounded by 1
and whose second derivative is bounded by 2.

Centered Gamma distribution. Let F (�) be as in (8.2). Consider a real-valued function
g : R ! R such that the expectation E[g(F (�))] exists. The Stein equation associated with g
and F (�) is:

g(x)� E[g(F (�))] = 2(x+ �)f 0(x)� xf(x); x 2 (��;+1): (8.9)

The following statement collects some slight variations around results proved by Stein [89],
Diaconis and Zabell [20], Luk [40], Schoutens [85] and Pickett [94]. See also [80]. It is the
�Gamma counterpart�of Lemma 8.1.
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Lemma 8.2 (i) Let W be a real-valued random variable whose law admits a density with

respect to the Lebesgue measure. Then, W Law
= F (�) if and only if

E[2(W + �)+f
0(W )�Wf(W )] = 0; (8.10)

where a+ := max(a; 0), for every smooth function f such that the mapping x 7! 2(x +
�)+f

0(x)� xf(x) is bounded.

(ii) If jg(x)j � c exp(ax) for every x > �� and for some c > 0 and a < 1=2, and if g is twice
di¤erentiable, then (8.9) has a solution f which is bounded on (��;+1), di¤erentiable
and such that kfk1 � 2kg0k1 and kf 0k1 � kg00k1.

(iii) Suppose that � � 1 is an integer. If jg(x)j � c exp(ax) for every x > �� and for some
c > 0 and a < 1=2, and if g is twice di¤erentiable with bounded derivatives, then (8.9)
has a solution f which is bounded on (��;+1), di¤erentiable and such that kfk1 �p
2�=�kgk1 and kf 0k1 �

p
2�=�kg0k1.

Now de�ne

G1 = fg 2 C2b : kgk1 � 1; kg0k1 � 1; kg00k1 � 1g; (8.11)

G2 = fg 2 C2b : kgk1 � 1; kg0k1 � 1g; (8.12)

G1;� = G1 \ C2b (�) (8.13)

G2;� = G2 \ C2b (�) (8.14)

where C2b denotes the class of twice di¤erentiable functions with support in R and with bounded
derivatives, and C2b (�) denotes the subset of C

2
b composed of functions with support in (��;+1).

Note that point (ii) in the previous statement implies that, by adopting the notation (8.1) and
for every � > 0 and every real random variable Y (not necessarily with support in (��;+1)),

dG1;� (Y; F (�)) � sup
f2F1;�

jE[2(Y + �)f 0(Y )� Y f(Y )]j (8.15)

where G1;� is the class of di¤erentiable functions with support in (��;+1), bounded by 2 and
whose derivatives are bounded by 1. Analogously, point (iii) implies that, for every integer
� � 1,

dG2;� (Y; F (�)) � sup
f2F2;�

jE[2(Y + �)f 0(Y )� Y f(Y )]j; (8.16)

where F2;� is the class of di¤erentiable functions with support in (��;+1), bounded by
p
2�=�

and whose derivatives are also bounded by
p
2�=�. A little inspection shows that the following

estimates also hold: for every � > 0 and every random variable Y ,

dG1(Y; F (�)) � sup
f2F1

jE[2(Y + �)+f 0(Y )� Y f(Y )]j

where F1 is the class of functions (de�ned on R) that are continuous and di¤erentiable on
Rnf�g, bounded by maxf2; 2=�g, and whose derivatives are bounded by maxf1; 1=� + 2=�2g.
Analogously, for every integer � � 1,

dG2(Y; F (�)) � sup
f2F2

jE[2(Y + �)+f 0(Y )� Y f(Y )]j; (8.17)

where F2 is the class of functions (on R) that are continuous and di¤erentiable on Rnf�g,
bounded bymaxf

p
2�=�; 2=�g, and whose derivatives are bounded by maxf

p
2�=�; 1=�+2=�2g.
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8.3 Multi-dimensional Stein�s Lemma: a Malliavin calculus approach

We start by introducing some useful norms over classes of real-valued matrices.

De�nition 8.1 (i) The Hilbert-Schmidt inner product and the Hilbert-Schmidt norm
on the class of d�d real matrices, denoted respectively by h�; �iH:S: and k �kH:S:, are de�ned
as follows: for every pair of matrices A and B, hA;BiH:S: , Tr(ABT ) and kAkH:S: ,p
hA;AiH:S::

(ii) The operator norm of a d� d matrix A over R is given by kAkop , supkxkRd=1 kAxkRd :

Remark. According to the just introduced notation, we can rewrite the di¤erential charac-
terization of the generator L, as given in (7.29), as follows: for every smooth

F = f (X (h1) ; :::; X (hd)) ;

one has that

LF = hC;Hessf (Z)iH:S: � hZ;rf (Z)iRd , (8.18)

whereHessf is the Hessian matrix of f , Z = (X (h1) ; :::; X (hd)), and C = fC (i; j) : 1 � i; j � dg
is the covariance matrix given by C (i; j) = hhi; hjiH.

Given a d�d positive de�nite symmetric matrix C, we use the notation Nd(0; C) to indicate
the law of a d-dimensional Gaussian vector with zero mean and covariance C. The following
result is the d-dimensional counterpart of Stein�s Lemma 8.1. Here, we provide a proof (which
is taken from [60]) that is almost completely based on Malliavin calculus.

Lemma 8.3 Fix an integer d � 2 and let C = fC(i; j) : i; j = 1; :::; dg be a d � d positive
de�nite symmetric real matrix.

(i) Let Y be a random variable with values in Rd. Then Y � Nd(0; C) if and only if, for every
twice di¤erentiable function f : Rd ! R such that EjhC;Hessf(Y )iH:S: � hY;rf(Y )iRd j <
1, it holds that

E[hY;rf(Y )iRd � hC;Hessf(Y )iH:S:] = 0: (8.19)

(ii) Consider a Gaussian random vector Z � Nd(0; C). Let g : Rd ! R belong to C2(Rd) with
�rst and second bounded derivatives. Then, the function U0(g) de�ned by

U0g(x) :=

Z 1

0

1

2t
E[g(

p
tx+

p
1� tZ)� g(Z)]dt

is a solution to the following di¤erential equation (with unknown function f):

g(x)� E[g(Z)] = hx;rf(x)iRd � hC;Hessf(x)iH:S:; x 2 Rd: (8.20)

Moreover, one has that

sup
x2Rd

kHessU0g(x)kH:S: � kC�1kop kCk1=2op kgkL: (8.21)
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Remark. If C = �2Id for some � > 0 (that is, if Z is composed of i.i.d. centered Gaussian
random variables with common variance equal to �2), then

kC�1kop kCk1=2op = k��2Idkop k�2Idk1=2op = ��1:

Proof of Lemma 8.3. We start by proving Point (ii). First observe that, without loss of
generality, we can suppose that Z = (Z1; :::; Zd) , (X(h1); :::X(hd)), where X is an isonormal
Gaussian process over some Hilbert space H, the kernels hi belong to H (i = 1; :::; d), and
hhi; hjiH = E(X(hi)X(hj)) = E(ZiZj) = C(i; j). By using the change of variable 2u = � log t,
one can rewrite U0g(x) as follows

U0g(x) =

Z 1

0
fE[g(e�ux+

p
1� e�2uZ)]� E[g(Z)]gdu:

Now de�ne eg(Z) := g(Z)�E[g(Z)], and observe that eg(Z) is by assumption a centered element
of L2(� (X)). For q � 0, denote by Jq(eg(Z)) the projection of eg(Z) on the qth Wiener chaos, so
that J0(eg(Z)) = 0. According to Mehler�s formula (7.24),

E[g(e�ux+
p
1� e�2uZ)]jx=Z � E[g(Z)] = E[eg(e�ux+p1� e�2uZ)]jx=Z = Tueg(Z);

where x denotes a generic element of Rd. In view of (7.21), it follows that

U0g(Z) =

Z 1

0
Tueg(Z)du = Z 1

0

X
q�1

e�quJq(eg(Z))du =X
q�1

1

q
Jq(eg(Z)) = �L�1eg(Z):

Since g belongs to C2(Rd) with bounded �rst and second derivatives, it is easily seen that the
same holds for U0g. By exploiting the di¤erential representation (8.18), one deduces that

hZ;rU0g(Z)iRd � hC;HessU0g(Z)iH:S: = �LU0g(Z) = LL�1eg(Z) = g(Z)� E[g(Z)]:

Since the matrix C is positive de�nite, we infer that the support of the law of Z coincides with
Rd, and therefore (e.g. by a continuity argument) we obtain that

hx;rU0g(x)iRd � hC;HessU0g(x)iH:S: = g(x)� E[g(Z)];

for every x 2 Rd. This yields that the function U0g solves the Stein�s equation (8.20).
To prove the estimate (8.21), we �rst recall that there exists a unique non-singular symmetric

matrix A such that A2 = C, and that one has that A�1Z � Nd(0; Id). Now write U0g(x) =
h(A�1x), where

h(x) =

Z 1

0

1

2t
E[gA(

p
tx+

p
1� tA�1Z)� gA(A�1Z)]dt;

and gA(x) = g(Ax). Note that, since A�1Z � Nd(0; Id), the function h solves the Stein�s
equation hx;rh(x)iRd � �h(x) = gA(x) � E[gA(Y )]; where Y � Nd(0; Id). We can now use
standard arguments (see e.g. the proof of Lemma 3 in [10]) in order to deduce that

sup
x2Rd

kHessh(x)kH:S: � kgAkLip � kAkopkgkL: (8.22)
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On the other hand, by noting hA�1(x) = h(A�1x), one obtains by standard computations (recall
that A is symmetric) that HessU0g(x) = HesshA�1(x) = A�1Hessh(A�1x)A�1; yielding

sup
x2Rd

kHessU0g(x)kH:S: = sup
x2Rd

kA�1Hessh(A�1x)A�1kH:S:

= sup
x2Rd

kA�1Hessh(x)A�1kH:S:

� kA�1k2op sup
x2Rd

kHessh(x)kH:S: (8.23)

� kA�1k2op kAkop kgkL (8.24)

� kC�1kop kCk1=2op kgkL: (8.25)

The chain of inequalities appearing in formulae (8.23)�(8.25) are mainly a consequence of the
usual properties of the Hilbert-Schmidt and operator norms. Indeed, to prove inequality (8.23)
we used the relations

kA�1Hessh(x)A�1kH:S: � kA�1kop kHessh(x)A�1kH:S:
� kA�1kop kHessh(x)kH:S: kA�1kop ;

relation (8.24) is a consequence of (8.22); �nally, to show the inequality (8.25), one uses the fact
that

kA�1kop �
q
kA�1A�1kop =

q
kC�1kop and kAkop �

q
kAAkop =

q
kCkop :

We are now left with the proof of Point (i) in the statement. The fact that a vector Y � Nd(0; C)
necessarily veri�es (8.19) can be proved by standard integration by parts. On the other hand,
suppose that Y veri�es (8.19). Then, according to Point (ii), for every g 2 C2(Rd) with bounded
�rst and second derivatives,

E(g(Y ))� E(g(Z)) = R(hY;rU0g(Y )iRd � hC;HessU0g(Y )iH:S:) = 0;

where Z � Nd(0; C). Since the collection of all such functions g generates the Borel �-�eld on
Rd, this implies that Y Law

= Z, thus yielding the desired conclusion.

9 Explicit bounds using Malliavin operators

9.1 One-dimensional normal approximation

Consider a standard Gaussian random variable N � N (0; 1), as well as a functional F of some
isonormal Gaussian process X = fX (h) : h 2 Hg. We are interested in assessing the distance
between the law of N and the law of F by using relations (8.6)�(8.8). As shown in the next
statement, which has been �rst proved in [57], this task is particularly easy if one assumes that
F is also Malliavin di¤erentiable.

Theorem 9.1 (See [57]) Let F 2 D1;2 be such that E [F ] = 0. Then, one has that

dW (F;N) � E
���1� 
DF;�DL�1F�H��� (9.1)

� E[(1�


DF;�DL�1F

�
H
)2]1=2
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Moreover, if the law of F is absolutely continuous, then

dKol (F;N) � E
���1� 
DF;�DL�1F�H��� � E[(1� 
DF;�DL�1F�H)2]1=2 (9.2)

dTV (F;N) � 2E
���1� 
DF;�DL�1F�H��� � 2E[(1� 
DF;�DL�1F�H)2]1=2 (9.3)

Proof. Let d be one of the four distances dW , dKol and dTV , and let F be the associated
functional class FW , FKol or FFM ; as de�ned on page 39. By combining (8.6)�(8.8) with
Theorem 7.2, one deduces that

d (F;N) � sup
f2F

��E �f 0 (F )� f (F )F ���
= sup

f2F

���E hf 0 (F )� f 0 (F ) 
DF;�DL�1F�Hi���
� [sup

f2F

f 01]� E ���1� 
DF;�DL�1F�H���
� [sup

f2F

f 01]� E[(1� 
DF;�DL�1F�H)2]1=2,
where in the last inequality we used Cauchy-Schwarz. Note that, in order to apply Theorem
7.2 when f 2 FKol or f 2 FFM , one needs to assume that F has an absolutely continuous
distribution (indeed, in this case f is merely Lipschitz).

Remark. Observe that

E[


DF;�DL�1F

�
H
] = E

�
F 2
�
;

and therefore

E[(1�


DF;�DL�1F

�
H
)2]1=2 �

��1� E �F 2���+Var�
DF;�DL�1F�
H

�1=2
: (9.4)

Note also that


DF;�DL�1F

�
H
2 L1 (P), but



DF;�DL�1F

�
H
is not necessarily square-

integrable. To have that


DF;�DL�1F

�
2 L2 (P) one needs further regularity assumptions

on F : for instance, if F lives in a �nite sum of Wiener chaoses, then


DF;�DL�1F

�
H
2 Lp (P)

for every p � 1.

Of course, the relevance of the bounds (9.1)�(9.3) can only be appreciated through examples.
In the forthcoming Section 10, we will prove that these bounds lead indeed to several striking
generalizations of some central limit theorems on Wiener chaos proved in [66], [67] and [73]. We
now provide a �rst example, taken from [57], where it is shown that (9.3) contains as a special
case a technical result proved by Chatterjee in [9].

Example. In [9, Lemma 5.3], Chatterjee has proved the following result. Let Y = g(V ),
where V = (V1; :::; Vn) is a vector of centered i.i.d. standard Gaussian random variables, and
g : Rn ! R is a smooth function such that: (i) g and its derivatives have subexponential growth
at in�nity, (ii) E(g(V )) = 0, and (iii) E(g(V )2) = 1. Then, for any Lipschitz function f , one
has that

E[Y f(Y )] = E[S(V )f 0(Y )]; (9.5)
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where, for every v = (v1; :::; vn) 2 Rn,

S(v) =

Z 1

0

1

2
p
t
E

"
nX
i=1

@g

@vi
(v)

@g

@vi
(
p
tv +

p
1� tV )

#
dt; (9.6)

so that, for instance, for N � N (0; 1) and by using (8.7), Lemma 8.1 (iii), (8.5) and Cauchy-
Schwarz inequality,

dTV (Y; Z) � 2E[(S(V )� 1)2]1=2: (9.7)

We shall prove that (9.5) is a very special case of the �rst equality in (7.30), and therefore that
(9.7) is a special case of (9.3). Observe �rst that, without loss of generality, we can assume that
Vi = X(hi), whereX is an isonormal process over some Hilbert space of the type H = L2(Z;Z; �)
and fh1; :::; hng is an orthonormal system in H. Since Y = g(V1; : : : ; Vn), according to (7.3)
we have that DaY =

Pn
i=1

@g
@xi
(V )hi(a). On the other hand, since Y is centered and square

integrable, it admits a chaotic representation of the form Y =
P
q�1 Iq( q). This implies in

particular that DaY =
P1
q=1 qIq�1( q(a; �)). Moreover, one has that �L�1Y =

P
q�1

1
q Iq( q),

so that �DaL�1Y =
P
q�1 Iq�1( q(a; �)). Now, let Tz, z � 0, denote the Ornstein-Uhlenbeck

semigroup introduced in (7.21), whose action on random variables F 2 L2(� (X)) is given by
Tz(F ) =

P
q�0 e

�qzJq(F ), where Jq(F ) denotes the projection of F on the qth Wiener chaos.
We can writeZ 1

0

1

2
p
t
Tln(1=

p
t)(DaY )dt =

Z 1

0
e�zTz(DaY )dz =

X
q�1

1

q
Jq�1(DaY )

=
X
q�1

Iq�1( q(a; �)) = �DaL�1Y: (9.8)

Now recall that Mehler�s formula (7.24) implies that

Tz(f(V )) = E[f(e�zv +
p
1� e�2zV )]

���
v=V

; z � 0:

In particular, by applying this last relation to the partial derivatives @g
@vi
, i = 1; :::; n, we deduce

from (9.8) thatZ 1

0

1

2
p
t
Tln(1=

p
t)(DaY )dt =

nX
i=1

hi(a)

Z 1

0

1

2
p
t
E
�
@g

@vi
(
p
t v +

p
1� t V )

�
dt

�����
v=V

:

Consequently, (9.5) follows, since

hDY;�DL�1Y iH =

*
nX
i=1

@g

@vi
(V )hi;

nX
i=1

Z 1

0

1

2
p
t
E
�
@g

@vi
(
p
t v +

p
1� t V )

�
dt

����
v=V

hi

+
H

= S(V ):

Remark. By inspection of the proof of Theorem 9.1, one sees that it is possible to re�ne

the bounds (9.1)�(9.3) and (9.4), by replacing


DF;�DL�1F

�
H
with E

h

DF;�DL�1F

�
H
j F
i

and Var
�

DF;�DL�1F

�
H

�
with Var

�
E
h

DF;�DL�1F

�
H
j F
i�
.
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9.2 Multi-dimensional normal approximation

We now present a multidimensional version of Theorem 9.1 which is based on the multi-
dimensional Stein Lemma 8.1. See [60] and [62] for more results in this direction.

Theorem 9.2 (See [60]) Fix d � 2 and let C = fC(i; j) : i; j = 1; :::; dg be a d � d positive
de�nite matrix. Suppose that Z � Nd(0; C) and that F = (F1; : : : ; Fd) is a Rd-valued random
vector such that E[Fi] = 0 and Fi 2 D1;2 for every i = 1; : : : ; d. Then,

dW (F;Z) � kC�1kop kCk1=2op
q
EkC � �(DF )k2H:S (9.9)

= kC�1kop kCk1=2op

vuut dX
i;j=1

E[(C(i; j)� hDFi;�DL�1FjiH)2]; (9.10)

where we write �(DF ) to indicate the matrix �(DF ) = fhDFi;�DL�1FjiH : 1 � i; j � dg:

Proof. We start by proving that, for every g 2 C2(Rd) with bounded �rst and second
derivatives,

jE[g(F )]� E[g(Z)]j � kC�1kop kCk1=2op kgkL
q
EkC � �(DF )k2H:S :

To prove such a claim, observe that, according to Point (ii) in Lemma 8.3, E[g(F )]� E[g(Z)] =
E[hF;rU0g(F )iRd � hC;HessU0g(F )iH:S:]. Now let us write @2ij = @2

@xi@xj
; we have that��E[hC;HessU0g(F )iH:S: � hF;rU0g(F )iRd ]��

=

������E
24 dX
i;j=1

C(i; j)@2ijU0g(F )�
dX
i=1

Fi@iU0g(F )

35������
=

������
dX

i;j=1

E
�
C(i; j)@2ijU0g(F )

�
�

dX
i=1

E
��
LL�1Fi

�
@iU0g(F )

������� (since E(Fi) = 0)
=

������
dX

i;j=1

E
�
C(i; j)@2ijU0g(F )

�
+

dX
i=1

E
�
�(DL�1Fi)@iU0g(F )

������� (since �D = �L)

=

������
dX

i;j=1

E
�
C(i; j)@2ijU0g(F )

�
�

dX
i=1

E
�
hD(@iU0g(F ));�DL�1FiiH

������� (by (7:15))

=

������
dX

i;j=1

E
�
C(i; j)@2ijU0g(F )

�
�

dX
i;j=1

E
�
@2jiU0g(F )hDFj ;�DL�1FiiH

������� (by (7:11))
=

������
dX

i;j=1

E
�
@2ijU0g(F )

�
C(i; j)� hDFi;�DL�1FjiH

��������
=

��EhHessU0g(F ); C � �(DF ))iH:S:��
�

q
EkHessU0g(F )k2H:S

q
EkC � �(DF )k2H:S (by the Cauchy-Schwarz inequality)

� kC�1kop kCk1=2op kgkL
q
EkC � �(DF )k2H:S (by (8.21)):
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To prove the Wasserstein estimate (9.9), it is su¢ cient to observe that, for every globally Lip-
schitz function g such that kgkL � 1, there exists a family fg" : " > 0g such that:

(i) for each " > 0, the �rst and second derivatives of g" are bounded;

(ii) for each " > 0, one has that kg"kLip � kgkL;

(iii) as "! 0, kg" � gk1 # 0.

For instance, we can choose g"(x) = E
�
g(x+

p
"S)
�
with S � Nd(0; Id).

Theorem 9.2 will be fully exploited in Section 10.2, where we will obtain bounds on the
normal approximation of random vectors woth coordinates living in a �xed Wiener chaos.

9.3 Gamma approximation

We now state a result that can be obtained by combining Malliavin calculus with the Gamma
approximations discussed in the second part of Section 8.2 (we shall use the same notation
introduced therein). The proof (left to the reader) makes use of (7.34), and of arguments
analogous to those displayed in the proof of Theorem 9.1.

Theorem 9.3 Fix � > 0 and let F (�) have a centered Gamma distribution with parameter �.
Let G 2 D1;2 be such that E(G) = 0 and the law of G is absolutely continuous with respect to
the Lebesgue measure. Then:

dG1(G;F (�)) � K1E[(2� + 2G� hDG;�DL�1GiH)2]1=2; (9.11)

and, if � � 1 is an integer,

dG2(G;F (�)) � K2E[(2� + 2G� hDG;�DL�1GiH)2]1=2; (9.12)

where G1 and G2 are de�ned in (8.11)�(8.12), K1 , maxf1; 1=� +2=�2g and K2 , maxf
p
2�=�;

1=� + 2=�2g.

We will come back to Theorem 9.3 in Section 10.3, where we will present some characteriza-
tions of non-central limit theorems on a �xed Wiener chaos.

10 Limit Theorems on Wiener chaos

Let X = fX (h) : h 2 Hg be an isonormal Gaussian process. In this section, we focus on the
Gaussian and Gamma approximations of (vectors of) random variables of the type F = Iq (f),
where q � 2 and f 2 H�q. We recall that, according to the chaotic representation property
stated in Proposition 6.1-3, random variables of this form are the basic building blocks of every
square-integrable functional of X.

In order to appreciate the subtelty of the issues faced in this section, we list some well-known
properties of the laws of chaotic random variables.
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� If q = 2, then there exists a sequence f�i : i � 1g of i.i.d. centered standard Gaussian
random variables such that

I2 (f) =
1X
i=1

�i
�
�2i � 1

�
, (10.1)

where the series converges in L2 (P), and f�i : i � 1g is the sequence of eigenvalues of the
Hilbert-Schmidt operator (from H into H) given by h 7! f 
1 h, where 
1 indicates a
contraction of order 1. In particular, I2 (f) admits some �nite exponential moment, and
the law of I2 (f) is determined by its moments.

� If q � 3, the law of Iq (f) may not be determined by its moments. See Slud [87].

� For every q � 2, the random variable Iq (f) cannot be Gaussian. See [35, Chapter VI].

� For q � 3, and except for trivial cases, there does not exist a general explicit formula for
the characteristic function of Iq (f).

Note that in the next section we will focus on the total variation distance dTV . However, it
will be clear later on that (thanks to Theorem 9.1) all the results extend without di¢ culties to
the Fortet-Mourier, Wasserstein or Kolmogorov distances.

10.1 CLTs in dimension one

Let N � N (0; 1). Fix q � 2 and consider an element of the qth Wiener chaos of X with the
form F = Iq (f), where the kernel f is in H�q.

Remark. Since E [F ] = 0, the fourth cumulant of F is given by

�4 (F ) = E
�
F 4
�
� 3E

�
F 2
�2
. (10.2)

Observe also that E
�
N4
�
= 3.

We have that E
h
1
q kDFk

2
H

i
= E

�
F 2
�
= q! kfk2H
q , and also, by (9.4),

dTV (F;N) � 2
���1� q! kfk2H
q ���+ 2

s
Var

�
1

q
kDFk2H

�
. (10.3)

The following result, which is partially based on the moment formula (7.35), shows that (10.3)
yields indeed an important simpli�cation of the method of moments and cumulants.

Proposition 10.1 (See [57]) Let the above notation and assumptions prevail. Then, the fol-
lowing hold.

1.

Var

�
1

q
kDFk2H

�
= q2

q�1X
p=1

(p� 1)!2
�
q � 1
p� 1

�4
(2q � 2p)!

f e
pf2H
2(q�p) : (10.4)
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2.

�4 (F ) = E
�
F 4
�
�3 = 3q

q�1X
p=1

p! (p� 1)!
�
q

p

�2�q � 1
p� 1

�2
(2q � 2p)!

f e
pf2H
2(q�p) : (10.5)
3.

0 � 1

3q
�4 (F ) � Var

�
1

q
kDFk2H

�
� q � 1

3q
�4 (F ) : (10.6)

4.

dTV (N;F ) � 2
���1� E �F 2���+rq � 1

3q
�4 (F )

�
. (10.7)

Proof. It su¢ ces to prove the statement when H = L2 (Z;Z; �), with � �-�nite and without
atoms. In this case, one has that DzF = qIq�1 (f (�; z)) and, by the multiplication formula,

(DzF )
2 = q2

q�1X
r=0

r!

�
q � 1
r

�2
I2(q�1�r) (f (�; z)
r f (�; z)) :

It follows that

1

q
kDFk2L2(�) =

1

q

Z
Z
(DzF )

2 � (dz)

= q

q�1X
r=0

r!

�
q � 1
r

�2
I2(q�1�r) (f 
r+1 f)

= q

qX
p=1

(p� 1)!
�
q � 1
p� 1

�2
I2(q�p) (f 
p f) , (10.8)

so that (10.4) follows immediately from the isometry and orthogonality properties of multiple
Wiener-Itô integrals. To prove (10.5), we start by observing that, thanks to (7.35) in the case
n = 2,

E
�
F 4
�
= 3

�
F 2 � 1

q
kDFk2L2(�)

�
: (10.9)

Now, by virtue of the multiplication formula,

F 2 =

qX
p=0

p!

�
q

p

�2
I2(q�p) (f 
p f) ,

and, by plugging (10.8) into (10.9), we obtain

E
�
F 4
�
= 3q

qX
p=1

p! (p� 1)!
�
q

p

�2�q � 1
p� 1

�2
(2q � 2p)!

f e
pf2H
2(q�p) ,
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which is equivalent to (10.5) (note that k f e
qf k2H
0= kfk4H�q by de�nition). Formula (10.6) is
obtained by comparing the RHS of (10.4) and (10.5). Finally (10.7) follows from (10.3).

Formula (10.7) implies that the fourth cumulant controls the distance between the law of F
and a standard Gaussian distribution. The following statement exploits this result, in order to
give a neat and exhaustive characterization of CLTs on a �xed Wiener chaos.

Theorem 10.1 Let q � 2 and let Fn = Iq (fn) ; n � 1, be a sequence in the qth Wiener chaos
such that E

�
F 2n
�
! 1 as n!1. Then, the following �ve conditions are equivalent as n!1:

(i) Fn
Law�! N � N (0; 1) :

(ii) dTV (Fn; N)! 0:

(iii) For every p = 1; :::; q � 1,
fne
pfn2H
2(q�p) ! 0:

(iv) Var
�
1
q kDFnk

2
H

�
! 0:

(v) �4 (Fn) = E
�
F 4n
�
� 3E

�
F 2n
�2 ! 0.

Proof. In view of Proposition 10.1, the implications (v) ) (iv) ) (iii) ) (ii) ) (i) are
immediate. To prove (i) ) (v), one can combine the contraction inequality (5.6) with the
assumption that E

�
F 2n
�
! 1, in order to deduce that, for every p > 2 supn E jFnjp < 1. This

last relation implies the desired conclusion (for instance, by a uniform integrability argument).

Remarks. (1) The equivalence between (i), (iii) and (v) in the statement of Theorem 10.1
has been �rst proved in [67] by means of the Dambis-Dubins-Schwarz theorem. The equivalence
between (iv) and (i) comes from [66]. Incidentally, it is very interesting to compare our tech-
niques based on Stein�s method with those developed in [66], where the authors make use of
the di¤erential equation satis�ed by the characteristic function of N � N (0; 1). Namely, since
 N (t) = E [exp (itN)] = exp

�
�t2=2

�
, one has that  N is the unique solution of

 0 (t) + t (t) = 0;  (0) = 1:

This approach is close to the so-called �Tikhomirov method��see [95].
(2) We stress that the implication (ii) ) (i) is not trivial, since the topology induced by the

total variation distance (on the class of probabilities on R) is strictly stronger than the topology
of weak convergence.

(3) The implication (v)) (i) yields that, in order to prove a central limit theorem on a �xed
Wiener chaos, it is su¢ cient to check that the �rst two even moments of the concerned sequence
converge, respectively, to 1 and 3. This is the announced �drastic�simpli�cation of the method
of moments and cumulants, as described in Section 2.2.

(4) In [67] it is also proved that
fne
pfn2H
2(q�p) ! 0, for every p = 1; :::; q � 1, if and only

if the non-symmetrized norm kfn 
p fnk2H
2(q�p) converges to 0 for every p = 1; :::; q � 1:
(5) Theorem 10.1 and its multidimensional extensions (see the next section) have been applied

to a variety of frameworks, such as: quadratic functionals of bivariate Gaussian processes (see
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[21]), quadratic functionals of fractional processes (see [67]), high-frequency limit theorems on
homogeneous spaces (see [47, 48]), self-intersection local times of fractional Brownian motion
(see [33, 66]), needleets analysis on the sphere (see [1]), power variations of iterated processes (see
[55]), weighted variations of fractional processes (see [54, 63]) and of related random functions
(see [3, 16]).

10.2 Multi-dimensional CLTs

We keep the framework of the previous section. We are now interested in the normal approxima-
tion, in the Wasserstein distance, of random vectors of multiple Wiener-Itô integrals (of possibly
di¤erent orders). In particular, our main tool is the following consequence of Theorem 9.2.

Proposition 10.2 (See [60]) Fix d � 2 and 1 � q1 � : : : � qd. Consider a vector F =
(F1; : : : ; Fd) = (Iq1(f1); : : : ; Iqd(fd)) with fi 2 H�qi for any i = 1 : : : ; d. Let Z � Nd(0; C) be a
d-dimensional Gaussian vector, with a positive de�nite covariance matrix C. Then,

dW (F;Z) � kC�1kop kCk1=2op

vuut X
1�i;j�d

E

"�
C(i; j)� 1

qj
hDFi; DFjiH

�2#
: (10.10)

Plainly, the proof of Proposition 10.2 is immediately deduced from the fact that, for every
q � 1, L�1Iq (f) = �q�1Iq (f) :

When applying Proposition 10.2 in concrete situations, one can use the following result in
order to evaluate the RHS of (10.10).

Lemma 10.1 (See [60]) Let F = Ip(f) and G = Iq(g), with f 2 H�p and g 2 H�q (p; q � 1).
Let a be a real constant. If p = q, one has the estimate:

E

"�
a� 1

p
hDF;DGiH

�2#
� (a� p!hf; giH
p)2 (10.11)

+
p2

2

p�1X
r=1

(r � 1)!2
�
p� 1
r � 1

�4
(2p� 2r)!

�
kf 
p�r fk2H
2r + kg 
p�r gk

2
H
2r

�
:

On the other hand, if p < q, one has that

E

"�
a� 1

q
hDF;DGiH

�2#
� a2 + p!2

�
q � 1
p� 1

�2
(q � p)!kfk2H
pkg 
q�p gkH
2p (10.12)

+
p2

2

p�1X
r=1

(r � 1)!2
�
p� 1
r � 1

�2�q � 1
r � 1

�2
(p+ q � 2r)!

�
kf 
p�r fk2H
2r + kg 
q�r gk

2
H
2r

�
:

Remark. One crucial consequence of Lemma 10.1 is that, in order to estimate the right-hand
side of (10.10), it is su¢ cient to asses the quantity kfi
r fikH
2(qi�r) (for any i 2 f1; : : : ; dg and
r 2 f1; : : : ; qi�1g) on the one hand, and qi!hfi; fjiH
qi = E

�
Iqi (fi) Iqj (fj)

�
(for any 1 � i; j � d

such that qi = qj) on the other hand.

51



Proof of Lemma 10.1 (see also [66, Lemma 2]). Without loss of generality, we can
assume that H = L2(Z;Z; �), where (A;Z) is a Polish space, and � is a �-�nite and non-atomic
measure. Thus, we can write

hDF;DGiH = p q hIp�1(f); Iq�1(g)iH = p q

Z
Z
Ip�1

�
f(�; z)

�
Iq�1

�
g(�; z)

�
�(dz)

= p q

Z
A

p^q�1X
r=0

r!

�
p� 1
r

��
q � 1
r

�
Ip+q�2�2r

�
f(�; z)e
rg(�; z)��(dz)

= p q

p^q�1X
r=0

r!

�
p� 1
r

��
q � 1
r

�
Ip+q�2�2r(f e
r+1g)

= p q

p^qX
r=1

(r � 1)!
�
p� 1
r � 1

��
q � 1
r � 1

�
Ip+q�2r(f e
rg):

It follows that

E

"�
a� 1

q
hDF;DGiH

�2#
(10.13)

=

8><>:
a2 + p2

Pp
r=1(r � 1)!2

�
p�1
r�1
�2�q�1

r�1
�2
(p+ q � 2r)!kf e
rgk2H
(p+q�2r) if p < q;

(a� p!hf; giH
p)2 + p2
Pp�1
r=1(r � 1)!2

�
p�1
r�1
�4
(2p� 2r)!kf e
rgk2H
(2p�2r) if p = q:

If r < p � q then

kf e
rgk2H
(p+q�2r) � kf 
r gk2H
(p+q�2r) = hf 
p�r f; g 
q�r giH
2r
� kf 
p�r fkH
2rkg 
q�r gkH
2r

� 1

2

�
kf 
p�r fk2H
2r + kg 
q�r gk

2
H
2r

�
:

If r = p < q, then

kf e
p gk2H
(q�p) � kf 
p gk2H
(q�p) � kfk2H
pkg 
q�p gkH
2p :
If r = p = q, then f e
pg = hf; giH
p : By plugging these last expressions into (10.13), we deduce
immediately the desired conclusion.

The combination of the results presented in this section with Theorem 10.1 lead to the
following statement, which is a collection of the main �ndings contained in the papers by Peccati
and Tudor [73] and Nualart and Ortiz-Latorre [66].

Theorem 10.2 (See [66, 73]) Fix d � 2 and let C = fC(i; j) : i; j = 1; :::; dg be a d � d

positive de�nite matrix. Fix integers 1 � q1 � : : : � qd. For any n � 1 and i = 1; : : : ; d, let f (n)i

belong to H�qi. Assume that

F (n) = (F
(n)
1 ; : : : ; F

(n)
d ) = (Iq1(f

(n)
1 ); : : : ; Iqd(f

(n)
d )) n � 1;

is such that

lim
n!1

E[F (n)i F
(n)
j ] = C(i; j); 1 � i; j � d: (10.14)

Then, as n!1, the following four assertions are equivalent:

52



(i) For every 1 � i � d, F (n)i converges in distribution to a centered Gaussian random variable
with variance C(i; i).

(ii) For every 1 � i � d, E
h
(F

(n)
i )4

i
! 3C(i; i)2.

(iii) For every 1 � i � d and every 1 � r � qi � 1, kf (n)i 
r f (n)i kH
2(qi�r) ! 0.

(iv) The vector F (n) converges in distribution to a d-dimensional Gaussian vector Nd(0; C).

Moreover, if C(i; j) = �ij, where �ij is the Kronecker symbol, then either one of conditions
(i)�(iv) above is equivalent to the following:

(v) For every 1 � i � d, kDF (n)i k2H
L2�! qi.

Remark. The crucial implication in the statement of Theorem 10.2 is (i) ) (iv), yielding
that, for random vectors composed of chaotic random variables and verifying the asymptotic
covariance condition (10.14), componentwise convergence in distribution towards a Gaussian
vector always implies joint convergence. This fact is extremely useful for applications: see for
instance [3], [33], [48], [54] and [55].

We conclude this section by pointing out the remarkable fact that, for vectors of multiple
Wiener-Itô integrals of arbitrary length, the Wasserstein distance metrizes the weak convergence
towards a Gaussian vector with positive de�nite covariance. Once again, this result is not trivial,
since the topology induced by the Wasserstein distance is stronger than the topology of weak
convergence.

Proposition 10.3 (See [60]) Fix d � 2, let C be a positive de�nite d � d symmetric matrix,
and let 1 � q1 � : : : � qd. Consider vectors

F (n) = (F
(n)
1 ; : : : ; F

(n)
d ) = (Iq1(f

(n)
1 ); : : : ; Iqd(f

(n)
d )); n � 1;

with f (n)i 2 H�qi for every i = 1 : : : ; d. Assume moreover that F (n) satis�es condition (10.14).
Then, as n!1, the following three conditions are equivalent:

(a) dW (F
(n); Z)! 0.

(b) For every 1 � i � d, q�1i kDF
(n)
i k2H

L2�! C(i; i) and, for every 1 � i 6= j � d,

hDFi;�DL�1FjiH = q�1j hDFi; DFjiH
L2�! C(i; j):

(c) F (n) converges in distribution to Z � Nd(0; C).

Proof. Since convergence in the Wasserstein distance implies convergence in distribution,
the implication (a) ! (c) is trivial. The implication (b) ! (a) is a consequence of relation
(10.10). Now assume that (c) is veri�ed, that is, F (n) converges in law to Z � Nd(0; C) as n
goes to in�nity. By Theorem 10.2 we have that, for any i 2 f1; : : : ; dg and r 2 f1; : : : ; qi � 1g,

kf (n)i 
r f (n)i kH
2(qi�r) �!n!1 0:

By combining Corollary 10.2 with Lemma 10.1, one therefore easily deduces that, since (10.14)
is in order, condition (b) must necessarily be satis�ed.
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10.3 A non-central limit theorem (with bounds)

We now present (without proofs) two statements concerning the Gamma approximation of mul-
tiple integrals of even order q � 2. The �rst result, which is taken from [57], provides an explcit
representation for the quantities appearing on the RHS of (9.11) and (9.12).

Proposition 10.4 (See [57]) Let q � 2 be an even integer, and let G = Iq(g), where g 2 H�q.
Then,

E[(2� + 2G� hDG;�DL�1GiH)2] = E[(2� + 2G� q�1kDGk2H)2] (10.15)

� (2� � q! kgk2H
q)
2 +

+q2
X

r2f1;:::;q�1g
r 6=q=2

(2q � 2r)!(r � 1)!2
�
q � 1
r � 1

�4
kg 
r gk2H
2(q�r) +

+4q!
c�1q � ge
q=2g � g2H
q ;

where

cq =
1

(q=2)!
� q�1
q=2�1

�2 = 4

(q=2)!
� q
q=2

�2 : (10.16)

The next statement, which is a main result of [56], contains a �non-central� analogous of
Theorem 10.1. Recall the de�nition of the centered Gamma random variables F (�), � > 0,
given in (8.2).

Theorem 10.3 (See [56]) Fix � > 0, as well as an even integer q � 2. De�ne cq as in (10.16).
Then, for any sequence ffkgk�1 � H�q verifying

lim
k!1

q!kfkk2H
n = lim
k!1

E
�
Iq(fk)

2
�
= Var (F (�)) = 2�; (10.17)

the following six conditions are equivalent:

(i) limk!1 E[Iq(fk)3] = E[F (�)3] = 8� and limk!1 E[Iq(fk)4] = E[F (�)4] = 48� + 12�2;

(ii) limk!1 E[Iq(fk)4]� 12E[Iq(fk)3] = 12�2 � 48�;

(iii) limk!1 kfk e
q=2fk � cq � fkkH
q = 0 and limk!1 kfk e
pfkkH
2(q�p) = 0, for every
p = 1; :::; q � 1 such that p 6= q=2;

(iv) limk!1 kfk e
q=2fk � cq � fkkH
q = 0 and limk!1 kfk 
p fkkH
2(q�p) = 0, for every
p = 1; :::; q � 1 such that p 6= q=2;

(v) as k !1, kD[Iq(fk)]k2H � 2qIq(fk) �! 2q� in L2;

(vi) as k !1, the sequence fIq(fk)gk�1 converges in distribution to F (�).

Remark. In [56], Theorem 10.3 is not proved with Stein�s method, but rather by imple-
menting the �di¤erential approach� initiated by Nualart and Ortiz-Latorre in [66]. However,
it is not di¢ cult to see that (9.11), (9.12) and (10.15) can be combined in order to deduce an
alternate proof of the implications (iv) ) (v) ) (vi).
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11 Two examples

The theory developed in the previous sections (along with its re�nements and generalizations �
see Section 12) has been already applied in a variety of frameworks. In particular:

� In [57], Theorem 9.1 and Proposition 10.1 are applied in order to deduce explicit Berry-
Esséen bounds for the so-called Breuer-Major CLT (see [5]), involving Hermite-type trans-
formations of fractional Brownian motion. This analysis is further developed in [4], [58]
and [60]

� The paper [58] contains applications to Toepliz quadratic forms in continuous time �see
e.g. [30] and the references therein.

� In [60] one can also �nd multidimensional generalizations of Chatterjee�s result (9.7).

� Reference [62] contains an application of (9.3) to the proof of in�nite-dimensional second-
order Poincaré inequalities on Wiener space.

� In [64], relation (7.30) is exploited in order to provide a new explicit expression for the
densities of functionals of isonormal Gaussian processes.

� In [97], one can �nd applications to tail bounds on Gaussian functionals and polymer
models.

Remark. Apart from the previous references, the applications to fractional Brownian mo-
tion and density estimation are discussed in the lecture notes [53].

In what follows, we shall present two further applications of the previous results. The �rst
one (basically taken from [58]) focuses on exploding quadratic functionals of a Brownian sheet
� thus completing the discussion contained in Section 2. The second one involves Hermite
transformations of multiparameter Ornstein-Uhlenebck Gaussian processes, and is new (albeit
it is inspired by the last section of [70]).

11.1 Exploding Quadratic functionals of a Brownian sheet

11.1.1 Statement of the problem

Let d � 1, and let

W =
n
W (t1; :::; td) : (t1; :::; td) 2 [0; 1]d

o
be a standard Brownian sheet on [0; 1]d. Recall that this means thatW is a continuous centered
Gaussian process with a covariance function given by

E [W (t1; :::; td)W (s1; :::; sd)] =
dY
j=1

(tj ^ sj) :
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By using an appropriate version of the so-called Jeulin Lemma (see [36, Lemma 1, p. 44]), one
can prove thatZ 1

0
� � �
Z 1

0

�
W (t1; :::; td)

t1 � � � td

�2
dt1 � � � dtd =1, a.s.-P.

For " 2 (0; 1), we can now de�ne the random variable

Bd" =

Z 1

"
� � �
Z 1

"

�
W (t1; :::; td)

t1 � � � td

�2
dt1 � � � dt2:

A standard computation yields E
�
Bd"
�
= (log 1=")d, and also

Var
�
Bd"

�
� (4 log 1=")d , as "! 0:

By setting

eBd" , Bd" � (log 1=")
d

(4 log 1=")
d
2

,

one can therefore state the following generalization of Problem I, as stated at the end of Section
2.1.

Problem II. Prove that, as "! 0, eBd" Law! N � N (0; 1).

Remark. See [21] for applications of quadratic functionals of Brownian sheets to tests of
independence.

11.1.2 Interlude: optimal rates for second chaos sequences

In order to give an exhaustive answer to Problem II, we state (without proof) a result con-
cerning sequences in the second Wiener chaos of a given isonormal Gaussian process X =
fX (h) : h 2 Hg. It gives a simple criterion (based on cumulants) allowing to determine whether,
for a sequence in the second chaos, the rate of convergence implied by (10.7) is optimal. Note that
the forthcoming formula (11.1) is just a rewriting of (10.7), which we added for the convenience
of the reader. We also use the notation

� (z) = P [N � z] , where N � N (0; 1) :

Proposition 11.1 (See [58]) Let Fn = I2(fn), n � 1, be such that fn 2 H�2, and write
�
(n)
p = �p(Fn), p � 1. Assume that �(n)2 = E(F 2n) �! 1 as n ! 1. Then, as n ! 1,
Fn

Law�! N � N (0; 1) if and only if �(n)4 �! 0. In this case, we have moreover

dKol(Fn; N) �

s
�
(n)
4

6
+ (�

(n)
2 � 1)2: (11.1)

If, in addition, we have, as n!1,

�
(n)
2 � 1

�
(n)
4
6 + (�

(n)
2 � 1)2

�! 0; (11.2)

56



�
(n)
3q

�
(n)
4
6 + (�

(n)
2 � 1)2

�! � and
�
(n)
8�

�
(n)
4
6 + (�

(n)
2 � 1)2

�2 �! 0; (11.3)

then

P(Fn � z)� �(z)q
�
(n)
4
6 + (�

(n)
2 � 1)2

�! �

3!

1p
2�

�
1� z2

�
e�

z2

2 ; as n!1: (11.4)

In particular, if � 6= 0, there exists c 2 (0; 1) and n0 � 1 such that, for any n � n0,

dTV (Fn; N) � dKol(Fn; N) � c

s
�
(n)
4

6
+ (�

(n)
2 � 1)2: (11.5)

11.1.3 A general statement

The next result provides an exhaustive solution to Problem II (and therefore to Problem I).

Proposition 11.2 For every d � 1, there exist constants 0 < c(d) < C(d) <1 and 0 < �(d) <
1, depending uniquely on d, such that, for every " 2 (0; 1),

dTV [ eBd" ; N ] � C(d)(log 1=")�d=2 (11.6)

and, for " < �(d),

dTV [ eBd" ; N ] � c(d)(log 1=")�d=2: (11.7)

This yields that, as "! 0, eBd" Law! N � N (0; 1).

Proof. We denote by

e�j(d; "); j = 1; 2; :::;

the sequence of the cumulants of the random variable eBd" . We deal separately with the cases
d = 1 and d � 2.

(Case d = 1) As already observed, in this case,W is a standard Brownian motion on [0; 1],
so that eB1" takes the form eB1" = I2(f"), where I2 indicates a double Wiener-Itô integral with
respect toW, and

f"(x; y) = (4 log 1=")
�1=2 [(x _ y _ ")�1 � 1]: (11.8)

The conclusion now follows from Proposition 11.1 and (2.12).
(Case d � 2) In this case, eBd" has the form eBd" = I2(f

d
" ), with

fd" (x1; :::; xd; y1; :::; yd) = (4 log 1=")
�d=2

dY
j=1

[(xj _ yj _ ")�1 � 1]: (11.9)

By using an appropriate modi�cation of (2.11), one sees that the following relation holds

(2j�1(j � 1)!)�1 � e�j(d; ") = [(2j�1(j � 1)!)�1 � e�j(1; ")]d;
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so that the conclusion derives once again from Proposition 11.1 and (2.12).

Remark. The example developed in this section shows how the Malliavin/Stein approach
can overcome most of the di¢ culties D1 �D5, that were pointed out at the end of Sections
2.2 and 2.3 in connection with the method of cumulants and with random time-changes. In
particular, one has that

� Stein�s method allows in this case to deduce exact rates of convergence in the sense of
the total variation (but also Kolmogorov and Wasserstein) distance. This successfully
addresses D1 and D5.

� The convergence eBd" Law! N is now implied by the simple condition �(n)4 �! 0. Moreover,
to obtain lower bounds one must merely verify the three relations at (11.2) and (11.3).
This eliminates the di¢ culty pointed out in D2.

� Finally, our techniques allow to deal directly with quadratic functionals of a Brownian
sheet, without making use of any underlying martingale structure. This overcomes the
drawbacks of random time-changes described at D4:

In the next section, we will describe a situation involving non-quadratic transformations
(thus adressing point D3 in the above quoted list).

11.2 Hermite functionals of Ornstein-Uhlenbeck sheets

Let d � 1. Let G be a centered Gaussian measure over Rd, with control given by the Lebesgue
measure �(dx1; :::; dxd) = dx1 � � � dxd. Fix � > 0, and, for every t = (t1; :::; td) 2 Rd+, de�ne the
d-variate Ornstein-Uhlenbeck kernel

ft(x) = (2�)
d
2

dY
j=1

expf��(ti � xi)g1fxi�tig; x = (x1; :::; xd) 2 R
d: (11.10)

For every �xed q � 2, we consider the qth tensor power of ft, denoted by f
qt , which is a function
on Rdq. Now write

Zt (1; d) = I1 (ft) , t 2 Rd+

Note that, for every t = (t1; :::; td) ; s = (s1; :::; sd), one has that E
h
Zt (1; d)

2
i
=
R
f2t (x)dx =

1 and, more generally,

E [Zt (1; d)Zs (1; d)] =
dY
j=1

expf�� jtj � sj jg: (11.11)

In view of (11.11), the process t 7! Zt (d; 1) is called an Ornstein-Uhlenbeck sheet with d
parameters. It follows form (5.11) that

Zt(q; d) , Iq(f

q
t ) = Hq (Zt (d; 1)) ;

where Hq is the qth Hermite polynomial. The main result of this section is the following CLT
for linear functionals of Z (q; d)
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Theorem 11.1 Fix � > 0 and q � 2, and de�ne the positive constant c = c(q; �; d) :=
[2(q � 1)!=�]d. Then, one has that, as T !1,

MT (q; d) =
1p
cT d

Z T

0
� � �
Z T

0
Zt(q; d)dt

Law�! N � N (0; 1); (11.12)

where t = (t1; :::; td) and dt = dt1:::dtd, and there exists a �nite constant � = �(�; q; �; d) > 0
such that, for every T > 0,

dW (MT (q; d); N) �
�p
T d
: (11.13)

Proof. By an argument similar to the one concluding the proof of Proposition 11.2, it
is enough to prove the theorem in the case d = 1. The crucial fact is that, for each T , the
random variable MT (1; q) has the form of a multiple integral, that is, MT (1; q) = Iq(FT ), where
FT 2 L2s(�q) is given by

FT (x1; :::;xq) =
1p
cT

Z T

0
f
qt (x1; :::;xq)dt:

According to (10.3) and Proposition , both claims (11.12) and (11.13) are proved, once we show
that, as T !1, one has that

j1� E(MT (q; d))
2j � 1=T; (11.14)

and also that

kFT 
r FT kL2(�2q�2r) = O(1=T ); 8r = 1; :::; q � 1: (11.15)

In order to prove (11.14) and (11.15), for every t1; t2 � 0 we introduce the notation

hft1 ; ft2i =
Z
R
ft1(x)ft2(x) dx = e��(t1+t2)e2�(t1^t2): (11.16)

To prove (11.14), one uses the relation (11.16) to get

E
�
MT (1; q)

2
�
=

q!

cT

Z T

0

Z T

0
hft1 ; ft2iq dt1dt2 = 1�

1

Tq�
(1� e��qT ):

In the remaining of the proof, we will write � in order to indicate a strictly positive �nite constant
independent of T , that may change from line to line. To deal with (11.15), �x r = 1; :::; q � 1
and use the fact

FT 
r FT (w1; :::; wq�r; z1; :::; zq�r)

=
1

cT

Z T

0

Z T

0

� (ft1(w1) � � � ft1(wq�r)ft2(z1) � � � ft2(zq�r)) hft1ft2ir dt1dt2;

and therefore

kFT 
r FT k2L2(�2q�2r)

=
�

T 2

Z T

0

Z T

0

Z T

0

Z T

0
hft1ft3iq�rhft2ft4iq�rhft1ft2irhft3ft4ir dt1dt2dt3dt4

� �

T
;
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where the last relation is obtained by resorting to the explicit representation (11.16), and then by
evaluating the restriction of the quadruple integral to each simplex of the type ft�(1) > t�(2) >
t�(3) > t�(4)g, where � is a permutation of the set f1; 2; 3; 4g.

12 Further readings

The content of the previous sections is mainly related to the papers [57] and [60], dealing
with one- and multi-dimensional upper bounds in the Gaussian and Gamma approximations of
functionals of Gaussian �elds. In the following list, we shall provide a short description of some
further works that have been written on related subjects.

� In [58] it is described how one can once again combine Stein�s method with Malliavin
calculus, in order to detect optimal rates of convergence for sequences of functionals of
Gaussian �elds. Given a sequence fFng of such functionals and given N � N (0; 1), we say
that a sequence of positive numbers ' (n)& 0 provides an optimal rate of convergence, if
there exists a constant 0 < c < 1, such that

c <
d (Fn; N)

' (n)
� 1

for n large enough (where d is some suitable distance between the law of Fn and the law
of N). Proposition 11.1 gives an example of such a situation.

� In [64] one can �nd applications of (7.30) to the estimation of densities and tail probabilities
associated with smooth functionals of Gaussian processes. In particular, a new formula for
the density of a regular functional �with full support�is derived. Part of the computations
performed in this paper are related to the theory developed by Ch. Stein in [89, Chapter
VI].

� The paper [97] contains new estimates for tail bounds based on (7.30). The results are
also related to polymer models.

� The paper [62] contains the proof of new second-order Poincaré inequalities, involving the
operator norm of the second derivative of a given smooth random variable. This gives a
generalization of a class of inequalities proved by Chatterjee in [9].

� In [70] one can �nd an extension of the theory developed in [57] to the case of the Gaussian
approximation of functionals of Poisson random measures. This is based on an appropriate
version of Malliavin calculus on the Poisson space, and is related to the work by Decreuse-
fond and Savy [17].

� The paper [61] provides an extension of the Malliavin/Stein approach to deal with func-
tionals of in�nite Rademacher sequences. The necessary discrete Malliavin operators are
discussed in [79].
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