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A brief history

Stein’s method for normal approximation:

First published in Stein (1972); in Stein (1986)

the method is explained via exchangeable pairs.

In Barbour (1990) the so-called generator ap-

proach for Stein’s method is developed, and

applied to diffusion approximation.

In Götze (1991) the generator approach is used

to obtain multivariate normal approximations.

In Nourdin and Peccati (2008) the method is

extended to Wiener chaos, using Malliavin cal-

culus.
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Nourdin and Peccati (2008) concentrate on

functions of Gaussian variables.

Here: extend to functions of centered symmet-

ric Bernoulli (Rademacher) variables; in partic-

ular functions of infinitely many Rademacher

variables.
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1. Stein’s method for univariate normal

approximation

Stein (1972, 1986); Chen and Shao (2005),

Daly (2008), Barbour (1990)

Z ∼ N (0,1) if and only if for all smooth func-

tions f ,

EZf(Z) = Ef ′(Z).

For a random variable W with EW = 0,Var W =

1, if

Ef ′(W )− EWf(W )

is close to zero for many functions f , then W

should be close to Z in distribution.

3



Given a test function h, let Nh = Eh(Z), and

solve for f in the Stein equation

f ′(w)− wf(w) = h(w)−Nh.

Now evaluate the expectation of the r.h.s. by

the expectation of the l.h.s.

Can bound

‖ f ′ ‖≤ 4 ‖ h ‖; and ‖ f ′ ‖≤‖ h′′ ‖;

‖ f ′′ ‖≤ 2 ‖ h′ ‖;

‖ f ′′′ ‖≤ 2 ‖ h′′ ‖.
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Example: sum of i.i.d. Rademacher vari-

ables

X, X1, . . . , Xn i.i.d. with P (X = 1) = 1
2 =

P (X = −1). Then EX = 0,Var X = 1. Put

W = W (X1, . . . , Xn) = 1√
n

∑n
i=1 Xi.

Then (by Stein’s method), for any smooth h,

|Eh(W )−Nh| ≤
3
√

n
‖h′‖.

Using the zero-bias transformation (Goldstein

and R. (1997)) and the symmetry of the dis-

tribution of X:

|Eh(W )−Nh| ≤
3

n

(
‖h(3)‖+

1

2
‖h(4)‖

)
.

5



Now let X = {Xn : n ≥ 1} denote an infinite

sequence of i.i.d. standard Rademacher vari-

ables, so that P (Xi = 1) = 1
2 = P (Xi = −1).

A (possibly infinite) Rademacher average is

F =
∞∑

i=1

αiXi.

Here we will present a straightforward frame-

work which gives as easy corollary that for

Fn =
1
√

n

n∑
i=1

Xi,

we have ∣∣∣E[h(F )]− E[h(Z)]
∣∣∣ ≤ 20

3n
‖h′′‖.
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We shall also be able to tackle infinite sums;

for r ≥ 2, we set

Fr =
√

r
∑
i≥r

Xi

i

and obtain

|E[h(Fr)]− E[h(Z)]|

≤
min(4‖h‖∞, ‖h′′‖∞)

r
+

20‖h′′‖∞
3(r − 1)

.

For such and more general results: differential

calculus on infinite spaces.
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2. Framework: discrete Malliavin calculus

See also Nourdin and Peccati (2008); Privault

(2008), Privault and Schoutens (2002)

For X = {Xn : n ≥ 1} a standard Rademacher

sequence, on a probability space (Ω,F , P ), we

put Ω = {−1,1}N and P =
[
1
2{δ−1 + δ1}

]N
.

For every N ≥ 1 define a random signed mea-

sure µN on {1, ..., N}: for A ⊂ {1, ..., N}

µN (A) =
∑
j∈A

Xj.

The diagonal of Nn for n ≥ 2:

∆n =
{
(i1, ..., in) ∈ Nn : the ij’s all different

}
,

and, for N, n ≥ 2,

∆N
n = ∆n ∩ {1, ..., N}n .
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On the diagonal,

µ⊗2
N ([A×B] ∩D) =

∑
j

X2
j 1{j∈A}1{j∈B}

= ] {j : j ∈ A ∩B}
= κ (A ∩B) ;

the diagonal has non-zero measure.

Here

κ (A ∩B) = ] {j : j ∈ A ∩B} ,

is the counting measure, where A, B ⊂ {1, ..., N};
denote its product measures by κ⊗n for n ≥ 2.
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Classes of functions

For n ≥ 1, we denote by `2 (N)n the class of

functions on Nn that are square integrable with

respect to κ⊗n;

`2 (N)◦n is the subset of `2 (N)n composed of

symmetric functions;

`20 (N)n is the subset of `2 (N)n composed of

functions vanishing on diagonals;

`20 (N)◦n is the subset of `20 (N)n composed of

symmetric functions.
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Multiple integrals

For every q ≥ 1 and every f ∈ `20 (N)◦q define

the multiple integral (of order q) of f with re-

spect to X:

Jq(f) =
∑

(i1,...,iq)∈Nq

f(i1, ..., iq)Xi1 · · ·Xiq

=
∑

(i1,...,iq)∈∆q

f(i1, ..., iq)Xi1 · · ·Xiq

= q!
∑

i1<...<iq

f(i1, ..., iq)Xi1 · · ·Xiq,

where the possibly infinite sum converges in

L2(Ω).

Set `2 (N)◦0 = R, and J0(c) = c, ∀c ∈ R.
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Isometry and Chaos

Isometry: if f ∈ `20 (N)◦q and g ∈ `20 (N)◦p, then

E[Jq(f)Jp(g)] = 1{q=p}q!〈f, g〉`2(N)⊗q.

The collection of all random variables of the

type Jn(f), where f ∈ `20 (N)◦q, is called the

qth chaos associated with X; it is also called

Walsh chaos and Rademacher chaos.
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Chaotic decomposition

For every F ∈ L2(σ{X}) there exists a unique

sequence of functions fn ∈ `20 (N)◦n, n ≥ 1,

such that

F = E(F ) +
∑
n≥1

Jn(fn)

= E(F ) +∑
n≥1

n!
∑

i1<i2<...<in

fn(i1, ..., in)Xi1 · · ·Xin,

where the series converge in L2.
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Discrete Malliavin operators

The gradient operator D: The domain domD

is the class of random variables F ∈ L2(σ{X})
such that the functions fn ∈ `20(N)◦n in the

chaotic expansion F = E(F )+
∑

n≥1 Jn(fn) sat-

isfy ∑
n≥1

nn!‖fn‖2`2(N)⊗n < ∞.

For such F define

DkF =
∑
n≥1

nJn−1(fn(·, k)), k ≥ 1,

where the symbol fn(·, k) indicates that the in-

tegration is performed with respect to n − 1

variables.
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Alternative representation:

Let ω = (ω1, ω2, . . .) ∈ Ω, and set

ωk
+ = (ω1, ω2, . . . , ωk−1,+1, ωk+1, . . .)

and

ωk
− = (ω1, ω2, . . . , ωk−1,−1, ωk+1, . . .).

Write F±
k instead of F (ωk

±) for simplicity. Then

DkF (ω) =
1

2

(
F+

k − F−
k

)
, k ≥ 1.

The random variables DkF , F+
k and F−

k are

independent of Xk.
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Write δ for the adjoint of D, also called the

divergence operator, defined via the following

integration by parts formula:

for every F ∈ domD and every u ∈ domδ ⊂
L2(Ω× N, P ⊗ κ)

E[Fδ(u)] = E[〈DF, u〉`2(N)]

= 〈DF, u〉L2(Ω×N,P⊗κ).
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Ornstein-Uhlenbeck operator

Let L2
0(σ{X}) be the subspace of L2(σ{X}) of

centered random variables. Define the Ornstein-

Uhlenbeck operator : The domain domL are all

random variables F = E(F ) +
∑

n≥1 Jn(fn) ∈
L2(σ{X}) such that∑

n≥1

n2n!‖fn‖2`2(N)⊗n < ∞,

and, for F ∈ domL, we set

LF = −
∑
n≥1

nJn(fn).
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Crucial relation:

δD = −L.

The inverse of L is

L−1F = −
∑
n≥1

1

n
Jn(fn).

Note that the random variable DkL−1F is in-

dependent of Xk.
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The chain rule

Unfortunately the chain rule is not as straight-

forward as in the continuous case, but with

Taylor expansion we can show:

Proposition 1. (Chain Rule). Let F ∈ domD

and f : R → R be three times differentiable with

bounded third derivative. Assume moreover

that f(F ) ∈ domD. Then, for any integer k,

P -a.s.:∣∣∣Dkf(F )− f ′(F )DkF

+
1

2

(
f ′′(F+

k ) + f ′′(F−
k )

)
(DkF )2Xk

∣∣∣∣
≤

10

3
|f ′′′|∞|DkF |3.
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Sketch of proof

By Taylor expansion,

Dkf(F )

=
1

2

(
f(F+

k )− f(F−
k )

)
=

1

2

(
f(F+

k )− f(F )
)
−

1

2

(
f(F−

k )− f(F )
)

≈
1

2
f ′(F )(F+

k − F ) +
1

4
f ′′(F )(F+

k − F )2

−
1

2
f ′(F )(F−

k − F )−
1

4
f ′′(F )(F−

k − F )2

= f ′(F )DkF

+
1

4
f ′′(F )

(
(F+

k − F )2 − (F−
k − F )2

)
.
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Now

(F+
k − F )2 − (F−

k − F )2

= (F+
k − F )21Xk=−1 + (F+

k − F )21Xk=1

−(F−
k − F )21Xk=−1 − (F−

k − F )21Xk=1

= (F+
k − F−

k )21Xk=−1 − (F−
k − F+)21Xk=1

= −Xk(F
+
k − F−

k )2

= −4Xk(DkF )2.

Using the approximation

f ′′(F ) ≈
1

2

(
f ′′(F+

k )− f ′′(F−
k )

)
we obtain that

Dkf(F )

≈ f ′(F )DkF

+
1

8

(
f ′′(F+

k ) + f ′′(F−
k )

)
×

(
(F+

k − F )2 − (F−
k − F )2

)
= f ′(F )DkF −

1

2

(
f ′′(F+

k ) + f ′′(F−
k )

)
(DkF )2Xk.

Bounding the remainder terms in the approxi-
mation gives the result.
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3. Bounds to the normal for functions of

Rademacher sequences

Our main result is

Theorem 1. Let F ∈ domD be centered and

such that
∑

k E
∣∣∣DkF

∣∣∣4 < ∞. Let h ∈ C2
b and

Z ∼ N (0,1). Then

|E[h(F )]− E[h(Z)]|
≤ min(4‖h‖∞, ‖h′′‖∞)B1 + ‖h′′‖∞B2,

where

B1 = E
∣∣∣1− 〈DF,−DL−1F 〉`2(N)

∣∣∣
≤

√
E

[
(1− 〈DF,−DL−1F 〉`2(N))

2
]

and

B2 =
20

3
E

[〈
|DL−1F |, |DF |3

〉
`2(N)

]
.
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Comparison with Nourdin and Peccati (2008)

Nourdin and Peccati (2008) derive a normal

approximation of random variables based on a

centered Gaussian family X on a real separable

Hilbert space H, with E [X(h)X(g)] = 〈h, g〉H
(an isonormal Gaussian process). For

F = g (X(φ1), . . . , X(φn)) ,

where n ≥ 1, g : Rn → R ∈ C∞c and φi ∈ H,

define the Malliavin derivative

DF =
n∑

i=1

∂g

∂xi
(X(φ1), . . . , X(φn))φi.

The Malliavin derivative D verifies the usual

chain rule:

D ϕ(F ) =
n∑

i=1

∂ϕ

∂xi
(F )DFi.
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Then Nourdin and Peccati (2008) prove that

for Wasserstein distance to Z, standard nor-

mal, and centered F ,

dW (F, Z) ≤ E|1− 〈DF,−DL−1F 〉H|.

This bound corresponds to our term B1; the

term B2 arises from the underlying process be-

ing a Rademacher sequence, rather than Gaus-

sian.
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Proof of Theorem 1.

With Stein’s method, for h ∈ C2
b ,∣∣∣E[h(F )]− E[h(Z)]

∣∣∣ = ∣∣∣E[f ′(F )− Ff(F )]
∣∣∣

with f = fh the solution of the Stein equation

for h. Then f(F ) ∈ domD and

E
[
Ff(F )

]
= E

[
LL−1Ff(F )

]
= −E

[
δDL−1Ff(F )

]
= E

[
〈Df(F ),−DL−1F 〉`2(N)

]
.

Hence

E
[
f ′(F )− Ff(F )

]
= E

[
f ′(F )− 〈Df(F ),−DL−1F 〉`2(N)

]
.
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By the chain rule,

〈Df(F ),−DL−1F 〉`2(N)

= −
∑
k

Dkf(F )DkL−1F

≈ −f ′(F )
∑
k

DkFDkL−1F

+
1

2

∑
k

(
f ′′(F+

k ) + f ′′(F−
k )

)
(DkF )2XkDkL−1F

= f ′(F )〈DF,−DL−1F 〉`2(N)

+
1

2

∑
k

(
f ′′(F+

k ) + f ′′(F−
k )

)
(DkF )2XkDkL−1F
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Recall that the random variables DkF , DkL−1F ,

F+
k and F−

k are independent of Xk; and so

E
[
DkL−1F ×

(
f ′′(F+

k ) + f ′′(F−
k )

)
(DkF )2Xk

]
= 0.

Hence

E
[
f ′(F )− Ff(F )

]
≈ E

[
f ′(F )(1− 〈DF,−DL−1F 〉`2(N)

]
.

Now apply the bounds on the solution of the

Stein equation.
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In the special case that F has the form of a

multiple integral of the type F = Jq(f), where

f ∈ `20(N)◦q, the terms in the bounds simplify;

〈DF,−DL−1F 〉`2(N) =
1

q
‖DF‖2

`2(N),

〈|DL−1F |, |DF |3〉`2(N) =
1

q
‖DF‖4

`4(N).

For a Rademacher average

F =
∞∑

i=1

αiXi

we have q = 1 and DiF = αi for all i ≥ 1, which

gives the bounds mentioned above.
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4. Connection with exchangeable pairs

Assume that

F =
d∑

n=1

∑
1≤i1<...<in≤d

n!fn(i1, ..., in)Xi1 · · ·Xin

=
d∑

n=1

Jn(fn) (1)

and E(F ) = 0 and E(F2) = 1.

Exchangeable pair: Pick an index I so that

P (I = i) = 1
d for i = 1, . . . , d, independently

of X1, ..., Xd, and if I = i replace Xi by an

independent copy X∗
i in all sums in the de-

composition (1) which involve Xi. Call the re-

sulting expression F ′. Also denote the vector

of Rademacher variables with the exchanged

component by X′
d. Then (F, F ′) forms an ex-

changeable pair.
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Note that

E(J ′n(fn)− Jn(fn)|W)

= −
1

d

d∑
i=1

∑
1≤i1<...<in≤d

1{i1,...,in}(i) n!

×fn(i1, ..., in)E(Xi1 · · ·Xin|W)

= −
n

d
Jn(fn)

and we obtain the simple expression

E(F ′ − F |W) =
1

d
LF = −

1

d
δDF.
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Coupling bound

Theorem 2.Denote by L′ the Ornstein-Uhlenbeck
operator for the exchanged Rademacher se-
quence X′

d; Z is standard normal. Then

|E[h(F )]− E[h(Z)]|

≤ 4‖h‖∞

√
Var

[
d

2
E

(
(F ′ − F )

(
(L′)−1F ′ − L−1F

)∣∣W)]
+

d

2
‖h′‖∞E

[
(F ′ − F )2|(L′)−1F ′ − L−1F |

]
.
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5. Example: Bounds for infinite 2-runs

Let ξ = {ξn : n ∈ Z} be a standard Bernoulli

sequence; P (ξi = 0) = 1
2 = P (ξi = 1). Put

Gn =
∑
i∈Z

α
(n)
i ξiξi+1,

where {α(n) : n ≥ 1} ∈ `2(Z).

Put Fn = Gn−E(Gn)√
VarGn

.
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Proposition 2. Let h ∈ C2
b . Then, for Z ∼

N (0,1),∣∣∣E[h(F )]− E[h(Z)]
∣∣∣

≤
7

16

min(4‖h‖∞, ‖h′′‖∞)

VarGn

√√√√∑
i∈Z

(α(n)
i )4

+
35

24

‖h′′‖∞
(VarGn)2

∑
i∈Z

(α(n)
i )4

with

VarGn =
3

16

∑
i∈Z

(α(n)
i )2 +

1

8

∑
i∈Z

α
(n)
i α

(n)
i+1.

It follows that a sufficient condition to have

Fn
Law→ Z is that∑
i∈Z

(α(n)
i )4 = o

(
(VarGn)

2
)

as n →∞.
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Sketch of the argument

Note that

Fn =
Gn − E(Gn)√

VarGn
= J1(f) + J2(g),

with

f =
1

4
√

VarGn

∑
a∈Z

α
(n)
a

(
1{a} + 1{a+1}

)
and

g =
1

8
√

VarGn

∑
a∈Z

α
(n)
a

(
1{a} ⊗ 1{a+1}

+1{a+1} ⊗ 1{a}
)
.

Thus we can write Fn as sum of a single and

a double integral and apply our main result.
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6. Example: Fractional Cartesian prod-
ucts

Blei and Janson (2004)

Fix integers d ≥ 3 and 2 ≤ m ≤ d − 1, and
consider a collection {S1, ..., Sd} of distinct non-
empty subsets of [d] = {1, ..., d} such that:

(i) Si 6= ∅,

(ii)
⋃

i Si = [d],

(iii) |Si| = m for every i,

(iv) each index j ∈ [d] appears in exactly m of
the sets Si, and

(v) the cover {S1, ..., Sd} is connected (i.e., it
cannot be partitioned into two disjoint partial
covers).

For yd = (y1, ..., yd) ∈ Nd, put

πSi
y = (yj : j ∈ Si).
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Select a one-to-one map ϕ from [n]m into [N ],

and define

F ∗
N = {(ϕ(πS1

kd), ..., ϕ(πSd
kd)) : kd ∈ [n]d} ⊂ [N ]d,

put F ∗∗
N = F ∗

N ∩∆d
N , and also

FN = sym(F ∗∗
N ),

where sym(F ∗∗
N ) is the collections of all vectors

yd = (y1, ..., yd) ∈ Nd such that

(yσ(1), ..., yσ(d)) ∈ F ∗∗
N

for some permutation σ.

Put

S̃N = [d!×|FN |]−
1
2

∑
(i1,...,id)∈FN

Xi1···Xid = Jd(fN).
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Then we can show the following result.

Proposition 3. Let Z ∼ N (0,1), then, for ev-

ery h ∈ C2
b , there exists a constant K > 0,

independent of N , such that∣∣∣E[h(S̃N)]− E[h(Z)]
∣∣∣ ≤ K

N1/4
.

Note:

explicit bound (in contrast to Blei and Janson);

can generalise to multiple integrals defined over

infinite sets.
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7. Final remarks

Bound in Wasserstein distance for non-smooth

functions: are available;

Generalisation to other centered Bernoulli vari-

ables: should be possible;

Connection with Poisson case: Peccati and

Taqqu (2008).
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