Stein's method and stochastic analysis of Rademacher functionals

Gesine Reinert, Oxford joint work with
Ivan Nourdin, Paris VI and
Giovanni Peccati, Paris-Ouest

Singapore, January 2009

A brief history

Stein's method for normal approximation:

First published in Stein (1972); in Stein (1986) the method is explained via exchangeable pairs.

In Barbour (1990) the so-called generator approach for Stein's method is developed, and applied to diffusion approximation.

In Götze (1991) the generator approach is used to obtain multivariate normal approximations.

In Nourdin and Peccati (2008) the method is extended to Wiener chaos, using Malliavin calculus.

Nourdin and Peccati (2008) concentrate on functions of Gaussian variables.

Here: extend to functions of centered symmetric Bernoulli (Rademacher) variables; in particular functions of infinitely many Rademacher variables.

1. Stein's method for univariate normal approximation

Stein (1972, 1986); Chen and Shao (2005), Daly (2008), Barbour (1990)
$Z \sim \mathcal{N}(0,1)$ if and only if for all smooth functions f,

$$
Z f(Z)=f^{\prime}(Z)
$$

For a random variable W with $W=0, \operatorname{Var} W=$ 1, if

$$
f^{\prime}(W)-W f(W)
$$

is close to zero for many functions f, then W should be close to Z in distribution.

Given a test function h, let $N h=h(Z)$, and solve for f in the Stein equation

$$
f^{\prime}(w)-w f(w)=h(w)-N h
$$

Now evaluate the expectation of the r.h.s. by the expectation of the I.h.s.

Can bound
$\left\|f^{\prime}\right\| \leq 4\|h\| ;$ and $\left\|f^{\prime}\right\| \leq\left\|h^{\prime \prime}\right\| ;$
$\left\|f^{\prime \prime}\right\| \leq 2\left\|h^{\prime}\right\| ;$
$\left\|f^{\prime \prime \prime}\right\| \leq 2\left\|h^{\prime \prime}\right\|$.

Example: sum of i.i.d. Rademacher variables
X, X_{1}, \ldots, X_{n} i.i.d. with $P(X=1)=\frac{1}{2}=$ $P(X=-1)$. Then $E X=0, \operatorname{Var} X=1$. Put $W=W\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$.

Then (by Stein's method), for any smooth h,

$$
|E h(W)-N h| \leq \frac{3}{\sqrt{n}}\left\|h^{\prime}\right\| .
$$

Using the zero-bias transformation (Goldstein and R. (1997)) and the symmetry of the distribution of X :

$$
|E h(W)-N h| \leq \frac{3}{n}\left(\left\|h^{(3)}\right\|+\frac{1}{2}\left\|h^{(4)}\right\|\right) .
$$

Now let $X=\left\{X_{n}: n \geq 1\right\}$ denote an infinite sequence of i.i.d. standard Rademacher variables, so that $P\left(X_{i}=1\right)=\frac{1}{2}=P\left(X_{i}=-1\right)$.

A (possibly infinite) Rademacher average is

$$
F=\sum_{i=1}^{\infty} \alpha_{i} X_{i} .
$$

Here we will present a straightforward framework which gives as easy corollary that for

$$
F_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}
$$

we have

$$
|E[h(F)]-E[h(Z)]| \leq \frac{20}{3 n}\left\|h^{\prime \prime}\right\| .
$$

We shall also be able to tackle infinite sums; for $r \geq 2$, we set

$$
F_{r}=\sqrt{r} \sum_{i \geq r} \frac{X_{i}}{i}
$$

and obtain

$$
\begin{aligned}
& \left|E\left[h\left(F_{r}\right)\right]-E[h(Z)]\right| \\
& \quad \leq \frac{\min \left(4\|h\|_{\infty},\left\|h^{\prime \prime}\right\|_{\infty}\right)}{r}+\frac{20\left\|h^{\prime \prime}\right\|_{\infty}}{3(r-1)} .
\end{aligned}
$$

For such and more general results: differential calculus on infinite spaces.

2. Framework: discrete Malliavin calculus

See also Nourdin and Peccati (2008); Privault (2008), Privault and Schoutens (2002)

For $X=\left\{X_{n}: n \geq 1\right\}$ a standard Rademacher sequence, on a probability space (Ω, \mathcal{F}, P), we put $\Omega=\{-1,1\}^{\mathbb{N}}$ and $P=\left[\frac{1}{2}\left\{\delta_{-1}+\delta_{1}\right\}\right]^{\mathbb{N}}$.

For every $N \geq 1$ define a random signed measure μ_{N} on $\{1, \ldots, N\}$: for $A \subset\{1, \ldots, N\}$

$$
\mu_{N}(A)=\sum_{j \in A} X_{j} .
$$

The diagonal of \mathbb{N}^{n} for $n \geq 2$:
$\Delta_{n}=\left\{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}:\right.$ the i_{j} 's all different $\}$, and, for $N, n \geq 2$,

$$
\Delta_{n}^{N}=\Delta_{n} \cap\{1, \ldots, N\}^{n}
$$

On the diagonal,

$$
\begin{aligned}
\mu_{N}^{\otimes 2}([A \times B] \cap D) & =\sum_{j} X_{j}^{2} \mathbf{1}_{\{j \in A\}} \mathbf{1}_{\{j \in B\}} \\
& =\sharp\{j: j \in A \cap B\} \\
& =\kappa(A \cap B) ;
\end{aligned}
$$

the diagonal has non-zero measure.

Here

$$
\kappa(A \cap B)=\sharp\{j: j \in A \cap B\},
$$

is the counting measure, where $A, B \subset\{1, \ldots, N\}$; denote its product measures by $\kappa^{\otimes n}$ for $n \geq 2$.

Classes of functions

For $n \geq 1$, we denote by $\ell^{2}(\mathbb{N})^{n}$ the class of functions on \mathbb{N}^{n} that are square integrable with respect to $\kappa^{\otimes n}$;
$\ell^{2}(\mathbb{N})^{\circ n}$ is the subset of $\ell^{2}(\mathbb{N})^{n}$ composed of symmetric functions;
$\ell_{0}^{2}(\mathbb{N})^{n}$ is the subset of $\ell^{2}(\mathbb{N})^{n}$ composed of functions vanishing on diagonals;
$\ell_{0}^{2}(\mathbb{N})^{\circ n}$ is the subset of $\ell_{0}^{2}(\mathbb{N})^{n}$ composed of symmetric functions.

Multiple integrals

For every $q \geq 1$ and every $f \in \ell_{0}^{2}(\mathbb{N})^{\circ q}$ define the multiple integral (of order q) of f with respect to X :

$$
\begin{aligned}
J_{q}(f) & =\sum_{\left(i_{1}, \ldots, i_{q}\right) \in \mathbb{N}^{q}} f\left(i_{1}, \ldots, i_{q}\right) X_{i_{1}} \cdots X_{i_{q}} \\
& =\sum_{\left(i_{1}, \ldots, i_{q}\right) \in \Delta^{q}} f\left(i_{1}, \ldots, i_{q}\right) X_{i_{1}} \cdots X_{i_{q}} \\
& =q!\sum_{i_{1}<\ldots<i_{q}} f\left(i_{1}, \ldots, i_{q}\right) X_{i_{1}} \cdots X_{i_{q}},
\end{aligned}
$$

where the possibly infinite sum converges in $L^{2}(\Omega)$.

Set $\ell^{2}(\mathbb{N})^{\circ 0}=\mathbb{R}$, and $J_{0}(c)=c, \forall c \in \mathbb{R}$.

Isometry and Chaos

Isometry: if $f \in \ell_{0}^{2}(\mathbb{N})^{\circ q}$ and $g \in \ell_{0}^{2}(\mathbb{N})^{\circ p}$, then

$$
E\left[J_{q}(f) J_{p}(g)\right]=1_{\{q=p\}} q!\langle f, g\rangle_{\ell^{2}(\mathbb{N}) \otimes q} .
$$

The collection of all random variables of the type $J_{n}(f)$, where $f \in \ell_{0}^{2}(\mathbb{N})^{\circ q}$, is called the q th chaos associated with X; it is also called Walsh chaos and Rademacher chaos.

Chaotic decomposition

For every $F \in L^{2}(\sigma\{X\})$ there exists a unique sequence of functions $f_{n} \in \ell_{0}^{2}(\mathbb{N})^{\circ n}, n \geq 1$, such that

$$
\begin{aligned}
F= & E(F)+\sum_{n \geq 1} J_{n}\left(f_{n}\right) \\
= & E(F)+ \\
& \sum_{n \geq 1} n!\sum_{i_{1}<i_{2}<\ldots<i_{n}} f_{n}\left(i_{1}, \ldots, i_{n}\right) X_{i_{1}} \cdots X_{i_{n}},
\end{aligned}
$$

where the series converge in L^{2}.

Discrete Malliavin operators

The gradient operator D : The domain $\operatorname{dom} D$ is the class of random variables $F \in L^{2}(\sigma\{X\})$ such that the functions $f_{n} \in \ell_{0}^{2}(\mathbb{N})^{o n}$ in the chaotic expansion $F=E(F)+\sum_{n \geq 1} J_{n}\left(f_{n}\right)$ satisfy

$$
\sum_{n \geq 1} n n!\left\|f_{n}\right\|_{\ell^{2}(\mathbb{N})^{\otimes n}}^{2}<\infty .
$$

For such F define

$$
D_{k} F=\sum_{n \geq 1} n J_{n-1}\left(f_{n}(\cdot, k)\right), \quad k \geq 1,
$$

where the symbol $f_{n}(\cdot, k)$ indicates that the integration is performed with respect to $n-1$ variables.

Alternative representation:

Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega$, and set

$$
\omega_{+}^{k}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{k-1},+1, \omega_{k+1}, \ldots\right)
$$

and

$$
\omega_{-}^{k}=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{k-1},-1, \omega_{k+1}, \ldots\right) .
$$

Write $F_{k}^{ \pm}$instead of $F\left(\omega_{ \pm}^{k}\right)$ for simplicity. Then

$$
D_{k} F(\omega)=\frac{1}{2}\left(F_{k}^{+}-F_{k}^{-}\right), k \geq 1
$$

The random variables $D_{k} F, F_{k}^{+}$and F_{k}^{-}are independent of X_{k}.

Write δ for the adjoint of D, also called the divergence operator, defined via the following integration by parts formula:
for every $F \in \operatorname{dom} D$ and every $u \in \operatorname{dom} \delta \subset$ $L^{2}(\Omega \times \mathbb{N}, P \otimes \kappa)$

$$
\begin{aligned}
E[F \delta(u)] & =E\left[\langle D F, u\rangle_{\ell^{2}(\mathbb{N})}\right] \\
& =\langle D F, u\rangle_{L^{2}(\Omega \times \mathbb{N}, P \otimes \kappa)} .
\end{aligned}
$$

Ornstein-Uhlenbeck operator

Let $L_{0}^{2}(\sigma\{X\})$ be the subspace of $L^{2}(\sigma\{X\})$ of centered random variables. Define the OrnsteinUhlenbeck operator: The domain dom L are all random variables $F=E(F)+\sum_{n \geq 1} J_{n}\left(f_{n}\right) \in$ $L^{2}(\sigma\{X\})$ such that

$$
\sum_{n \geq 1} n^{2} n!\left\|f_{n}\right\|_{\ell^{2}(\mathbb{N})^{\otimes n}}^{2}<\infty
$$

and, for $F \in \operatorname{dom} L$, we set

$$
L F=-\sum_{n \geq 1} n J_{n}\left(f_{n}\right) .
$$

Crucial relation:

$$
\delta D=-L
$$

The inverse of L is

$$
L^{-1} F=-\sum_{n \geq 1} \frac{1}{n} J_{n}\left(f_{n}\right) .
$$

Note that the random variable $D_{k} L^{-1} F$ is independent of X_{k}.

The chain rule

Unfortunately the chain rule is not as straightforward as in the continuous case, but with Taylor expansion we can show:

Proposition 1. (Chain Rule). Let $F \in \operatorname{dom} D$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be three times differentiable with bounded third derivative. Assume moreover that $f(F) \in \operatorname{dom} D$. Then, for any integer k, P-a.s.:

$$
\begin{aligned}
& \mid D_{k} f(F)-f^{\prime}(F) D_{k} F \\
& \left.\quad+\frac{1}{2}\left(f^{\prime \prime}\left(F_{k}^{+}\right)+f^{\prime \prime}\left(F_{k}^{-}\right)\right)\left(D_{k} F\right)^{2} X_{k} \right\rvert\, \\
& \leq \frac{10}{3}\left|f^{\prime \prime \prime}\right| \infty\left|D_{k} F\right|^{3} .
\end{aligned}
$$

Sketch of proof

By Taylor expansion,

$$
\begin{array}{rl}
D_{k} & f(F) \\
= & \frac{1}{2}\left(f\left(F_{k}^{+}\right)-f\left(F_{k}^{-}\right)\right) \\
= & \frac{1}{2}\left(f\left(F_{k}^{+}\right)-f(F)\right)-\frac{1}{2}\left(f\left(F_{k}^{-}\right)-f(F)\right) \\
\approx & \frac{1}{2} f^{\prime}(F)\left(F_{k}^{+}-F\right)+\frac{1}{4} f^{\prime \prime}(F)\left(F_{k}^{+}-F\right)^{2} \\
& -\frac{1}{2} f^{\prime}(F)\left(F_{k}^{-}-F\right)-\frac{1}{4} f^{\prime \prime}(F)\left(F_{k}^{-}-F\right)^{2} \\
= & f^{\prime}(F) D_{k} F \\
& +\frac{1}{4} f^{\prime \prime}(F)\left(\left(F_{k}^{+}-F\right)^{2}-\left(F_{k}^{-}-F\right)^{2}\right) .
\end{array}
$$

Now

$$
\begin{aligned}
&\left(F_{k}^{+}-F\right)^{2}-\left(F_{k}^{-}-F\right)^{2} \\
&=\left(F_{k}^{+}-F\right)^{2} \mathbf{1}_{X_{k}}=-1 \\
&\left.-\left(F_{k}^{-}-F\right)^{2} \mathbf{1}_{X_{k}=-1}^{+}-\left(F_{k}^{-}-F\right)^{2} \mathbf{1}_{X_{k}=1}=\right)^{2} \mathbf{1}_{X_{k}=1} \\
&=\left(F_{k}^{+}-F_{k}^{-}\right)^{2} \mathbf{1}_{X_{k}=-1}-\left(F_{k}^{-}-F^{+}\right)^{2} \mathbf{1}_{X_{k}=1} \\
&=-X_{k}\left(F_{k}^{+}-F_{k}^{-}\right)^{2} \\
&=-4 X_{k}\left(D_{k} F\right)^{2} .
\end{aligned}
$$

Using the approximation

$$
f^{\prime \prime}(F) \approx \frac{1}{2}\left(f^{\prime \prime}\left(F_{k}^{+}\right)-f^{\prime \prime}\left(F_{k}^{-}\right)\right)
$$

we obtain that

$$
\begin{aligned}
D_{k} f & (F) \\
\approx & f^{\prime}(F) D_{k} F \\
& +\frac{1}{8}\left(f^{\prime \prime}\left(F_{k}^{+}\right)+f^{\prime \prime}\left(F_{k}^{-}\right)\right) \\
& \times\left(\left(F_{k}^{+}-F\right)^{2}-\left(F_{k}^{-}-F\right)^{2}\right) \\
= & f^{\prime}(F) D_{k} F-\frac{1}{2}\left(f^{\prime \prime}\left(F_{k}^{+}\right)+f^{\prime \prime}\left(F_{k}^{-}\right)\right)\left(D_{k} F\right)^{2} X_{k}
\end{aligned}
$$

Bounding the remainder terms in the approximation gives the result.

3. Bounds to the normal for functions of Rademacher sequences

Our main result is

Theorem 1. Let $F \underset{4}{\in} \operatorname{dom} D$ be centered and such that $\sum_{k} E\left|D_{k} F\right|^{4}<\infty$. Let $h \in \mathcal{C}_{b}^{2}$ and $Z \sim \mathcal{N}(0,1)$. Then

$$
\begin{aligned}
& |E[h(F)]-E[h(Z)]| \\
& \quad \leq \min \left(4\|h\|_{\infty},\left\|h^{\prime \prime}\right\|_{\infty}\right) B_{1}+\left\|h^{\prime \prime}\right\|_{\infty} B_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
B_{1} & =E\left|1-\left\langle D F,-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}\right| \\
& \leq \sqrt{E\left[\left(1-\left\langle D F,-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}\right)^{2}\right]}
\end{aligned}
$$

and

$$
B_{2}=\frac{20}{3} E\left[\langle | D L^{-1} F\left|,|D F|^{3}\right\rangle_{\ell^{2}(\mathbb{N})}\right] .
$$

Comparison with Nourdin and Peccati (2008)

Nourdin and Peccati (2008) derive a normal approximation of random variables based on a centered Gaussian family X on a real separable Hilbert space \mathfrak{H}, with $E[X(h) X(g)]=\langle h, g\rangle_{\mathfrak{H}}$ (an isonormal Gaussian process). For

$$
F=g\left(X\left(\phi_{1}\right), \ldots, X\left(\phi_{n}\right)\right),
$$

where $n \geq 1, g: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathcal{C}_{c}^{\infty}$ and $\phi_{i} \in \mathfrak{H}$, define the Malliavin derivative

$$
D F=\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}}\left(X\left(\phi_{1}\right), \ldots, X\left(\phi_{n}\right)\right) \phi_{i} .
$$

The Malliavin derivative D verifies the usual chain rule:

$$
D \varphi(F)=\sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}}(F) D F_{i} .
$$

Then Nourdin and Peccati (2008) prove that for Wasserstein distance to Z, standard normal, and centered F,

$$
d_{W}(F, Z) \leq E\left|1-\left\langle D F,-D L^{-1} F\right\rangle_{\mathfrak{H}}\right| .
$$

This bound corresponds to our term B_{1}; the term B_{2} arises from the underlying process being a Rademacher sequence, rather than Gaussian.

Proof of Theorem 1.

With Stein's method, for $h \in \mathcal{C}_{b}^{2}$,

$$
|E[h(F)]-E[h(Z)]|=\left|E\left[f^{\prime}(F)-F f(F)\right]\right|
$$

with $f=f_{h}$ the solution of the Stein equation for h. Then $f(F) \in \operatorname{dom} D$ and

$$
\begin{aligned}
E[F f(F)] & =E\left[L L^{-1} F f(F)\right] \\
& =-E\left[\delta D L^{-1} F f(F)\right] \\
& =E\left[\left\langle D f(F),-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& E\left[f^{\prime}(F)-F f(F)\right] \\
& \quad=E\left[f^{\prime}(F)-\left\langle D f(F),-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}\right]
\end{aligned}
$$

By the chain rule,
$\left\langle D f(F),-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}$
$=-\sum_{k} D_{k} f(F) D_{k} L^{-1} F$
$\approx-f^{\prime}(F) \sum_{k} D_{k} F D_{k} L^{-1} F$
$+\frac{1}{2} \sum_{k}\left(f^{\prime \prime}\left(F_{k}^{+}\right)+f^{\prime \prime}\left(F_{k}^{-}\right)\right)\left(D_{k} F\right)^{2} X_{k} D_{k} L^{-1} F$
$=f^{\prime}(F)\left\langle D F,-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}$
$+\frac{1}{2} \sum_{k}\left(f^{\prime \prime}\left(F_{k}^{+}\right)+f^{\prime \prime}\left(F_{k}^{-}\right)\right)\left(D_{k} F\right)^{2} X_{k} D_{k} L^{-1} F$

Recall that the random variables $D_{k} F, D_{k} L^{-1} F$, F_{k}^{+}and F_{k}^{-}are independent of X_{k}; and so $E\left[D_{k} L^{-1} F \times\left(f^{\prime \prime}\left(F_{k}^{+}\right)+f^{\prime \prime}\left(F_{k}^{-}\right)\right)\left(D_{k} F\right)^{2} X_{k}\right]=0$. Hence

$$
\begin{aligned}
& E\left[f^{\prime}(F)-F f(F)\right] \\
& \quad \approx E\left[f^{\prime}(F)\left(1-\left\langle D F,-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})}\right]\right.
\end{aligned}
$$

Now apply the bounds on the solution of the Stein equation.

In the special case that F has the form of a multiple integral of the type $F=J_{q}(f)$, where $f \in \ell_{0}^{2}(\mathbb{N})^{\circ q}$, the terms in the bounds simplify;

$$
\begin{aligned}
\left\langle D F,-D L^{-1} F\right\rangle_{\ell^{2}(\mathbb{N})} & =\frac{1}{q}\|D F\|_{\ell^{2}(\mathbb{N})}^{2}, \\
\langle | D L^{-1} F\left|,|D F|^{3}\right\rangle_{\ell^{2}(\mathbb{N})} & =\frac{1}{q}\|D F\|_{\ell^{4}(\mathbb{N})}^{4} .
\end{aligned}
$$

For a Rademacher average

$$
F=\sum_{i=1}^{\infty} \alpha_{i} X_{i}
$$

we have $q=1$ and $D_{i} F=\alpha_{i}$ for all $i \geq 1$, which gives the bounds mentioned above.

4. Connection with exchangeable pairs

Assume that

$$
\begin{align*}
F & =\sum_{n=1}^{d} \sum_{1 \leq i_{1}<\ldots<i_{n} \leq d} n!f_{n}\left(i_{1}, \ldots, i_{n}\right) X_{i_{1}} \cdots X_{i_{n}} \\
& =\sum_{n=1}^{d} J_{n}\left(f_{n}\right) \tag{1}
\end{align*}
$$

and $E(F)=0$ and $E\left(F^{2}\right)=1$.

Exchangeable pair: Pick an index I so that $P(I=i)=\frac{1}{d}$ for $i=1, \ldots, d$, independently of X_{1}, \ldots, X_{d}, and if $I=i$ replace X_{i} by an independent copy X_{i}^{*} in all sums in the decomposition (1) which involve X_{i}. Call the resulting expression F^{\prime}. Also denote the vector of Rademacher variables with the exchanged component by \mathbf{X}_{d}^{\prime}. Then (F, F^{\prime}) forms an exchangeable pair.

Note that

$$
\begin{aligned}
E & \left(J_{n}^{\prime}\left(f_{n}\right)-J_{n}\left(f_{n}\right) \mid \mathbf{W}\right) \\
= & -\frac{1}{d} \sum_{i=1}^{d} \sum_{1 \leq i_{1}<\ldots<i_{n} \leq d} \mathbf{1}_{\left\{i_{1}, \ldots, i_{n}\right\}}(i) n! \\
& \quad \times f_{n}\left(i_{1}, \ldots, i_{n}\right) E\left(X_{i_{1}} \cdots X_{i_{n}} \mid \mathbf{W}\right) \\
= & -\frac{n}{d} J_{n}\left(f_{n}\right)
\end{aligned}
$$

and we obtain the simple expression

$$
E\left(F^{\prime}-F \mid \mathbf{W}\right)=\frac{1}{d} L F=-\frac{1}{d} \delta D F
$$

Coupling bound

Theorem 2. Denote by L^{\prime} the Ornstein-Uhlenbeck operator for the exchanged Rademacher sequence $\mathbf{X}_{d}^{\prime} ; Z$ is standard normal. Then

$$
\begin{aligned}
& |E[h(F)]-E[h(Z)]| \\
& \leq \quad 4\|h\|_{\infty} \sqrt{\operatorname{Var}\left[\frac{d}{2} E\left(\left(F^{\prime}-F\right)\left(\left(L^{\prime}\right)^{-1} F^{\prime}-L^{-1} F\right) \mid \mathbf{W}\right)\right]} \\
& \quad+\frac{d}{2}\left\|h^{\prime}\right\|_{\infty} E\left[\left(F^{\prime}-F\right)^{2}\left|\left(L^{\prime}\right)^{-1} F^{\prime}-L^{-1} F\right|\right] .
\end{aligned}
$$

5. Example: Bounds for infinite 2-runs

Let $\xi=\left\{\xi_{n}: n \in \mathbb{Z}\right\}$ be a standard Bernoulli sequence; $P\left(\xi_{i}=0\right)=\frac{1}{2}=P\left(\xi_{i}=1\right)$. Put

$$
G_{n}=\sum_{i \in \mathbb{Z}} \alpha_{i}^{(n)} \xi_{i} \xi_{i+1}
$$

where $\left\{\alpha^{(n)}: n \geq 1\right\} \in \ell^{2}(\mathbb{Z})$.
Put $F_{n}=\frac{G_{n}-E\left(G_{n}\right)}{\sqrt{\operatorname{Var} G_{n}}}$.

Proposition 2. Let $h \in \mathcal{C}_{b}^{2}$. Then, for $Z \sim$ $\mathcal{N}(0,1)$,

$$
\begin{aligned}
& |E[h(F)]-E[h(Z)]| \\
& \leq \frac{7}{16} \frac{\min \left(4\|h\|_{\infty},\left\|h^{\prime \prime}\right\|_{\infty}\right)}{\operatorname{Var} G_{n}} \sqrt{\sum_{i \in \mathbb{Z}}\left(\alpha_{i}^{(n)}\right)^{4}} \\
& \quad+\frac{35}{24} \frac{\left\|h^{\prime \prime}\right\|_{\infty}}{\left(\operatorname{Var} G_{n}\right)^{2}} \sum_{i \in \mathbb{Z}}\left(\alpha_{i}^{(n)}\right)^{4}
\end{aligned}
$$

with

$$
\operatorname{Var} G_{n}=\frac{3}{16} \sum_{i \in \mathbb{Z}}\left(\alpha_{i}^{(n)}\right)^{2}+\frac{1}{8} \sum_{i \in \mathbb{Z}} \alpha_{i}^{(n)} \alpha_{i+1}^{(n)} .
$$

It follows that a sufficient condition to have $F_{n} \xrightarrow{\text { Law }} Z$ is that

$$
\sum_{i \in \mathbb{Z}}\left(\alpha_{i}^{(n)}\right)^{4}=o\left(\left(\operatorname{Var} G_{n}\right)^{2}\right) \quad \text { as } n \rightarrow \infty
$$

Sketch of the argument

Note that

$$
F_{n}=\frac{G_{n}-E\left(G_{n}\right)}{\sqrt{\operatorname{Var} G_{n}}}=J_{1}(f)+J_{2}(g),
$$

with

$$
f=\frac{1}{4 \sqrt{\operatorname{Var} G_{n}}} \sum_{a \in \mathbb{Z}} \alpha_{a}^{(n)}\left(\mathbf{1}_{\{a\}}+\mathbf{1}_{\{a+1\}}\right)
$$

and

$$
\begin{gathered}
g=\frac{1}{8 \sqrt{\operatorname{Var} G_{n}}} \sum_{a \in \mathbb{Z}} \alpha_{a}^{(n)}\left(\mathbf{1}_{\{a\}} \otimes \mathbf{1}_{\{a+1\}}\right. \\
\left.+\mathbf{1}_{\{a+1\}} \otimes \mathbf{1}_{\{a\}}\right) .
\end{gathered}
$$

Thus we can write F_{n} as sum of a single and a double integral and apply our main result.
6. Example: Fractional Cartesian products

Blei and Janson (2004)
Fix integers $d \geq 3$ and $2 \leq m \leq d-1$, and consider a collection $\left\{S_{1}, \ldots, S_{d}\right\}$ of distinct nonempty subsets of $[d]=\{1, \ldots, d\}$ such that:
(i) $S_{i} \neq \emptyset$,
(ii) $\cup_{i} S_{i}=[d]$,
(iii) $\left|S_{i}\right|=m$ for every i,
(iv) each index $j \in[d]$ appears in exactly m of the sets S_{i}, and
(v) the cover $\left\{S_{1}, \ldots, S_{d}\right\}$ is connected (i.e., it cannot be partitioned into two disjoint partial covers).

For $\mathbf{y}_{d}=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{N}^{d}$, put

$$
\pi_{S_{i}} \mathbf{y}=\left(y_{j}: j \in S_{i}\right)
$$

Select a one-to-one map φ from $[n]^{m}$ into [$\left.N\right]$, and define
$F_{N}^{*}=\left\{\left(\varphi\left(\pi_{S_{1}} \mathbf{k}_{d}\right), \ldots, \varphi\left(\pi_{S_{d}} \mathbf{k}_{d}\right)\right): \mathbf{k}_{d} \in[n]^{d}\right\} \subset[N]^{d}$, put $F_{N}^{* *}=F_{N}^{*} \cap \Delta_{N}^{d}$, and also

$$
F_{N}=\operatorname{sym}\left(F_{N}^{* *}\right),
$$

where $\operatorname{sym}\left(F_{N}^{* *}\right)$ is the collections of all vectors
$\mathbf{y}_{d}=\left(y_{1}, \ldots, y_{d}\right) \in \mathbb{N}^{d}$ such that

$$
\left(y_{\sigma(1)}, \ldots, y_{\sigma(d)}\right) \in F_{N}^{* *}
$$

for some permutation σ.

Put

$$
\tilde{S}_{N}=\left[d!\times\left|F_{N}\right|\right]^{-\frac{1}{2}} \sum_{\left(i_{1}, \ldots, i_{d}\right) \in F_{N}} X_{i_{1}} \cdots X_{i_{d}}=J_{d}\left(f_{N}\right) .
$$

Then we can show the following result.

Proposition 3. Let $Z \sim \mathcal{N}(0,1)$, then, for every $h \in \mathcal{C}_{b}^{2}$, there exists a constant $K>0$, independent of N, such that

$$
\left|E\left[h\left(\widetilde{S}_{N}\right)\right]-E[h(Z)]\right| \leq \frac{K}{N^{1 / 4}}
$$

Note:
explicit bound (in contrast to Blei and Janson);
can generalise to multiple integrals defined over infinite sets.

7. Final remarks

Bound in Wasserstein distance for non-smooth functions: are available;

Generalisation to other centered Bernoulli variables: should be possible;

Connection with Poisson case: Peccati and Taqqu (2008).

