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Abstract

In insurance economies with a continuum of agents and adverse selection, it is shown that

incentive-constrained Pareto efficient allocations correspond to regulated competitive (or

compensated competitive) equilibria in markets with non-linear pricing for options to buy

insurance contracts. These options make the incentive constraints self-enforcing. Effi-

ciency is achieved through a “universal service” requirement allowing only new contracts or

blocking coalitions that benefit all potential types of each agent. This regulation prevents

“cream skimming” intended to exclude high-risk agents. Under suitable assumptions, reg-

ulated equilibria are shown to exist and be characterized as “regulated core” allocations.
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Constrained Efficiency with Adverse Selection

1. Introduction

It is well understood that adverse selection and moral hazard create incentive constraints

which restrict what is truly feasible in economies with private information. An adequate

revised general equilibrium theory is still lacking, however. A comprehensive attempt in

this direction was that of Prescott and Townsend (1984a, b). They undertook a systematic

exploration of what allocation mechanisms in a general continuum economy are ex ante

Pareto efficient among the class of those which can be implemented in dominant strategies,

and sought a price system by means of which such allocation mechanisms can be decentral-

ized. When they tried to deal with adverse selection problems in which agents could trade

after acquiring private information, however, they were unable to construct a satisfactory

price system for decentralizing interim constrained efficient allocations of resources. In un-

published preliminary versions of their paper, they did consider various new expansions of

the commodity space and were able to prove some decentralization results. But as Prescott

and Townsend (1984a, p. 44) frankly conclude, “Thus equilibria of this kind fail to provide

much predictive content and have undesirable normative properties as well.” Nor is this

too surprising, given the work of Rothschild and Stiglitz (1976) and many successors on

the necessary inefficiencies which unregulated competition can create when there is adverse

selection.

Here I will present a form of decentralization which differs from those considered by

Prescott and Townsend — even, it seems, from those considered in the earlier unpublished

versions of Prescott and Townsend (1984a). The decentralization relies on a particular form

of regulated option market with non-linear pricing. No predictive content is claimed for this

kind of market. But the normative properties will be everything that could reasonably be

desired. Both the first and second fundamental efficiency theorems of welfare economics will

hold, subject to the usual kind of qualifications regarding the second theorem, and allowing

for some difficulties which arise because incentive constraints can cause local satiation in the

relevant feasible sets. Moreoever, regulated option market equilibria (ROMEs) will lie in a

suitably defined “regulated” version of the core, and the regulated core will be equivalent to

the set of ROME allocations for the continuum economy which I shall consider throughout.
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Section 2 below presents the basic model of an adverse selection insurance economy

with a continuum of agents. In fact the model is derived by introducing adverse selection

into a version with a continuum of agents of Malinvaud’s (1972, 1973) description of a

large economy with individual uncertainty — see also Cass, Chichilnisky and Wu (1996). It

reduces to the Rothschild and Stiglitz (1976) model of insurance markets as a special case

when there is a single physical commodity and two different types of agent with differing

probabilities of experiencing each of two individual states.

Thereafter Section 3 explains why the incentive constraints caused by adverse selection

create problematic externalities between different types of the same agent. Such externali-

ties, moreover, generate individual non-convexities. These complicate the decentralization

of efficient allocations through any linear price system — see also Bisin and Gottardi (2004).

Individuals may also have preferences which are locally satiated at some points. Section 4,

however, shows that a certain form of “coalitional monotonicity” is satisfied by any non-null

set of agents.

Section 5 then takes us part way toward resolving the problems posed by these exter-

nalities. In particular, each agent is restricted to an incentive compatible type-contingent

allocation which makes each possible type of that agent no worse off than with a specified

“reservation allocation” — cf. Maskin and Tirole (1992). The section describes both uncom-

pensated and compensated Walrasian equilibria in which agents are artificially constrained

to satisfy the incentive constraints and to internalize the externalities which they would

otherwise create. Some weakening of this equilibrium notion is also necessary, however,

because preferences may be locally satiated.

Under standard assumptions, Section 6 demonstrates the existence of this weakened

form of Walrasian equilibrium — indeed, it shows how there are likely to be a continuum

of such equilibria, in the presence of adverse selection. In the case of pure risk types,

Section 6 also demonstrates the existence of a pooling Walrasian equilibrium which meets

the strongest definition set out in Section 5.

Next, Section 7 demonstrates how agents can be induced to internalize voluntarily both

the incentive constraints and the externalities described in Sections 3 and 5. This inter-

nalization is achieved by means of suitably designed markets for option contracts allowing

choice from a menu of “insurance securities” which pay a specified number of units of the
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numéraire commodity contingent upon each observed individual state of the world. It is

important that agents be charged as if they have retained the options implicit in the reser-

vation allocation. These “regulated” option markets are the main focus of the paper. For

a somewhat related form of regulation, see Henriet and Rochet (1987).

As shown in Sections 8 and 9, these regulated equilibria have most of the usual ef-

ficiency and even core properties of Walrasian allocations in continuum economies — the

only difference comes in the first efficiency theorem of welfare economics, which holds only

in a somewhat weakened form because, as shown in Section 3, individuals’ preferences may

be locally satiated in the space of incentive compatible allocations.

Section 10 concludes by discussing possible extensions and limitations to the scope of

regulated markets.

2. An Insurance Economy with Adverse Selection

Consider a continuum economy with an atomless measure space of agents’ labels (A,A, α),

as in Aumann (1964, 1966) and Hildenbrand (1974). It loses no generality to assume that

(A,A, α) is the Lebesgue unit interval of the real line.

Next, as in the individual risk model of Malinvaud (1972, 1973) and the insurance

model of Rothschild and Stiglitz (1976), suppose that there is a finite set S of possible

individual states s, each of which is observable — for example, whether the individual

suffers an accident or has some other reason to make a legitimate insurance claim. Indeed,

where different possible kinds of accident are possible, s should determine what kind occurs,

and so what an insurance company’s liability must be. It will be assumed that these are ex

post states of the world, determined after all market transactions have taken place.

Suppose that there is also a finite set T of possible individual types or characteristics

t which are private information, so not observable by any other agent such as an insurance

company. For example, t could determine how likely the individual is to experience an

accident of each possible degree of severity, depending on the value of s. For simplicity it

is assumed that each agent has the same type space T . These are like ex ante states of

the world, in that they are supposed to be determined before any market transactions have

taken place.
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Combining the elements of the last three paragraphs gives us three different sets of

“contingent” economic agents. First there is A, the set of possible agent labels. Second

there is A×T , which is the set of possible type-contingent agents, indexed by both a personal

label a and an unobservable type t. Third there is the set Θ := A × T × S, which is the

set of possible state- and type-contingent agents, indexed by an observable personal label

a, by an unobservable interim type t, and also by an observable ex post individual state s.

The set Θ has an obvious σ-field A× 2T × 2S of measurable sets.

Actually, in order to avoid the continuum of independent random variables problem

noticed by Feldman and Gilles (1985) and Judd (1985), assume that the actual economy

consists of a countably infinite set of agents whose labels are drawn randomly from (A,A, α).

Specifically, suppose that there is a joint probability measure ν on the measurable subsets

of Θ — i.e., on the set of all possible state- and type-contingent agents. Suppose too

that (with probability one) ν is equal to the product measure α × µ for some well-defined

distribution µ ∈ ∆(T ×S) on the finite set T ×S of possible pairs (t, s) consisting of agents’

types and states. Moreover, suppose that there is a well-defined distribution λ ∈ ∆(T ) on

the finite set T of possible agents’ types t, with λ(t) > 0 for all t ∈ T . Finally, suppose

that each t ∈ T determines conditional probabilities π(s|t) over the finite set S of possible

agents’ states s. Thus, it is being assumed that µ(t, s) = π(s|t)λ(t) for all pairs (t, s) in the

finite set T × S.

Given the countably infinite set of agents, the law of large numbers implies that there

can be no aggregate uncertainty about the distribution of types and states for the agents

in any non-null measurable set K ∈ A. In fact, with probability one, a fraction α(K) of all

the agents in the economy have labels in K. Of these, a fraction λ(t) are of unobservable

type t, and a fraction µ(t, s) have the type-state pair (t, s). This, it should be noted, is

a different formulation of a random economy from that due to Hildenbrand (1971) and to

Bhattacharya and Majumdar (1973) because they had a fixed set of agents, independent

of the state of the world. Here, by contrast, in any finite approximation to the continuum

economy, the set of agents’ labels is randomly drawn from A.

Now let there be a finite set G of physical commodities. Then each agent a of type t in

(individual) state s has three different possible contingent net trade vectors to be considered.

The first and most limited is the actual ex post (t, s)-contingent net trade vector xats ∈ <G,
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which is simply a single vector of physical commodities. The second is the interim state-

contingent net trade vector xat ∈ <GS , which applies when agent a is of type t. The third

and most extensive is the complete contingent net trade vector xa ∈ <GTS , which is the

type- and state-contingent net trade vector for agent a from the point of view of any outside

observer, or other agent in the economy, who does not yet know agent a’s true type.

It is assumed that each agent a ∈ A has a type-independent opportunity set Xa ⊂ <GS

of physically feasible state-contingent net trade vectors, whose typical member is xat, for

any t ∈ T . Moreover, make the standard assumption that the graph { (a, x) ∈ A × <GS |

x ∈ Xa } of the feasible set correspondence X : A→→<GS is measurable. Then there is

also a Cartesian product set XT
a :=

∏
t∈T Xat ⊂ <GTS of physically feasible type- and

state-contingent net trade vectors, where each Xat is a copy of Xa. A typical member of

XT
a is xa. Note that endowments are not considered explicitly. Also, the assumption that

the feasible net trade set Xa is independent of t avoids the complications which arise when

feasible sets or endowments are unknown — see, for instance, Hammond (1992).

Suppose too that each agent a ∈ A has, for each type t ∈ T , a continuous type-

contingent utility function Uat(xat), defined for all state-contingent net trade vectors xat in

the feasible net trade set Xa, and taking the expected utility form

Uat(xat) ≡
∑

s∈S
π(s|t)uats(xats)

for some state- and type-dependent von Neumann–Morgenstern utility function uats(·).

Suppose also that, for each fixed type t ∈ T and each fixed state-contingent commodity

vector xS ∈ <GS , Uat(xS) is measurable as a function of a wherever it is defined because

xS ∈ Xa.

To complete the description of the economy, it suffices to specify the resource balance

constraint. In fact, after allowing aggregate free disposal, a physically feasible allocation

in the economy is given by an A-measurable and so α-integrable function x : A → <GTS

satisfying the weak vector inequality∫
A

∑
t∈T

∑
s∈S

µ(t, s)xats α(da)<−− 0 ∈ <G,

where α(da) indicates integration with respect to a, using the measure α on A. This

expresses the restriction that the mean over all agents of each agent’s expected net trade
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vector cannot have any positive component. Note that the law of large numbers ensures

that, with probability one, any allocation satisfying this inequality is feasible ex post , after

all the agents’ states have become known, and no matter what their true types happen to

be.

In order to permit inequalities such as the last to be written more succinctly, it is useful

to introduce the notation µ • z to indicate the double sum
∑

t∈T

∑
s∈S µ(t, s) zts whenever

z ∈ <GTS . If z is regarded as a function z : T × S → <G and so a random variable whose

distribution is given by the probabilities µ(t, s) on T × S, then µ • z is just the expected

value of z. With this notation, the above resource balance constraint reduces to∫
A

(µ • xa)α(da)<−− 0.

The R–S model of Rothschild and Stiglitz (1976) is a prominent example of such a

continuum economy with adverse selection. Indeed, suppose that there is a single physical

commodity. Suppose that t ∈ T denotes the probability of having an accident, where T is

some finite subset of the line interval [0, 1]. Let S consist of the two states s = 0 and s = 1,

where s = 1 signifies that an accident has occurred, and s = 0 signifies that it has not. Then

let c0 denote consumption if there is no accident, and let c1 denote consumption if there is

an accident. Suppose also that all individuals of all types have the same endowments e0, e1

of the only consumption good, depending on whether or not they suffer an accident. Then,

provided that agent a’s type is t, a’s net trade vector is the pair (xat0, xat1) := (cat0 −

e0, cat1 − e1). Because the agent’s type is private information, however, it is appropriate to

consider the entire state contingent net trade vector xa = 〈 (xat0, xat1) 〉t∈T . This is a point

in the space <2T of complete insurance contracts contingent on not only whether there is an

accident, but on how susceptible agent a is to having an accident. All agents are assumed

to have the same type-contingent expected utility function

Ut(x0, x1) ≡ (1− t) v0(x0 + e0) + t v1(x1 + e1).

This function is defined for all (x0, x1) satisfying the two constraints x0 ≥ −e0 and x1 ≥ −e1
which together ensure that consumption in each possible individual state is non-negative.

Here v0(·) and v1(·) are the two state-contingent utility functions. Finally, the allocation

x : A→ <2T satisfies the aggregate resource balance constraint in the economy if and only
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if ∫
A

∑
t∈T

λ(t)[(1− t)xat0 + t xat1]α(da) ≤ 0,

where λ(t) denotes the proportion of agents in the economy whose probability of an accident

is t.

3. Incentive Constraints and Externalities

Because each agent’s type is private information, not every physically feasible allocation is

truly feasible. True feasibility requires in addition that the physically feasible allocation x

in the adverse selection economy should also satisfy the incentive constraints Uat(xat) ≥

Uat(xat′) for all pairs t, t′ ∈ T and for almost all a ∈ A. These constraints express the

requirement that, if agent a is really of type t, then agent a cannot gain by acting deceptively

in the economic system in a way which obtains the net trade vector of an agent whose true

type is t′. In the special case of the R-S model described above, the incentive constraints

take the form

(1− t) v0(xat0 + e0) + t v1(xat1 + e1) ≥ (1− t) v0(xat′0 + e0) + t v1(xat′1 + e1)

for all pairs t, t′ of types in T .

In future, Fa will be used to denote the set of type- and state-contingent net trade

vectors for agent a which are physically feasible and also satisfy the incentive constraints

above — i.e.,

Fa := {xa ∈ XT
a | ∀t, t′ ∈ T : Uat(xat) ≥ Uat(xat′) }.

In reality, then, Fa denotes the set of feasible net trades for agent a, and so for the whole

set {a} × T of different type-contingent versions of agent a. Of course, only one agent in

the set {a} × T actually participates in the economy. Nevertheless, other agents, insurance

companies, etc., are unable to distinguish between the different type-contingent versions of

agent a, so all must be included as potential participants in the economy.

In addition, all type-contingent agents in the set {a}×T must effectively be consuming

the same type- and state-contingent net trade vector xa ∈ Fa, since that is all that other

agents, insurance companies, etc., can observe. In this respect there is a form of externality

because the incentive constraints can only be satisfied if the net trade vector xat of any
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one type-contingent agent (a, t) (t ∈ T ) puts an upper bound on the net trade vectors of

all the other type-contingent agents (a, t′) (t′ ∈ T \ {t}). So the economy is very like one

with local public goods being provided at a continuum of localities indexed by a ∈ A, with

a set {a} × T of individuals living in each locality a. Here, however, individuals have no

opportunity of changing their label a ∈ A, whereas in most models of local public goods

since the work of Tiebout (1956) — see also Bewley (1981) and the literature cited there

— individuals do have the option of changing their locality.

Figure 1

The extra incentive constraints typically create nonconvexities in the feasible sets Fa,

as Prescott and Townsend (1984a), amongst others, have pointed out. Indeed, such non-

convexities are illustrated in Figure 1, for the case of one physical commodity, two observable

individual states of the world, and two unobservable types t1 and t2. The two axes indicate

net trade quantities in each of the two different observable states s1 and s2. The point

X1 represents the state contingent net trade vector of a typical agent a when of type t1;

the two points X2 and X ′
2 represent two different state contingent net trade vectors of

a type t2 agent. The indifference curves I1 and I2 of these two types of agent through

the respective net trade allocations X1 and X2 are drawn in. The two type- and state-

contingent allocations xa = (X1, X2) and x′a = (X1, X
′
2) in the space <4 of such allocations

are both clearly incentive compatible when there are only these two possible types. Yet

the convex combination (X1,
1
2X2 + 1

2X
′
2) is incentive incompatible, because an agent of

type t1 could then gain by claiming to be a type t2 agent. Thus, neither the set Fa of

incentive compatible allocations, nor the subset Fa(xa) of such allocations which make
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neither type worse off than at xa, is convex. The same diagram also shows how neither

set may satisfy the usual free disposal assumption of general equilibrium theory; the type-

and state-contingent allocation x′′a = (X1, X
′′
2 ) ∈ <4 has X ′′

2 � X2 and yet is not incentive

compatible. Indeed, there obviously exists an X ′
1 � X1 near enough to X1 so that the type-

and state-contingent allocation (X ′
1, X

′′
2 ) has (X ′

1, X
′′
2 ) � (X1, X2) in <4 and yet (X ′

1, X
′′
2 )

is not incentive compatible.

This failure of the free disposal assumption in the set Fa of incentive compatible con-

tracts means that we should carefully reconsider whether agents’ preferences satisfy local

non-satiation. In fact, they need not. To see why, consider a specific example in which the

economy has two physical commodities, one individual state (i.e., no individual uncertainty

at all) and two types, T = { 1, 2 }. Suppose also that the two possible types of an individual

have piecewise linear, concave, and strictly increasing utility functions on <2 which are

given by

U1(x1, x2) ≡ min {x1 + 2x2 + 1, 4x1 + 2x2 + 2 }

U2(x1, x2) ≡ min { 2x1 + 4x2 + 2, 2x1 + x2 + 1 }

Consider the set S of all allocations (a, b) = (a1, a2, b1, b2) ∈ <4 to the two types which

satisfy a1 > 1
3 > a2 and b1 < 1

3 < b2. Note that U2(a) = 2U1(a) = 2a1 + 4a2 + 2 and

U1(b) = 2U2(b) = 4b1 + 2b2 + 2. Also, the incentive constraints are U1(a) ≥ U1(b) and

U2(b) ≥ U2(a) which together imply that

U1(a) ≥ U1(b) = 2U2(b) ≥ 2U2(a) = 4U1(a).

It follows that every incentive compatible allocation in S must satisfy both U1(a) = a1 +

2a2 +1 ≤ 0 and U2(b) = 2b1 + b2 +1 ≤ 0. So there is local satiation relative to the incentive

constraints at all allocations in S where U1(a) = U2(b) = 0. There is a two-parameter

family of such allocations of the form a = (1−2ε,−1+ε), b = (−1+η, 1−2η) with ε, η < 1
3 .

There is no global satiation, however, because any pooled allocation (ã1, ã2, b̃1, b̃2) with

ã1 = b̃1 > max{ a1, b1 } and ã2 = b̃2 > max{ a2, b2 } is clearly both incentive compatible

and preferred by both types. So the satiation is local and not global. And in a continuum

economy, any coalition with a few extra resources can use them to move a small proportion

of its members up to ã = (ã1, ã2), while leaving all the others at an allocation where local
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satiation occurs. Accordingly, even though individuals may be locally satiated, coalitions

are usually not, as will be shown in the next section.

Part of Prescott and Townsend’s (1984a, 1984b) distinctive contribution was to show

how lotteries may be able to overcome the individual non-convexities which incentive con-

straints create. Of course lotteries are indeed likely to be part of any interim incentive

constrained Pareto efficient allocation. Nevertheless, the allocations they produce will typ-

ically be subject to renegotiation ex post, after the lotteries have been resolved. For this

reason, I shall consider here only “pure” or deterministic rather than “mixed” or random-

ized allocations. In the end, some deterministic type-contingent allocation is bound to

emerge anyway, after any lotteries have been resolved and the allocations they prescribe

have been renegotiated. Apart from the need to allow for such individual non-convexities,

this section has shown how incentive constraints typically mean that, for individuals, we

cannot just assume free disposal as usual, or even the much weaker standard condition of

local non-satiation.

4. Coalitionally Monotone Preferences

Nevertheless, in this continuum economy, make the standard assumption that the prefer-

ences of each type-contingent agent in A × T are weakly monotone in the space <GS of

state-contingent net trade vectors — i.e., that if xat ∈ Xa and if z is any strictly positive

vector of <GS
++, then xat + z ∈ Xa and also Uat(xat + z) > Uat(xat). Then it can be shown

that, for any coalition K ⊂ A of agents with α(K) > 0, their aggregate preferences in the

space <GTS are weakly monotone in the following sense. Given any measurable function

x : K → <GTS satisfying xa ∈ Fa (a.e. in K) which defines an incentive compatible type-

and state-contingent allocation to the members of K, and given any strictly positive vec-

tor y ∈ <G
++, no matter how small, there exists an alternative Pareto superior allocation

x′ : K → <GTS to the members of K, with: (i) x′a ∈ Fa; (ii) Uat(x′at) ≥ Uat(xat) (for all

t ∈ T , for a.e. a ∈ K); (iii) for some subset K ′ ⊂ K of positive measure, Uat(x′at) > Uat(xat)

(for a.e. a ∈ K ′ and all t ∈ T ); and (iv)
∫

K
[µ • (x′ats − xats)]α(da)<−− y. Thus, if any coali-

tion K is allowed to share a little bit more aggregate supply of every physical commodity,

then it can generate a strict Pareto improvement for almost all its own members.
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To show how this follows from weak monotonicity in the space <GS , consider any

combination of: (i) a coalition K ⊂ A of agents with α(K) > 0; (ii) any measurable

function x : K → <GTS satisfying xa ∈ Fa (a.e. a ∈ K); (iii) any strictly positive vector

y ∈ <G
++. Then take two small positive numbers ε and δ, and construct a measurable

subset Kε ⊂ K for which α(Kε) < εα(K), as well as a new allocation x̂ : K → <GTS , with

x̂at ∈ arg maxt′∈T {Uat(xat′ + δy) } if a ∈ Kε, but x̂at = xat otherwise.

This construction obviously gives rise to a new allocation satisfying the incentive con-

straints which are embodied in the definition of each set Fa. Moreover, the new allocation

to the members of K is feasible, and makes all the members of the coalition Kε better off

without changing the net trade vector of any member of K \Kε. Finally, because both S

and T are finite sets, the new allocation also satisfies the feasibility constraint∫
K

[µ • (x̂ats − xats)]α(da)<−− y

provided that both ε and δ are small enough positive numbers. This confirms coalitional

local monotonicity.

5. Reservation Allocations and Regulated Equilibrium

The usual way of achieving Pareto efficient equilibria with externalities and public goods

is to price those externalities (with “Pigovian taxes”) and those public goods (with per-

sonalized Lindahl prices), as well as the usual physical commodities. In our economy with

adverse selection, this approach would require each type-contingent agent (a, t) ∈ A × T

to pay for the net trade vectors of all the type-contingent agents in the set {a} × T . Usu-

ally this approach faces difficulties, however, because of the non-convexities which arise in

the incentive-constrained feasible sets Fa for each agent a ∈ A. See, however, Bisin and

Gottardi (1999) for an analysis which does use such prices.

Accordingly, a more restrictive approach will be adopted, resembling Foley’s (1967)

“political-economic equilibrium” for an economy with public goods. Instead of having

Lindahl prices to clear markets for public goods, Foley’s definition restricts changes in the

vector of public goods and in the lump-sum taxes used to finance their production to those

which are agreed unanimously because they appear to generate Pareto improvements when

each individual regards private goods prices as fixed. In similar fashion, given any agent
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a ∈ A and any specific contingent reservation allocation x̂a ∈ <GTS to agent a’s different

possible types, it will be assumed that agent a is then restricted to choose a complete

type-contingent net trade vector xa ∈ <GTS from the set

Fa(x̂a) := {xa ∈ Fa | ∀t ∈ T : Uat(xat) ≥ Uat(x̂at) }

of incentive compatible contingent allocations which are simultaneously non-inferior for all

the possible types t ∈ T of agent a. Thus, the earlier incentive constraints on type-contingent

allocations have now been supplemented by what amount to “efficiency constraints”.

Now all the ingredients are available to construct the modified Arrow–Debreu econ-

omy. The commodity space is <GTS , the set of all type- and individual state-contingent

net trade vectors in the set G of physical commodities. There is a continuum of (random)

type-contingent agents in the set A × T . A given incentive-compatible and physically fea-

sible reservation allocation x̂ : A → <GTS will always be postulated — it is assumed, of

course, that all the different possible types of agent a share the same incentive-compatible

reservation allocation x̂a ∈ Fa. This could be the autarky allocation, with x̂ats = 0 for all

a ∈ A, t ∈ T and s ∈ S. Note that the different type-contingent agents in {a} × T all have

the same set Fa(x̂a) of feasible net trades in Xa ⊂ <GS , but they have different preferences

represented by a continuous and weakly increasing utility function Uat : Xa → <.

In general, price vectors would be arbitrary non-negative vectors in <GTS
+ , although

possibly normalized because only relative prices matter. In the particular insurance economy

being considered here, however, the continuum of agents ensures perfect risk spreading,

with all aggregate uncertainty removed. It suffices, therefore, to have a single price vector

p ∈ <G
+, with type- and state-contingent prices being derived by multiplying this price

vector by the appropriate probabilities µ(t, s). Thus, the market value of an agent a’s

typical type-contingent net trade vector xa ∈ <GTS is given by p (µ • xa), which is just the

expected value at prices p of agent a’s physical net trade vector.

Various concepts of regulated competitive equilibrium (RCE) can now be defined. The

definitions all differ slightly from the standard Walrasian ones. This is because of the in-

centive constraints, and also because of the constraints involving the reservation allocation

which are being used to internalize the externalities caused by the incentive constraints.

In every case, equilibrium will be defined relative to a reservation allocation, and require
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the reservation allocation itself to be the equilibrium allocation, as if that allocation were

renegotiation proof. In addition, the following definitions will allow for lump-sum redistri-

bution of income, as required in the usual second efficiency theorem of welfare economics.

The usual definition without lump-sum redistribution reduces to a special case.

A compensated RCE (with transfers) is an allocation x̂ : A → <GST , together with a

price vector p ∈ <G
+, such that:

(i) for a.e. a ∈ A, both x̂a ∈ Fa and also xa ∈ Fa(x̂a) =⇒ p (µ • xa) ≥ p (µ • x̂a);

(ii)
∫

A
(µ • x̂a)α(da)<−− 0, p >−− 0 (comp).

Part (i) of the above definition has (almost) every agent a minimize expenditure at the

appropriate price system, subject to the incentive constraints and the constraint that no

type of agent a can be made worse off than with the allocation x̂; part (ii) is the usual

market clearing condition with complementarily slack weak inequalities which imply the

rule of free goods — i.e., if any good is in excess supply, its price must be zero. The

above definition also presumes that lump-sum redistribution is allowed; if it is not, then the

additional requirement that p (µ • x̂a) = 0 (a.e. a ∈ A) would have to be imposed.

Compensated equilibria are useful because it is easier to prove results such as price

characterizations of efficient or core allocations using such equilibria instead of the more

customary uncompensated equilibria which will be defined next. Indeed, an uncompensated

RCE (with transfers) is an allocation x̂ : A→ <GST , together with a price vector p ∈ <G
+,

such that the market clearing and rule of free goods condition (ii) above is satisfied, as well

as the following strengthened version of (i):

(i∗) for almost every a ∈ A, both x̂a ∈ Fa and also, for any other xa ∈ Fa(x̂a), if there

exists some t∗ ∈ T for which Uat∗(xat∗) > Uat∗(x̂at∗), then it must be true that

p (µ • xa) > p (µ • x̂a).

This is now a form of preference maximization, using the incomplete Pareto preference

relation for the entire set of type-contingent agents {a} × T . It requires that any Pareto

improvement to the allocation x̂ for this set of agents must be too expensive, given the

appropriate price system. If there is no lump-sum redistribution, then the additional re-

striction that p (µ • x̂a) = 0 (a.e. a ∈ A) must be met, just as for compensated equilibrium.

13



In standard general equilibrium theory, any uncompensated equilibrium is also a com-

pensated equilibrium because consumers have locally non-satiated preferences throughout

their feasible sets. Unfortunately, incentive constraints make this standard implication false

by allowing points of local satiation in agents’ feasible sets, as discussed in Section 3. This

will complicate the statement of the first efficiency theorem in Section 8. It also means that

not even compensated equilibrium can be shown to exist, in general. Instead, the following

concept is used in the existence proof presented in Section 6 below.

A weak RCE (with transfers) is an allocation x̂ : A → <GST , together with a price

vector p ∈ <G
+, such that the market clearing and rule of free goods condition (ii) above is

satisfied, as well as the following weakened version of (i):

(i′) for almost every a ∈ A, both x̂a ∈ Fa and also, for any other xa ∈ Fa(x̂a), if there

exists some t∗ ∈ T for which Uat∗(xat∗) > Uat∗(x̂at∗), then it must be true that

p (µ • xa) ≥ p (µ • x̂a).

This is a weakening of the corresponding (i) and (i∗) in the definitions of both compensated

and uncompensated equilibrium. The hypothesis of (i′) is the same as that of (i∗), but

stronger than that of (i), because at least one weak inequality has become strict. The

conclusion of (i′) is the same as that of (i), but weaker than that of (i∗), because the

inequality has become weak instead of strict. If preferences for any agent happen to be

locally non-satiated everywhere in the budget set

{xa ∈ Fa | p (µ • xa) ≤ p (µ • x̂a) },

then a weak equilibrium must be a compensated equilibrium for that agent, but need not be

an uncompensated equilibrium. If there is no lump-sum redistribution, then the additional

restriction that p (µ • x̂a) = 0 (a.e. a ∈ A) must be met, just as it must be for compensated

and for uncompensated equilibrium without transfers.
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6. Existence and Multiplicity of Weak Walrasian Equilibria

In order to prove existence of weak Walrasian equilibrium in general, it is necessary to make

one further assumption, to be used in this section only. It is that almost every agent a ∈ A

has the physically feasible net trade set Xa bounded below by a vector xa ∈ <GTS — i.e.,

it must be true that xa ∈ Xa implies xa
>−−xa. Moreover, it must also be true that the mean

lower bound
∫

A
xaα(da) exists and is finite.

With this extra assumption, it is not too difficult to prove that weak equilibrium exists,

and that actually there is a great multiplicity of such equilibria. Indeed, let

∆T := {β ∈ <T | βt ≥ 0 (all t ∈ T );
∑

t∈T
βt = 1 }

denote the unit simplex in <T . Consider then any measurable welfare weight function

a 7→ βa mapping A to the interior of ∆T . This mapping determines positive welfare weights

βat for each type-contingent agent (a, t) ∈ A × T , which sum to one for each agent a ∈

A. Then it will actually be shown that, in the continuum economy, there exists a weak

equilibrium consisting of a physically feasible and incentive compatible allocation x̂ : A →

<GTS together with a price vector p ∈ <G
+, having the following special property: for almost

every agent a ∈ A, any alternative type- and state-contingent net trade vector xa ∈ Fa(x̂a)

which satisfies
∑

t∈T βat [Uat(xat)−Uat(x̂at)] > 0 must also satisfy p (µ•xa) ≥ p (µ•x̂a) = 0.

Thus, if the first inequality in the hypothesis were weak, there would be a compensated

equilibrium in the economy where the feasible set of net trades for each agent a ∈ A

is Fa, and where each agent’s preferences are represented by the welfare weighted utility

function Wβa
(xa) ≡

∑
t∈T βat Uat(xat). And if the second inequality in the implication

were strong, there would be an uncompensated equilibrium in the same economy. Because

of possible local non-satiation, however, the inequality in the hypothesis has to be strict,

thus giving a weak equilibrium in this economy. This is then also a weak equilibrium in

the sense of Section 5, since for almost every agent a ∈ A it must be true that whenever

xa ∈ Fa(x̂a) with Uat(xat) > Uat(x̂at) for at least one t ∈ T , then Wβ(xa) > Wβ(x̂a),

and so p (µ • xa) ≥ p (µ • x̂a). In general, of course, provided that at least one such weak

equilibrium exists for each different welfare weight function a 7→ βa, varying this function

will give rise to different weak equilibrium allocations, so there is indeed a great multiplicity

of such equilibria.
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In fact the existence of such weak equilibria is easy to show. One considers the “weak

compensated demand correspondence” defined by

ξC
a (p;βa) := { x̂a ∈ Fa | p (µ • x̂a) = 0

and Wβa
(xa) > Wβa

(x̂a) =⇒ p (µ • xa) ≥ p (µ • x̂a) }.

It is then straightforward to adapt the approach used by Khan and Yamazaki (1981) to

prove their existence result (Proposition 2, part (a)). Their arguments show that, for each

agent a ∈ A and each fixed set of welfare weights βa ∈ ∆T , the correspondence ξC
a is upper

hemi-continuous as prices vary, and then establish that there is a convergent subsequence of

fixed points whose limit is a price vector giving rise to a weak equilibrium. Their arguments

remain valid even when there may be local satiation.

A special case corresponds to the ex ante economy in which each individual a ∈ A of

type t ∈ T has welfare weights given by βat = λ(t), as if, before discovering t, individual a

were really maximizing ex ante expected utility

∑
t∈T

λ(t)Uat(xat) =
∑

t∈T

∑
s∈S

µ(t, s)uats(xats)

subject to incentive constraints — as in one of the cases discussed by Prescott and Townsend

(1984a).

There is one special case in which both the existence of Walrasian equilibrium is easy

to explain, and the set of all such equilibria is easy to describe. This occurs when there

is only one physical commodity, in which case the only price vector to consider is just the

single real number 1. In this special case it is easy to see that the set of Walrasian equilibria

consists precisely of those incentive compatible allocations x̂ : A→ <TS with the property

that almost every agent a ∈ A has a type- and state-contingent net trade vector x̂a which

is Pareto efficient among the set {xa ∈ Fa | µ • xa = 0 } of incentive compatible and

actuarially fair feasible allocations to all type-contingent agents in the set {a} × T . This

set includes in particular the complete risk pooling allocation in which, for all a ∈ A and all

s ∈ S, one has x̂ats = ŷas, independent of t, where ŷas satisfies
∑

t∈T

∑
s∈S µ(t, s) ŷas = 0

and there is no alternative allocation yas which satisfies both
∑

t∈T

∑
s∈S µ(t, s) yas = 0

and also
∑

s∈S π(s|t)uats(yas) >
∑

s∈S π(s|t)uats(ŷas) for all t ∈ T .
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7. Regulated Markets for Option Contracts

It has been seen how adverse selection, and the incentive constraints to which it gives rise,

create a form of externality. For general continuum economies, Prescott and Townsend

(1984a, b) sought to internalize such externalities by restricting agents to contingent com-

modity allocations which satisfy the incentive constraints. When agents can commit them-

selves to contingent contracts before knowing their own true type, or when their type is

something which they themselves choose (as in a moral hazard problem), this idea works

admirably. If agents trade when they are still symmetrically informed because none of them

yet knows their own type, then the incentive constraints really are self-enforcing to the ex-

tent that agents see understand need to have incentive compatible contracts. Similarly if

there is moral hazard.

When agents already know their own type before they begin to trade, however, there

is no reason why they should choose to satisfy the incentive constraints. Nor does the

Prescott and Townsend approach succeed in this case. Unfortunately this seems to be

the usual adverse selection problem in practice. Yet there is an alternative form of mar-

ket decentralization, based on option contracts rather similar to those which Prescott and

Townsend considered for the cases where they did succeed in making the incentive con-

straints self-enforcing. These option contracts have some resemblance to the multiple con-

tracts considered by Miyazaki (1977), as well as by Maskin and Tirole (1992).

As a first step, notice that an incentive compatible type-contingent contract xa =

〈xat 〉t∈T ∈ Fa is itself really an option contract. The agent of type t who buys xa will

exercise whichever option in the set {xat | t ∈ T } is preferred by such an agent. And, if

xa is indeed incentive compatible, this can be the option xat if the individual is indeed of

type t. Thus, the option contract which is represented by the set {xat | t ∈ T } is effectively

the same as the self-enforcing type-contingent contract xa = 〈xat 〉t∈T ∈ Fa.

Accordingly it is natural to think of an option contract for agent a as some (non-empty

and finite) subset Ca of the space <GS of individual state-contingent net trade vectors.

Given any such contract Ca, agent a when of type t will choose an option ξat(Ca) which

maximizes interim expected utility Uat(x) with respect to x subject to x ∈ Ca. So the option

contract Ca can be regarded as equivalent to the state contingent contract 〈 ξat(Ca) 〉t∈T .

Indeed, provided that the option rule ξat(·) is allowed to vary in an appropriate manner
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for each type-contingent agent (a, t) and for each contract Ca, there is an obvious one-to-

one correspondence between the set of all allocations which can result from such option

contracts and the set of all incentive-compatible contingent commodity contracts.

Formally, then, an option contract for agent a is a non-empty finite set Ca ⊂ <GS . An

option rule for the type-contingent agent (a, t) is a mapping ξa ≡ 〈ξat(·)〉t∈T defined for all

non-empty finite subsets of <GS and satisfying the requirement that, for all t ∈ T ,

ξat(Ca) ∈ arg max
x

{Uat(x) | x ∈ Ca }

everywhere in its domain. Agents’ derived utilities for such contracts are given by

Vat(Ca) ≡ Uat(ξat(Ca)) = max
x
{Uat(x) | x ∈ Ca }

which is actually independent of the option rule ξa, not surprisingly. As remarked above,

the following result is then obvious.

Decentralization Lemma. The type-contingent contract xa ∈ Fa if and only if there

exists an option contract Ca ⊃ {xat | t ∈ T } and an option rule ξa for which xat = ξat(Ca)

(all t ∈ T ).

Proof: See Hammond (1979, Theorem 2, p. 268), for instance.

Given the reservation allocation x̂ with x̂a ∈ Fa for all a ∈ A, let Ĉa := { x̂at | t ∈ T } be

the obvious corresponding option contract with the minimal range of choice. To internalize

the externalities due to incentive constraints, agents in our regulated option market economy

will be restricted to choosing option contracts Ca satisfying Ca ⊃ Ĉa. Or perhaps more

appropriately, they will be charged for the options in Ĉa even if they choose Ca 6⊃ Ĉa.

Thus, given any physical commodity price vector p ∈ <G
+, the corresponding market value

of a contract Ca will depend upon the precise option rule ξa, and be given by the function

va(p, Ca; ξa) := p [µ • ξa(Ca ∪ Ĉa)],

where ξa(Ca∪ Ĉa) ∈ <GTS denotes the type-contingent net trade vector 〈 ξat(Ca∪ Ĉa) 〉t∈T .

That is, va(p, Ca; ξa) is precisely the expected value at prices p of ξa(Ca ∪ Ĉa). The corre-

sponding budget constraint, when there is lump-sum redistribution, is given by

va(p, Ca; ξa) ≤ va(p, Ĉa; ξa) = p (µ • x̂a).
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And when there is no lump-sum redistribution, it is given by

va(p, Ca; ξa) ≤ 0 = va(p, Ĉa; ξa) = p (µ • x̂a).

In either case, agent a can only deviate from Ĉa to Ca if the option rule generates a

contingent net trade vector ξa(Ca ∪ Ĉa) whose expected market value does not exceed that

of ξa(Ĉa). Note that, because the agent is effectively paying for the option contract Ca∪ Ĉa

anyway, in fact Ca ∪ Ĉa might as well be chosen instead of Ca. For this reason, from now

on we restrict attention to option contracts satisfying Ca ⊃ Ĉa.

Note also how there is a one-to-one correspondence between:

(i) the set of all allocations xa ∈ <GST which, for some option rule ξa, result from an

option contract Ca satisfying both the budget constraint va(p, Ca; ξa) ≤ va(p, Ĉa; ξa)

and the restriction that Ca ⊃ Ĉa;

(ii) the set of all incentive compatible and efficiency constrained type-contingent net trade

vectors in xa ∈ Fa(x̂a) satisfying the usual Arrow–Debreu linear budget constraint

p (µ • xa) ≤ p (µ • x̂a).

The valuation function va(p, Ca; ξa) is generally not in any sense a linear function of

the set Ca. Indeed, unless preferences happen to be homothetic and Ĉa = {0}, it will not

even be true in general that va(p, λCa; ξa) = λ va(p, Ca; ξa) for all λ > 0. So the budget

constraint is nearly always non-linear. Of course, in economies with more than one physical

commodity, such non-linear pricing will be vulnerable to manipulation by small coalitions,

as in Gale (1980, 1982), Guesnerie (1981, 1995) and Hammond (1987, 1999). Or it will be

vulnerable to the same agent entering the market several times, as in Mas-Colell (1987).

Then linear pricing may have to be imposed as an additional constraint. But there can still

be non-linear pricing of many insurance contracts. After all, except in the special case of

life insurance, the insurance industry naturally makes it hard for a claimant to collect full

compensation simultaneously on more than one insurance policy covering the same risk, or

to collect a claim twice as large on any single insurance claim after paying twice as much

premium.

Given the option rules ξa for each a ∈ A, the regulated option markets will clear at

the price vector p ∈ <G
+ when the option contracts Ca chosen by the different agents a ∈ A
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satisfy ∫
A

[µ • ξa(Ca)]α(da)<−− 0; p >−− 0 (comp).

All this motivates the following three definitions of different kinds of regulated option

market equilibrium (or ROME). Each definition requires an allocation a 7→ Ĉa of option

contracts to the different agents in A to be an equilibrium relative to itself as a reservation

allocation.

First, an uncompensated ROME is a measurable mapping a 7→ (Ĉa, ξa) determining

the different agents’ type-independent option contracts and their equilibrium option rules

ξa, as well as a physical commodity price vector p ∈ <G
+, such that:

(i) for almost every agent a ∈ A, and for each finite set Ca ⊂ <G and type t ∈ T , the

option rule ξa satisfies ξat(Ca) ∈ arg maxx {Uat(x) | x ∈ Ca };

(ii) for every agent a ∈ A, the market value of each finite option contract Ca ⊂ <GS is

given by va(p, Ca; ξa) = p [µ • ξa(Ca ∪ Ĉa)]

(iii) for almost every agent a ∈ A, the same option contract Ĉa, independent of t, maximizes

the derived utility function Vat(Ca) of each type t ∈ T with respect to Ca, subject to

the budget constraint va(p, Ca; ξa) ≤ va(p, Ĉa; ξa);

(iv) the resulting allocation x̂a (a ∈ A) where x̂at = ξat(Ĉa) (all a ∈ A and t ∈ T ) satisfies

the market clearing condition∫
A

(µ • x̂a)α(da)<−− 0; p >−− 0 (comp).

Second, a compensated ROME is defined similarly as a measurable mapping a 7→

(Ĉa, ξa) and a price vector p ∈ <G
+ which together satisfy (i), (ii) and (iv) above, as well as

the following modified form of condition (iii):

(iii′) for almost every agent a ∈ A, the same option contract Ĉa, independent of t, minimizes

the net expenditure va(p, Ca; ξa) of each type t ∈ T with respect to Ca, subject to the

constraint that the derived utility Vat(Ca) is no less than Vat(Ĉa).

Third, a weak regulated option market equilibrium is defined similarly as a measurable

mapping a 7→ (Ĉa, ξa) and a price vector p ∈ <G
+ which together satisfy (i), (ii) and (iv)

above, as well as the following modified form of condition (iii):
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(iii′′) for almost every agent a ∈ A, and for each type t ∈ T , the same option contract Ĉa

has the property that, whenever Ca satisfies Vat(Ca) > Vat(Ĉa), then va(p, Ca; ξa) ≥

va(p, Ĉa; ξa).

Note that the allocation which corresponds to a regulated option market equilibrium

— uncompensated, compensated, or weak — is given by x̂at := ξat(Ĉa) for all t ∈ T .

This allocation is certainly physically feasible, because of (iv) above. It is also incentive

compatible because of the decentralization lemma above, and in fact it must also be true

that x̂a ∈ Fa(x̂a).

We shall now see how the compensated, uncompensated, and weak equilibria which

were defined in Section 5 above can be implemented through “regulated” markets for such

option contracts. To this end, consider any incentive-compatible allocation x̂a ∈ Fa to

agent a. The corresponding option contract is then the set Ĉa := { x̂at | t ∈ T } ⊂ <GS .

And the corresponding option rule can be any rule ξ̂a satisfying ξ̂at(Ĉa) = x̂at for all t ∈ T .

Option contracts of this kind can obviously be used to deal with the incentive con-

straints. The efficiency constraints introduced in Section 5 require extra restrictions, how-

ever. In fact, it is enough to restrict each agent a to choose option contracts Ca satisfying

Ca ⊃ Ĉa. Then none of agent a’s possible types can possibly be made worse off, because

the set of options available to each never shrinks. In fact, the following is obvious.

Lemma. If both xat = ξ̂at(Ca) and x̂at = ξ̂at(Ĉa) for all t ∈ T , where Ca ⊃ Ĉa, then

xa ∈ Fa(x̂a).

Proof: The above decentralization lemma shows that xa ∈ Fa. But then, by definition of
an option rule, for each t ∈ T one has

Uat(xat) = max
x
{Uat(x) | x ∈ Ca } ≥ max

x
{Uat(x) | x ∈ Ĉa } = Uat(x̂at)

Hence, xa ∈ Fa(x̂a), as required.

It has already been noted that there is a one-to-one correspondence between: (i) the

set of all type-contingent net trade vectors in Fa(x̂a) which satisfy the usual Arrow–Debreu

linear budget constraint p (µ • xa) ≤ p (µ • x̂a); (ii) the set of all those allocations which,

for some suitable option rule ξa, are generated by option contracts Ca which satisfy the
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non-linear budget constraint va(p, Ca; ξa) ≤ va(p, Ĉa; ξa). So the efficiency, core equiva-

lence, and existence theorems, when applied to the fictitious Arrow–Debreu economy with

exogenous incentive and efficiency constraints, imply similar results for regulated option

market equilibria. In particular, as already mentioned above, apart from the modifications

which are needed because of possible local satiation, such equilibria usually exist and are

incentive constrained Pareto efficient, while any incentive constrained Pareto efficient allo-

cation can be achieved through regulated option markets in equilibrium, and the usual core

equivalence theorem is true as well.

8. Efficiency Theorems for Regulated Equilibria with Transfers

An allocation x̂ : A → <GTS is said to be Pareto efficient if there is no other physically

feasible allocation x : A → <GTS satisfying both the incentive and efficiency constraints

which makes a non-null set of type-contingent agents (a, t) ∈ A × T strictly better off. In

other words, there must be no alternative allocation x : A→ <GTS such that:

(i) xa ∈ Fa(x̂a) (a.e. a ∈ A);

(ii)
∫

A
(µ • xa)α(da)<−− 0;

(iii) there is a measurable subset K ⊂ A × T , whose measure [α × λ](K) is positive, such

that Uat(xat) > Uat(x̂at) for all (a, t) ∈ K.

Any allocation x satisfying these three conditions is said to be Pareto superior or a Pareto

improvement to x̂.

Note that these are the suitable definitions of Pareto efficiency and of Pareto improve-

ments, bearing in mind the incentive constraints which arise because of private information.

Also, all potential type-consistent agents should be considered separately, in an economy

where each agent already knows his type when transactions are being arranged. An al-

ternative concept of ex ante Pareto efficiency, taking into account uncertainty about each

agent’s type, would be appropriate if agents were still uncertain about their own types.

Because individual type-contingent agents may have locally satiated preferences, even

this concept of Pareto efficiency is rather too strong to be satisfied by all (uncompensated)

Walrasian equilibria, with or without lump-sum redistribution. Instead, given any measur-

able set of agents K ⊂ A, the allocation x̂ : A → <GTS is said to be weakly K-Pareto
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efficient if there is no Pareto superior allocation x : A → <GTS such that, a.e. a ∈ K,

there exists some type t ∈ T for which Uat(xat) > Uat(x̂at). In other words, no Pareto

improvement can possibly benefit (almost) every agent of the set K. When K is empty,

this is the usual definition of Pareto efficiency. When K = A, this is a standard definition

of weak Pareto efficiency, requiring the absence of any alternative feasible allocation which

makes (almost) every agent better off simultaneously.

First Efficiency Theorem. Suppose that the allocation x̂ : A → <GST and the price

vector p ∈ <G
+ together constitute an uncompensated equilibrium. Then the allocation x̂

must be weakly K-Pareto efficient, where K denotes the set of agents who are not in com-

pensated equilibrium (even though almost all of them are in uncompensated equilibrium)

— i.e.,

K := { a ∈ A | ∃xa ∈ Fa(x̂a) : p (µ • xa) < p (µ • x̂a) }.

Proof: Suppose that the allocation x̂ : A→ <GST is not weakly K-Pareto efficient. Then
there must be an alternative allocation x : A → <GTS , and also some measurable set K ′

for which both α(K ′) > 0 and K ⊂ K ′ ⊂ A, such that xa ∈ Fa(x̂a) (a.e. a ∈ A) and also,
a.e. a ∈ K ′, there exists some type t ∈ T for which Uat(xat) > Uat(x̂at). By definition
of uncompensated equilibrium, it follows that p (µ • xa) > p (µ • x̂a) (a.e. a ∈ K ′). But
by definition of the set K, almost all agents a outside it, and so also outside K ′, are in
compensated equilibrium at x̂a. Therefore p (µ•xa) ≥ p (µ• x̂a) (a.e. a ∈ A\K ′). It follows
that

0 <
∫

K′
p [(µ • xa)− (µ • x̂a)]α(da) +

∫
A\K′

p [(µ • xa)− (µ • x̂a)]α(da)

=
∫

A

p [(µ • xa)− (µ • x̂a)]α(da).

Yet
∫

A
p (µ • x̂a)α(da) = 0, as an implication of the rule of free goods in the definition of

uncompensated equilibrium, and so
∫

A
p (µ • xa)α(da) > 0. This, however, contradicts the

pair of vector inequalities
∫

A
(µ•xa)α(da)<−−0 and p>−−0. So the allocation x̂ must be weakly

K-Pareto efficient after all.

Second Efficiency Theorem. If preferences are coalitionally monotone, then any Pareto

efficient allocation is a compensated equilibrium at some suitable price vector.

Proof: Let x̂ : A → <GTS be any Pareto efficient allocation. For each a ∈ A, define the
set

φ(a) := { x̄a ∈ <G | ∃xa ∈ Fa(x̂a) : x̄a = µ • xa }
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of net demand vectors which are equal to the expected value of some type- and state-
contingent allocation to agent a that is both incentive compatible and Pareto non-inferior
to x̂a. Because of our earlier assumptions, φ : A→→<G is a measurable correspondence
whose values are non-empty. Because A is a continuum, it follows from Hildenbrand (1974,
p. 62, Theorem 1) that

∫
A
φ(a)α(da) is a non-empty convex set. This set cannot intersect

<G
−−, otherwise there would be an allocation x : A→ <GTS for which xa ∈ φ(a) (a.e. a ∈ A)

and also
∫

A
(µ•xa)α(da) � 0. Then, because individual preferences are transitive and those

of the grand coalition A are coalitionally monotone, x̂ could not be Pareto efficient. This
shows that

∫
A
φ(a)α(da) and <G

−− are non-empty disjoint convex subsets of <G, and so
they can be separated by a hyperplane p x = 0 through the origin of <G. So there exists
a non-zero price vector p ∈ <G for which: (i) p x ≥ 0 whenever x ∈

∫
A
φ(a)α(da); and (ii)

p x ≤ 0 whenever x� 0. From (ii) it follows that p must be semi-positive.

Now let x̂ denote
∫

A
(µ • x̂a)α(da). Then x̂ <−− 0 because of feasibility, and also p >−− 0,

so p x̂ ≤ 0. Yet also p x̂ ≥ 0 because x̂a ∈ Fa(x̂a) and so µ • x̂a ∈ φ(a) (a.e. a ∈ A).
Therefore p x̂ = 0. This confirms the rule of free goods. Finally, again because x̂a ∈ Fa(x̂a)
(a.e. a ∈ A), it also follows that, for every measurable subset K ⊂ A, whenever xa ∈ Fa(x̂a)
(a.e. a ∈ K), then µ • xa ∈ φ(a) (a.e. a ∈ K). Therefore∫

K

p (µ • xa)α(da) +
∫

A\K

p (µ • x̂a)α(da) ≥ 0 = p x̂ =
∫

A

p (µ • x̂a)α(da)

from which it follows that ∫
K

p [µ • (xa − x̂a)]α(da) ≥ 0.

Since this is true for every measurable subset K ⊂ A, it follows that

xa ∈ Fa(x̂a) =⇒ p [µ • (xa − x̂a)] ≥ 0

for almost all a ∈ A. Hence, x̂ is a compensated equilibrium with transfers given by p (µ•x̂a)
for all a ∈ A.
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9. The Regulated Core

A coalition is a measurable set K ∈ A whose measure α(K) is positive. The allocation

x̂ : A → <GTS is said to be blocked by such a coalition K if there exists an alternative

allocation x : K → <GTS to its members that satisfies:

(i) xa ∈ Fa(x̂a) for a.e. a ∈ K;

(ii) for all a ∈ K there exists at least one t ∈ T such that Uat(xat) > Uat(x̂at);

(iii)
∫

K
(µ • xa)α(da)<−−

∫
K

(µ • x̂a)α(da).

An allocation x̂ : A→ <GTS is in the regulated core if and only if it is not blocked by

any coalition.

Thus, an allocation is blocked by a coalition K provided that K can generate a Pareto

improvement for all its own type-contingent members in the set K × T by using its own

resources in the reservation allocation, while also satisfying the incentive constraints. The

requirement that a blocking coalition K make no potential agent in K×T worse off is what

distinguishes the regulated core from the many other notions of the core in an economy

with asymmetric or private information — see, for instance, . . .

Theorem (Regulated Core Equivalence). Any regulated uncompensated equilibrium

allocation is in the regulated core. Conversely, provided that preferences are coalitionally

monotone, any allocation in the regulated core is a regulated compensated equilibrium

without transfers at some suitable price vector.

Proof: Suppose x̂ : A→ <GTS is an uncompensated RCE at prices p ∈ <G
+. Suppose that

the allocation x : K → <GTS to the members of the coalition K has the property that,
for each a ∈ K, both xa ∈ Fa(x̂a) and there exists t ∈ T such that Uat(xat) > Uat(x̂at).
Because x̂ : A → <GTS is an uncompensated RCE, it follows that p (µ • xa) > 0 for all
a ∈ K, so p

∫
K

(µ • xa)α(da) > 0. This shows that no coalition can block the allocation x̂,
which must therefore be in the regulated core.

Conversely, let x̂ : A→ <GTS be any allocation in the regulated core. For each a ∈ A
define the set

φ(a) := { x̄a ∈ <G | ∃xa ∈ Fa(x̂a) : x̄a = µ • xa }

as in the proof of the second efficiency theorem above, and then let ψ(a) := φ(a) ∪ {0}.
Once again, like φ, the correspondence ψ : A→→<G is measurable and has values which are
non-empty sets, and so

∫
A
ψ(a)α(da) is a non-empty convex set. This set cannot intersect
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<G
−−, otherwise there would be a measurable set K ⊂ A and an allocation x : K → <GTS

to the members of K for which xa ∈ φ(a) (a.e. a ∈ K) and also
∫

A
(µ•xa)α(da) � 0. Then,

because individual preferences are transitive and those of K are coalitionally monotone, x̂

could not be in the core because K could block it.

Therefore, as in the proof of the second efficiency theorem,
∫

A
ψ(a)α(da) and <G

−−

are non-empty disjoint convex subsets of <G. So there exists a semi-positive price vector
p ∈ <G for which p x ≥ 0 whenever x ∈

∫
A
ψ(a)α(da). Moreover it must be true, as before,

that the rule of free goods
∫

A
p (µ • x̂a)α(da) = 0 is satisfied.

As before, because x̂a ∈ Fa(x̂a) (a.e. a ∈ A), it follows that, for every measurable
subset K ⊂ A, whenever xa ∈ Fa(x̂a) ∪ {0} (a.e. a ∈ K), then µ • xa ∈ ψ(a) (a.e. a ∈ K),
and so ∫

K

p (µ • xa)α(da) +
∫

A\K

p (µ • x̂a)α(da) ≥ 0 =
∫

A

p (µ • x̂a)α(da).

In particular, for every measurable subset K ⊂ A, it must then be true that∫
K

p [µ • (xa − x̂a)]α(da) ≥ 0.

From this it follows that

xa ∈ Fa(x̂a) =⇒ p [µ • (xa − x̂a)] ≥ 0

for almost all a ∈ A, as required for compensated equilibrium (with transfers). But now, in
addition, taking xa = 0 (a.e. a ∈ K) implies that∫

A\K

p (µ • x̂a)α(da) ≥ 0 =
∫

A

p (µ • x̂a)α(da)

or that
∫

K
p (µ • x̂a) ≤ 0 for every measurable subset K ⊂ A. Therefore p (µ • x̂a) ≤ 0

for almost all a ∈ A. But then the rule of free goods
∫

A
p (µ • x̂a)α(da) = 0 implies that

p (µ • x̂a) = 0 for almost all a ∈ A, thus showing that the core allocation x̂ is actually a
compensated equilibrium without transfers.
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10. Comparison with Other Work

At first sight, these results seem clearly to contradict Rothschild and Stiglitz (1976) and

the extensive work which has grown out of that article on non-existence and inefficiency of

equilibrium in insurance markets subject to adverse selection. It is important, in fact, to

see why there is no such contradiction. The reason is that their definition of competitive

equilibrium is different. Rothschild and Stiglitz look for allocations in which no firm could

enter and make a profit by offering new insurance contracts. Their work shows that the

efficiently regulated option market equilibria discussed in this paper are often vulnerable

to entry by firms seeking profit opportunities. Indeed, with pure risk types, the complete

pooling equilibrium investigated in Section 6 is always vulnerable to entry, as Rothschild

and Stiglitz showed. If efficiently regulated entry into the insurance industry turns out to

be impossible, that imposes an additional constraint which should really be reflected in the

notion of constrained Pareto efficiency that we use.

In standard general equilibrium theory, a counterpart to the Rothschild–Stiglitz notion

of equilibrium with free entry is the core. Typically, in an economy whose consumers

have continuous locally non-satiated preferences and in which free disposal is possible, an

allocation can be blocked or improved by a coalition if and only if a firm could enter and

earn a profit from arranging net trades close to, but slightly less than, those which the

blocking coalition uses. So any Walrasian equilibrium is an equilibrium with free entry, and

in an economy with a continuum of agents, the usual core equivalence theorem of Aumann

(1964) and Hildenbrand (1974) shows that any equilibrium with free entry is a Walrasian

equilibrium. When there is a Walrasian equilibrium, the core is non-empty, so there is

an equilibrium with free entry. Because all core allocations are Pareto efficient, so are all

equilibria with free entry. These results even remain true for an economy with adverse

selection, provided that the core is defined in a way which takes account of the need for

each blocking coalition to respect the incentive constraints due to adverse selection, and

provided that the distinction between compensated and uncompensated equilibria remains

unimportant.

With adverse selection, however, there is a crucial difference between the usual core and

the Rothschild–Stiglitz concept of equilibrium with free entry. The latter allows coalitions

to form whose membership is not a fixed set of individuals, but rather a group who select
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themselves. An entering firm offers new option contracts, in effect, and can do so in a

way which “creams off” the good risks who are the only agents to benefit from these

contracts. This makes it easier to earn a profit from a new contract than it would be if

every entering insurance firm were forced to offer new contracts which all members of a fixed

set of individuals wanted to accept, regardless of their true type. Yet the latter is what is

involved in finding a blocking coalition in the usual sense. The easier notion of blocking used

by Rothschild and Stiglitz explains why they find that there may be no equilibrium with

free entry. Indeed, the usual core may be empty. The positive results derived in Section 9

rely on restricting blocking and considering the regulated core.

Finally, these results should be compared with those of Greenwald and Stiglitz (1986,

1988), who demonstrate the generic Pareto inefficiency of competitive equilibria with adverse

selection and moral hazard. They do so, however, after assuming linear commodity pricing,

whereas the equilibria in regulated option markets considered here involve non-linear pricing.

If linear pricing is necessary to ensure multilateral incentive compatibility when trading on

the side is possible, as in Gale (1980, 1982), Guesnerie (1981, 1995) and Hammond (1987,

1999), then our notion of incentive-constrained efficiency should change accordingly.

Efficiently regulated markets of the kind considered in this paper clearly remain far

from reality. One can immediately think of many reasons for this, but some of the most

interesting are perhaps additional incentive constraints. These may be due to difficulties

in enforcing non-linear pricing and credit rationing schemes, as mentioned in the previous

paragraph, or to difficulties in regulating entry by competing firms, in arranging effective

monitoring without wasteful duplication, as well as in regulating the regulators, etc. These

all seem important issues. They deserve attention in future work which goes beyond the

scope of this paper.
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