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1. Introduction

In recent years, the methods of lattice programming have been used widely and with

considerable success to deal with problems in economic theory.2 The contribution of

these methods are twofold. First, they have turned out be very useful in addressing

comparative statics problems which arise in many optimization or game theoretic

models. Second, they have contributed to our understanding of these problems be-

cause they have helped us to identify the key mathematical features which permit

their solution. The success of these methods have highlighted the underlying struc-

tural similarity of many of the seemingly different comparative statics problems which

arise in economic theory.

The general theory of monotone comparative statics can be applied on abstract

lattices, but we will confine our discussion in this introduction, and indeed in this

paper, to the Euclidean space Rl with the standard product order, i.e, x ≥ y if

xi ≥ yi for all i = 1, 2, .., l. In this case, the supremum of two points x and x′,

denoted by x ∨ x′, has (x ∨ x′)i = max{xi, x
′
i} and their infimum, x ∧ x′, is given by

(x∧ x′)i = min{xi, x
′
i}. There are essentially two types of comparative statics results

in this theory. One concerns the change in the solution to a maximization problem

as the objective function changes; the other concerns the change in the solution to a

maximization problem when the constraint set changes.

The first type of results can be loosely described thus. Let X be a sublattice

of Rl and consider the problem of maximizing the function f(·, t) : X → R in the

sublattice X. To keep things simple, let the parameter t be some scalar. When will

the solution of this problem increase (in the product order) with t; in other words,

when is there monotone comparative statics? One answer, which, in a certain sense,

is the best that can be given says the following: the optimal solution increases with

t if f is a quasisupermodular function of x and has the single crossing property in

(x, t) (see Milgrom and Shannon (1992)).

2For a textbook introduction to this theory see Topkis (1998).

2



For a result of the second type, let X be a sublattice and f : X → R an objective

function; we are interested in comparing the solution obtained from maximizing f

in some constraint set C with the solution obtained from maximizing f in another

constraint set C ′. A standard result on this problem says the following: when C ′ is

greater than C in the strong set order (induced by the product order on Rl), and if

f is quasisupermodular, then the optimal solution will increase when the constraint

set changes from C to C ′ (see Milgrom and Shannon (1992)).

If one looks at the applications of these monotone comparative statics results in

the economics literature, one sees that the vast majority of applications are in fact

applications of results of the first, rather than the second, type. The reason why the

first type of results have found such broad application is because, in many settings, the

assumptions required of the objective function - quasisupermodularity and the single

crossing property - have turned out to be economically interpretable and intuitive.

On the other hand, comparative statics results of the second type have not gen-

erally found much application. This is certainly not because problems of the second

type do not arise naturally in economic settings - in fact, they are very common. For

example, we may wish to know what happens to a firm’s output when it’s produc-

tion set changes; or to a consumer’s demand when an increase in income causes her

budget set to grow; or to a firm’s profit maximizing output or price when its demand

curve (which can be interpreted as a constraint) changes. The reason why monotone

comparative statics results of the second type are less often used is simply because

in many situations involving constraint set changes the standard results are just not

applicable. By definition, the constraint set C ′ is greater than C in the strong set

order (induced by the product order ≥) if for any x′ in C ′ and x in C, the supremum

x′∨x is in C ′ and the infimum x′∧x is in C. In many settings, including the examples

we have just listed, this condition is very restrictive. For example, it is quite clear

that, keeping prices fixed, the budget set at a high income will not be greater in the
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strong set order than a budget set at a low income.3

The objective of this paper is to propose a new comparative statics theorem ap-

plicable to comparative statics problems of the second type. The theorem enlarges

the scope of application of the existing results by adding to the types of constraint

set changes which are comparable. Specifically, we define a new type of ordering

on sets called the generalized strong set order; if C ′ is greater than C in the strong

set order then C ′ will be greater than C in the generalized strong set order, but

sets can be comparable with respect to the generalized strong set order which are

not comparable in the strong set order. The penalty of being more permissive in

this respect is that stronger conditions will now have to be imposed on the objective

function before one can guarantee monotone comparative statics. In particular, the

objective function must satisfy a property stronger than quasisupermodularity which

we call quasiconcavemodularity. A sufficient condition for f to be quasisupermodular

is that it is supermodular; a sufficient condition for f to be quasiconcavemodular is

that it is supermodular and concave. In many applications, an objective function can

reasonably be expected to satisfy both conditions.

The paper is organized as follows. The next section develops the theory of com-

parative statics for constrained optimization problems. Following that, we have two

sections dealing with applications to consumer and producer theory respectively. Sec-

tion 5 specializes the theory to the two variable case; the geometry of this case is

particularly simple and there are also many applications. In Section 6, we make a

few observations on the robustness of our results, before concluding in Section 7.

2. The Theory

We endow Rl with the product order, which says that x ≥ y if xi ≥ yi for i =

3Formally, we define the budget set B(p, w) = {x ∈ Rl
+ : p ·x ≤ w}, where p is the vector of prices

and w is income. It is clear that when w′′ > w′, B(p, w′′) does not dominate B(p, w′) in the strong

set order. For x′′ in B(p, w′′) and x′ in B(p, w′), their infimum is in B(p, w′) but the supremum will

not be in B(p, w′′).
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1, 2, ...l. With this order, Rl becomes a lattice, i.e., it is a partially ordered set where

there is a supremum and an infimum to every pair of points in Rl. We denote the

supremum and infimum of x and y by x ∨ y and x ∧ y respectively; it is not hard to

see that

x ∨ y = (max{x1, y1}, max{x2, y2}, ..., max{xl, yl}) and

x ∧ y = (min{x1, y1}, min{x2, y2}, ..., min{xl, yl})

A subset X of Rl is a sublattice (of Rl) if for every pair of points x and y in X, both

x∨ y and x∧ y are also contained in X. A function f : X → R is supermodular if for

any x′ and y in X,

f(x′ ∨ y)− f(y) ≥ f(x′)− f(x′ ∧ y). (1)

When f is a C2 function defined on Rl, the supermodularity of f is equivalent to

∂2f/∂xi∂xj ≥ 0 for all i 6= j (see Topkis (1998)). For our purposes, it is important

that one has a good geometrical picture of supermodularity. When x′ and y are

ordered, the inequality holds trivially, so let us assume that they are not ordered. In

that case, it is not hard to check that the four points x′, y, x′∨y and x′∧y lie on a two

dimensional plane and form a rectangle in the following sense: x′−x′∧y = x′∨y−y,

x′ − x′ ∨ y = x′ ∧ y − y, and x′ − x′ ∧ y is orthogonal to y − x′ ∧ y (see Figure 1). In

essence, supermodularity requires that the difference in the function’s value on the

right side of the rectangle, f(x′ ∨ y) − f(y) be bigger than the difference on the left

side, which is f(x′)− f(x′ ∧ y).

Concavemodular functions

For the comparative statics results we have in mind, a property stronger than

supermodularity is needed of the objective function. We now assume that X, in

addition to being a sublattice, is also a convex set. The function f is i-concavemodular

if for any x′ and y in X with x′i > yi, and for all λ in [0, 1],

f(x′ ∨ y − λvx′)− f(y) ≥ f(x′)− f(x′ ∧ y + λvx′), (2)
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where vx′ = x′ ∨ y − x′. Note that this inequality holds trivially if x′ and y are

ordered, so let us assume that it is not. In that case, Figure 1 gives us a good

geometrical appreciation of the property. The vector vx′ is just the horizontal side

of the rectangle; the points x′, y, x′ ∧ y + λvx′ and x′ ∨ y − λvx′ form a backward

bending parallelogram and they are all in X because X is a convex sublattice. For f

to be i-concavemodular, we require that the difference in the function’s value along

the right side of the parallelogram be greater than the difference along the left side.

Note that (2) is required to hold for all values of λ in [0, 1]; in other words, for all the

parallelograms formed as λ varies. When λ = 0, (2) is just the ‘rectangular inequality’

(1). Thus, it is clear that if f is i-concavemodular for all i (in which case we will refer

to f as a concavemodular function), then it must also be supermodular.

Comparative statics results which rely on concavemodularity are only useful to the

extent that we can show that this property holds under reasonable conditions. For this

reason, our next result is important because it shows that concavemodularity arises

from the marriage of two conditions which, in many situations, can both be expected

to hold: one is supermodularity and the other is a concavity-type assumption. The

function f : X → R is said to be concave (convex) in direction v if for all x in X, the

map from the scalar t to f(x + tv) is concave (convex). The domain of this map is

taken to be the largest possible interval such that x + tv lies in X. We say that f is

i-concave (i-convex) if it is concave (convex) in all directions v > 0 with vi = 0.

Proposition 1: Let X ⊂ Rl be a convex sublattice. Then f : X → R is i-

concavemodular if it is supermodular and i-concave.

Proof: Let x′ and y be two elements in X with x′i > yi (as in Figure 1). The

expression f(x′ ∨ y− λvx′)− f(y) may be decomposed into [f(x′ ∨ y− λvx′)− f(x′ ∨
y)] + [f(x′ ∨ y)− f(y)]. Note that vx′ i = 0, so by the fact that f is i-concave,

f(x′ ∨ y − λvx′)− f(x′ ∨ y) ≥ f(x′ ∨ y − λvx′ − (1− λ)vx′)− f(x′ ∨ y − (1− λ)vx′)

= f(x′)− f(x′ + λvx′).
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By the supermodularity of f , we have f(x′∨y)−f(y) ≥ f(x′+λvx′)−f(x′∧y+λvx′).

Together these two inequalities imply that

f(x′ ∨ y − λvx′)− f(y) ≥ [f(x′)− f(x′ + λvx′)] + [f(x′ + λvx′)− f(x′ ∧ y + λvx′)]

= f(x′)− f(x′ ∧ y + λvx′),

as we require. QED

We refer to a function as partially concave if it is i-concave for all i. Clearly this

property is implied by the concavity of f , but it is a weaker property; for example, the

function f : Rl
++ → R given by f(x1, x2) = x1x2 is partially concave but not concave.

It follows from Proposition 1 that a function is concavemodular if it is supermodular

and partially concave. A natural question then is whether concavemodularity implies

partial concavity (that it implies supermodularity is obvious). In essence the answer

to this question is ‘yes’; we deal with this and related issues in Appendix B.

Quasiconcavemodular functions

It has been emphasized by Milgrom and Shannon (1994) in their wide ranging and

influential study of comparative statics that comparative statics results rely on the

ordinal, rather than the cardinal, properties of the objective function. For that reason,

they introduced an ordinal version of supermodularity: the function f : X → R is

quasisupermodular if f(x′) ≥ (>)f(x′ ∧ y) implies f(x′ ∨ y) ≥ (>)f(y). Analogously,

we say that f is i-quasiconcavemodular if for any x′ and y in X with x
′
i > yi, and for

any λ in [0, 1],

f(x′) ≥ (>)f(x′ ∧ y + λvx′) =⇒ f(x′ ∨ y − λvx′) ≥ (>)f(y) (3)

(Recall that vx′ = x′ ∨ y − x′.) We call a function quasiconcavemodular if it is i-

quasiconcavemodular for i = 1, 2, ...l. The property of i-quasiconcavemodularity is

ordinal in the sense that if f is i-quasiconcavemodular then so is φ◦f , for any strictly

increasing function φ : R → R. It is clear that any i-concavemodular function is also

7



i-quasiconcavemodular and that the latter is a strictly weaker property. In certain

applications, this distinction is crucial in the sense that the objective function can be

shown to satisfy one property but not the other (see Example 8 in Section 5).

Since i-concavemodularity is preserved by addition, we know that, for any w in Rl,

the map gw : X → R given by gw(x) = f(x)−w·x is also an i-concavemodular function

provided f is i-concavemodular. The next result shows that i-quasiconcavemodularity

of the functions gw imply the i-concavemodularity of f . This result is analogous to

Theorem 10 in Milgrom and Shannon (1994); we prove it in Appendix A.

Proposition 2: Let X ⊆ Rl be a convex sublattice of Rl. (i) The function

f : X → R is i-concavemodular if for all wi in R, the map gwi
, bringing x in

X to f(x) − wixi is i-quasiconcavemodular. (ii) Provided f is increasing, f is i-

concavemodular if for all w in Rl
+, the map gw, bring x in X to f(x) − w · x is

i-quasiconcavemodular.

The significance of this proposition is that in those situations where we require

quasiconcavemodularity for all functions in the class {gw}w∈Rl or {gw}w∈Rl
+
, we must

necessarily impose concavemodularity on f . Of course these classes of functions do

indeed arise naturally in comparative statics problems, since it can be interpreted as

a profit function, with f(x) as the revenue of the firm when it produces the output

vector x and with wi as the unit cost of producing good i (so w · x is the total cost

of producing x).

The Generalized Strong Set Order

Given that our ultimate goal is to obtain results which say how optimal solutions

vary with parameters and constraints, we must first develop some way of comparing

constraint sets. In standard monotone comparative statics, the order typically used

is the strong set order introduced by A. Veinott (see Topkis (1998)). In this order, a

set V ′′ is greater than V ′ if for any y in V ′′ and x′ in V ′, x′ ∨ y is in V ′′ and x′ ∧ y

is in V ′. As we had indicated in the introduction, the strong set order is, in a sense,
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too strong because it does not always successfully order pairs of constraint sets whose

optimal solutions we wish to compare. What we need is a weaker notion of order,

which we now define.

Let C ′ and C ′′ be subsets of the convex sublattice X. We say that C ′′ is i-greater

than (or i-dominates) C ′ in the generalized strong set order (and write C ′′ ≥i C ′) if

for any x′ be in C ′ and y in C ′′, with x′i > yi, there is some λ in [0, 1] such that

x′ ∧ y + λvx′ is in C ′ and x′ ∨ y− λvx′ is in C ′′. Pictorially, this condition just means

that one can find two other points, in addition to x′ and y, one in C ′ and one in C ′′

such that the four points form a backward bending parallelogram. For the special

case of x′ > y, vx′ = 0, so this condition requires that y be in C ′ and x′ be in C ′′. We

say that C ′′ is greater than (or dominates) C ′ in the generalized strong order (and

write C ′′ ≥ C ′) if C ′′ ≥i C ′ for all i = 1, 2, ...l.

Notice that the point x′∨y−λvx′ which lies in C ′′ is greater than x′, and that the

point x′ ∧ y + λvx′ which lies in C ′ is smaller than y. Our next claim is then obvious.

Proposition 3: Let C ′ and C ′′ be nonempty subsets of a convex sublattice X in

Rl. (i) If C ′′ ≥i C ′, then for any x′ in C ′, there is x′′ in C ′′ such that x′′i ≥ x′i and

for any x′′ in C ′′ there is x′ in C ′ such that x′′i ≥ x′i. (ii) If C ′′ ≥ C ′, then for any x′

in C ′, there is x′′ in C ′′ such that x′′ ≥ x′ and for any x′′ in C ′′ there is x′ in C ′ such

that x′′ ≥ x′. 4

As a simple illustration, let C ′′ = {(1 + t, 2), (2 + t, 1)} and C ′ = {(1, 2), (2, 1)}.
For any t > 0 it is easy to see that C ′′ >2 C ′, though for t in (0, 1), C ′′ 6>1 C ′. We

do have C ′′ >1 C ′ if t ≥ 1 so in this case C ′′ > C ′. Note that C ′′ is certainly not

a superset of C ′, so a set can be greater than another in the generalized strong set

order without it being a superset of the other set. That said, the constraint sets one

encounters in applications are often ordered in the set-theoretic sense. Indeed they

often obey free disposal as well; a subset C of X has this property if whenever x is

4Beware of the tricky logic in this proposition. Parts (i) and (ii) both follow immediately from

the definitions, but (ii) does not follow logically from (i).

9



in C and y in X satisfies y < x then y is in C. The next result, which we prove in

Appendix A, gives a characterization of the generalized strong set order for such sets.

Proposition 4: Let C ′ and C ′′ be subsets of a convex sublattice X of Rl which

are both closed, obey free disposal and satisfy C ′ ⊆ C ′′. Then C ′′ >i C ′ if and only if

the following property (?) holds:

whenever x and u are vectors with u > 0, ui = 0, x in C ′, x+u in C ′′ and x+ tu /∈ C ′

for all t > 0, then for any µ > 0, and u′ > 0 which is orthogonal to u with u′i > 0,

x− µu + u′ ∈ C ′ =⇒ (x + u)− µu + u′ ∈ C ′′.

The proposition says, in a specific formal sense, that the set of substitution pos-

sibilities which favor variable i in the constraint set C ′′ is larger than the set of

substitution possibilities which favor i in the constraint set C ′. Property (?) consid-

ers two points x in C ′ and x + u in C ′′, where u is positive and orthogonal to the

direction i; furthermore, the point x is on the ‘edge’ of C ′ in the sense that it is not

possible to add anything in the direction of u and still stay within C ′. Suppose that

it is possible at x to substitute µu with u′ and still stay within the constraint set C ′

- note that this is a substitution which ‘favors i’ because ui = 0 and u′i > 0 - then

property (?) requires that it is possible to make the same substitution at the point

x + u in C ′′ and stay within the C ′′.

We wish to develop some results which will allow us to generate classes of ordered

sets, but before we do that we need to introduce some new functional properties. The

function f : X → R is submodular if for any x′ and y in X, we have f(x′∨y)−f(y) ≤
f(x′)− f(x′ ∧ y). It is i-convexmodular if for any x′ and y in X with x′i > yi, and for

all λ in [0, 1],

f(x′ ∨ y − λvx′)− f(y) ≤ f(x′)− f(x′ ∧ y + λvx′), (4)

where vx′ = x′ ∨ y − x′. We refer to f as convexmodular if it is i-convexmodular for

all i. Like concavemodularity, convexmodularity has a weaker, ordinal counterpart.
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The function f is i-quasiconvexmodular if for any x′ and y in X, with x
′
i > yi, and

for any λ in [0, 1],

f(x′) ≤ (<)f(x′ ∧ y + λvx′) =⇒ f(x′ ∨ y − λvx′) ≤ (<)f(y) (5)

We say that f is quasiconvexmodular if it is i-quasiconvexmodular for all i.

Proposition 5: Let X ⊂ Rl be a convex sublattice. Then f : X → R is i-

convexmodular if it is submodular and i-convex.

Proposition 5 is analogous to Proposition 1 and has essentially the same proof.

The next result is very useful and relates quasiconvexmodularity with the generalized

strong set order.

Proposition 6: (i) Suppose that C : X → R is a continuous, increasing, and

i-quasiconvexmodular function. Then

C−1((−∞, k′′]) ≥i C−1((−∞, k′]) whenever k′′ ≥ k′. (6)

(ii) Suppose that C : X → R is continuous, strictly increasing, and obeys property

(6). Then C is i-quasiconvexmodular.5

Proof: We prove (i) here; the proof of (ii) is in Appendix A. Consider x′ in

C−1((−∞, k′]) and y in C−1((−∞, k′′]) with x′i > y. The problem is trivial if y is also

in C−1((−∞, k′]), so we assume that it is not. This means that C(y) > k′. On the

other hand, C(x′∧y) ≤ k′ since C is increasing. Note that vx′ = x′∨y−x′ = y−x′∧y

is a positive vector, so by the fact that C is increasing and continuous, there is λ in

[0, 1] such that C(x′ ∧ y + λvx′) = k. Thus C(x′)− C(x′ ∧ y + λvx′) ≤ 0. Since C is

i-quasiconvexmodular, we must also have C(x′ ∨ y − λvx′) ≤ C(y), so x′ ∨ y − λvx′ is

in C−1((−∞, k′′]). QED

5Throughout this paper when we say that something ‘is increasing’, ‘increases’ or ‘rises’, we mean

to say that it is nondecreasing. Most of the inequalities in this paper are weak, so this convention

leads to less awkwardness. When we want an inequality to be strict, we will say so explicitly, as in

‘strictly increasing,’ etc.
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Proposition 5 and 6 together means that if C is submodular and i-convex, then

(6) will hold, and if C is submodular and i-convex for all i, then C−1((−∞, k′′]) ≥
C−1((−∞, k′]) whenever k′′ ≥ k′. Another useful way of generating comparable sets

is given by the next result, whose proof is found in Appendix A.

Proposition 7: Let X̃ be a convex sublattice of Rl−1, I an interval of R, and

G : X̃ → R a continuous, supermodular, concave and decreasing function. Then if

s′′ ≥ s′ > 0, we have S ′′ ≥l S ′ where S ′′ = {(x̃, xl) ∈ Rl−1 × I : x̃ ∈ X̃, xl ≤ s′′G(x̃)}
and S ′ is similarly defined.

Comparative Statics

Let X be a convex sublattice of Rl and let F be a real valued function defined on

X. We say that F has the i-increasing property if whenever C ′′ ≥i C ′ we also have

arg maxx∈C′′ F (x) ≥i arg maxx∈C′ F (x). We say that F has the increasing property if

it is i-increasing for all i; in particular, this means that whenever C ′′ ≥ C ′, we also

have arg maxx∈C′′ F (x) ≥ arg maxx∈C′ F (x). If F has the i-increasing property, then

Proposition 3(i) tells us the following:

(a) whenever C ′′ ≥i C ′ and x′ is in arg maxx∈C′ F (x), and arg maxx∈C′′ F (x) is

nonempty, then there is x′′ in arg maxx∈C′′ F (x) such that x′′i ≥ x′i (x′′ ≥ x′);

(b) whenever C ′′ ≥i C ′ and x′′ is in arg maxx∈C′′ F (x), and arg maxx∈C′ F (x) is

nonempty, then there is x′ in arg maxx∈C′ F (x) such that x′′i ≥ x′i (x′′ ≥ x′).

If F has the increasing property then in addition to (a) and (b), Proposition 3(ii)

tells us that the following is also true:

(c) whenever C ′′ ≥ C ′ and x′ is in arg maxx∈C′ F (x), and arg maxx∈C′′ F (x) is nonempty,

then there is x′′ in arg maxx∈C′′ F (x) such that x′′ ≥ x′;

(d) whenever C ′′ ≥ C ′ and x′′ is in arg maxx∈C′′ F (x), and arg maxx∈C′ F (x) is

nonempty, then there is x′ in arg maxx∈C′ F (x) such that x′′ ≥ x′.

The main comparative statics result of this paper says that the i-increasing prop-

erty is equivalent to the i-quasiconcavemodularity of the objective function. It is well
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known that greater sets (in the sense of the strong set order) lead to greater solution

sets (with respect to the same set order) when the objective function is supermodular.

(The first version of this result is due to A. Veinott; see Topkis (1978) for an early

statement of this result). More precisely, the quasisupermodularity of the objective

function is both sufficient and necessary for this property (see Milgrom and Shan-

non (1994)). The proof of our comparative statics theorem has a similar structure to

those earlier proofs. Indeed, we have developed the theory in the way we did precisely

so that we can now adopt the arguments they employed in their proofs, subject to

certain natural modifications.

Theorem 1: Let X be a convex sublattice of Rl and let F be a real valued function

defined on X. Then F is i-quasiconcavemodular (quasiconcavemodular) if and only

if it has the i-increasing property (increasing property).

Proof: The bracketed version of the theorem follows logically from the unbracketed

version, so we shall only prove the latter. We first prove sufficiency. Assume that

C ′′ >i C ′ and let x′ be in arg maxx∈C′ F (x) and let y be in arg maxx∈C′′ F (x). Suppose

that x′i > yi; there is some λ̃ in [0, 1] such that x′∧y+λ̃vx′ is in C ′ and x′∨y−λ̃vx′ is in

C ′′. By revealed preference, F (x′) ≥ F (x′∧y+λ̃vx′) and by i-quasiconcavemodularity,

F (x′ ∨ y − λ̃vx′) ≥ F (y), so x′ ∨ y − λ̃vx′ is in arg maxx∈C′′ F (x). If F (x′) > F (x′ ∧
y + λ̃vx′), then i-quasiconcavemodularity implies that F (x′ ∨ y − λ̃vx′) > F (y) which

contradicts the assumption that y maximizes F in C ′′. So we must also have x′ ∧ y +

λ̃vx′ in arg maxx∈C′ F (x).

We prove the necessity part of the theorem by contradiction. Let x′ and y be ele-

ments in X with x′i > yi. There are two possible violations of i-quasiconcavemodularity.

One possibility is that there is λ∗ in [0, 1] such that F (x′) ≥ F (x′ ∧ y + λ∗vx′) but

F (x′ ∨ y − λ∗vx′) < F (y). In this case, let C ′ be the set with elements x′ and

x′ ∧ y + λ∗vx′ and let C ′′ be the set with elements x′ ∨ y− λ∗vx′ and y. Then, clearly,

C ′′ >i C ′, x′ maximizes F in C ′ and y uniquely maximizes F in C ′′. This violates the

monotonic property since x′i > yi.
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The other possible violation of i-quasiconcavemodularity is that there is λ∗ in [0, 1]

such that F (x′) > F (x′ ∧ y + λ∗vx′) but F (x′ ∨ y − λ∗vx′) = F (y). In this case, with

C ′ and C ′′ defined as above, y maximizes F in C ′′ while x′ is the unique maximizer

of F in C ′. Again this violates the monotonic property. QED

The next result follows immediately from Theorem 1 and Proposition 6(i). Note

also that by Propositions 1 and 5 we can easily modify the assumptions in the next re-

sult: instead of i-quasiconcavemodularity, we can assume that F is supermodular and

i-concave, while we can replace the i-quasiconvexmodularity of C by submodularity

and i-convexity.

Corollary 1: Let F : X → R be a i-quasiconcavemodular function and let

C : X → be a continuous, increasing and i-quasiconvexmodular function. Then the

following holds: whenever k′′ ≥ k′, we have arg maxx∈C′′ F (x) ≥i arg maxx∈C′ F (x).

(In this case, we shall say that the optimal value of i increases/rises with k, but bear

in mind that we are not claiming that the optimal solutions are unique.)

In certain problems, optima before and after changes to both the constraint set and

the objective function are compared. For these problems, the next result is useful.

In essence, it captures the idea that a change in the objective function which favors

variable i will lead to an increase in the optimal value if i. Note that the proposition

refers to the set Ci; given any set C, Ci is the set {r ∈ R : xi = r for some x ∈ X}.
Proposition 8: Let C be a subset of Rl and let T be a subset of R. The func-

tion F maps C × T to R, with F (x, t) = F̄ (x) + f(xi, t) where f : Ci × T → R

is supermodular in (xi, t). Suppose that x′ is in argmax{x∈C}F (x, t′) and x′′ is in

argmax{x∈C}F (x, t′′). If x′i > x′′i , then x′ is in argmax{x∈C}F (x, t′′) and x′′ is in

argmax{x∈C}F (x, t′). So, in particular, argmax{x∈C}F (x, t′′) >i argmax{x∈C}F (x, t′).6

6The parameter change to the objective function considered in this proposition is rather special,

but it arises sufficiently often in applications for this simple result to be relevant. In R2, it is known

that a conclusion similar to that in Proposition 8 is true for any parameter change obeying the

Spence-Mirrlees single crossing property (see Theorems 3 and 4 in Milgrom and Shannon (1994)). It
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Proof: By revealed preference F̄ (x′)+f(x′i, t
′) ≥ F̄ (x′′)+f(x′′i , t

′). Since f(x′′i , t
′)−

f(x′i, t
′) ≥ f(x′′i , t

′′)−f(x′i, t
′′) by the supermodularity of f , we have F̄ (x′)+f(x′i, t

′′) ≥
F̄ (x′′)+f(x′′i , t

′′), which means that x′ is also in argmax{x∈C}F (x, t′′). To see that x′′ is

in argmax{x∈C}F (x, t′), suppose it is not, so that F̄ (x′)+ f(x′i, t
′) > F̄ (x′′)+ f(x′′i , t

′).

By the supermodularity of f again, we have F̄ (x′) + f(x′i, t
′′) > F̄ (x′′) + f(x′′i , t

′′),

which contradicts our assumption that x′′ is in argmax{x∈C}F (x, t′′). QED

To motivate the formal results we have developed so far, we will now consider

their applications, beginning with their applications to demand theory.

4. Applications to Demand Theory

We have in mind a consumer who maximizes a utility function U : X → R, where

X = Rl
++ or Rl

+, while facing a budget constraint. At the price p in Rl
+, and income

w > 0, we denote his budget set by B(p, w), where B(p, w) = {x ∈ X : p ·x ≤ w}. We

refer to the set D(p, w) = argmax{x∈B(p,w)}U(x) as the demand set at (p, w). If the

demand set is nonempty and unique at every (p, w) À 0, then the map from (p, w)

in Rl
++ ×R++ to D(p, w) will be referred to as the demand function.

Example 1. We say that the agent has normal demand for good i if D(p, w′′) ≥i

D(p, w′) whenever w′′ ≥ w′. If the agent’s utility admits a demand function then

normality for good i simply means that the demand for good i is increasing with

income in the usual sense.7 Chipman (1977) has shown that if U : Rl
++ → R is

locally non-satiated, differentiably strongly concave (i.e., U has a strictly negative-

definite Hessian) and obeys supermodularity, then U generates a demand function

which has normal demand for all goods, i.e., D(p, w′′) > D(p, w′) whenever w′′ > w′.

It is quite obvious that Chipman’s result is, in essence, a special case of Corollary

may well be possible to improve on our proposition by considering some higher dimensional version

of the Spence-Mirrlees property, but we will not pursue this issue here.
7It is well known that under standard assumptions, the normality of demand for some good also

means that it obeys the law of demand, i.e., its demand falls when its price increases. For the uses

of normality for comparative statics problems in general equilibrium, see Quah (2003).
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1. In fact, applying Corollary 1 gives us a more nuanced version of that result and

under weaker conditions.

First we note that the map C : Rl
+ → R given by C(x) = p · x is continuous,

increasing, convex and submodular, and B(p, w) = C−1(−∞, w], so by Proposition 5

and 6(i), it is convexmodular. By Corollary 1, we know that the demand for i will be

normal provided U is i-concavemodular, a sufficient condition for which is that it is

supermodular and i-concave. To guarantee that there is normal demand for all goods,

it is sufficient that, in addition to supermodularity, the function U be i-concave all i,

i.e., U is partially concave (which will hold if U is concave).

It is worth saying a bit about what we have not assumed to arrive at this conclu-

sion. We have not made any of the assumptions needed to guarantee the existence

of demand, since our result is a statement on the monotone response of demand to

income change, if demand exists. In particular, U need not be continuous and the

budget set need not be compact since we allow for some prices to be zero. (Of course,

demand can still exist in a noncompact budget set provided U is not locally non-

satiated.) Because we have not assumed that U is locally non-satiated, demand need

not obey the budget identity, i.e., demand at (p, w) may be valued by p at strictly

less than w.

Adding other assumptions usually made in demand theory will lead to slightly

stronger results. We know that if U is strongly quasiconcave, demand must be unique

if it exists. So if we add this assumption to the concavity and supermodularity of U ,

we obtain D(p, w′′) ≥ D(p, w′) when w′′ > w′. If we also know that demand obeys

the budget identity (for example, because U obeys local non-satiation) then we can

say that D(p, w′′) > D(p, w′).

Note also that, by Corollary 1, quasiconcavemodularity of the utility function will

guarantee monotone comparative statics even in those situations where the budget

set departs from the standard one. For example, the cost of bundle x can take the

form C(x) =
∑l

i=1 φi(xi), with φi increasing and convex; in other words we allow for
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the marginal cost of certain goods to increase with the amount purchased.

The flip side of this observation is that, if all we want is to guarantee monotone

comparative statics for parallel shifts in linear budget boundaries then we could no

longer use Theorem 1 to conclude that quasiconcavemodularity is necessary for mono-

tonicity. This is because such constraint set changes are just some, but not all, of that

required in the necessity part of Theorem 1.8 Anticipating our discussion in Section

5 a little, we know that in the two good case, the 2-quasiconcavemodularity of the

utility function U simply means that −[∂U/∂x1]/[∂U/∂x2] decreases with x1; in other

words, the indifference curves through (x1, x2) becomes flatter as x1 increases (keeping

x2 fixed). It is very obvious that under usual conditions (say, of a monotone and qua-

siconcave preference), flattening indifference curves is also necessary for the normality

of good 2. For the general l good case, we do not know if i-quasiconcavemodularity

is necessary for the normality of good i (if we only permit linear budget constraints).

That said, quasiconcavemodularity arises sufficiently often in commonly used util-

ity functions for our results to be useful in practice. Obviously, it holds if U is additive

and concave, i.e., U(x) =
∑l

i=1 ui(xi), where ui : R+ → R are concave functions. Sup-

pose we interpret the goods to be contingent commodities in l different states of the

world; then the von Neumann-Morgenstern axioms guarantee that the preference over

contingent consumption can be evaluated via expected utility, so that U will indeed

be additive. Thus, the demand for contingent consumption will be normal if markets

are complete (which guarantees that the commodity space is Rl
+ and not some lower

dimensional subset).

A much studied alternative to expected utility is Choquet expected utility. In that

8At least in the case when we confine ourselves to linear budget constraints, a plausible alternative

way of dealing with comparative statics issues in consumer theory is to abandon the product order

and to use some other order in Euclidean space. This ordering must be such that it permits the

comparisons we wish to make and at the same time, parallel shifts in the budget plane must be

comparable in the strong set order it induces. This, in essence, distinguishes the approaches adopted

by Antoniadou (1995, 2004) and Mirman and Ruble (2003).
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case, the agent’s utility function takes the following form Ū(x) = minµ∈C(ν)[
∑l

i=1 µiu(xi)]

where u : R+ → R, ν is a convex nonadditive probability function, and C(ν) is the

core of ν. It is straightforward to check that Ū is concave if u is concave. It is less

straightforward to check, but still true, that if u is increasing, Ū will be supermodular

(see Marinacci and Montrucchio (Theorem 35, 2004)). So by Corollary 1, Ū generates

a normal demand for contingent consumption.

Example 2. A demand function is said to exhibit the gross substitutability prop-

erty if a fall in the price of good i causes the demand for all other goods to decrease.

This property is important because, amongst other things, it helps to guarantee

the uniqueness and stability of the equilibrium price in general equilibrium models

(see, for example, Mas-Colell et al (1995)). The most well known condition guar-

anteeing gross substitutability is the following. Let U : Rl
++ → R be of the form

U(x) =
∑l

i=1 ui(xi) where each ui : R+ → R is C2, with u′i(xi) > 0 and u′′i ≤ 0.

Then the demand function f : Rl
++ × R+ → Rl

++ generated by U , f will obey gross

substitutability if −xiu
′′
i (xi)/u

′
i(xi) < 1 for all i and xi > 0.9

One can easily obtain this result using the techniques developed here. Assume

that income is held fixed at w and consider a price change from p′ to p′′, where p′′i = p′i

for i ≥ 2 and p′′1 < p′1. Suppose that demand exists at both prices, with x′ being a

demand at p′. We wish to show that there is a demand at p′′ in which the demand

for good i rises and that of all other goods fall.

First, observe that x∗ solves the following problem: (i) maximizing
∑l

i ui(xi) sub-

ject to x satisfying p·x = w if and only if (s∗1, x
∗
2, ..., x

∗
l ), where s∗1 = p1x

∗
1, solves the fol-

lowing problem: (ii) maximizing u1(s1/p1)+
∑l

i=2 ui(xi) subject to s1+
∑l

i=2 pixi = w.

So we can focus on problem (ii).

Since x′ solves (i) at p = p′ we know that (s′1, x
′
2, x

′
3, ..., x

′
l), with s′1 = p′1x

′
1 is a

solution to (ii) at p = p′. Provided the map from (s1, 1/p1) to u1(s1/p1) is supermod-

ular, and since demand exists at p′′ by assumption, we know from Proposition 8 that

9For a proof of this result see, for example, Hens and Loffler (1995).
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there is a solution (s′′1, x2,
′′ , ..., x′′l ) to (ii) at p = p′′ such that s′′1 ≥ s′1. In other words,

there must be a demand at p = p′′ in which the expenditure on good 1 is higher than

that at p = p′. In particular, x′′1 > x′1.

Since U is additive, we know that (x′2, x
′
3, ...x

′
l) maximizes Ū(x2, x3, ...xl) =

∑l
i=2 ui(xi)

subject to
∑l

i=2 pixi ≤ w − s′1. If uis are concave, so is Ū ; furthermore, Ū is additive

and therefore supermodular. From Example 1, we know that Ū generates normal

demand. When more is spent on good 1, the expenditure available for other goods is

reduced from w−s′1 to w−s′′1, and so there must be (x′′′2 , x′′′3 , ..., x′′′l ) which maximizes

Ū(x2, x3, ...xl) subject to
∑l

i=2 pixi ≤ w−s′′1 such that x′′′i ≤ x′i for i ≥ 2. Furthermore,

(s′′1, x
′′′
2 , x′′′3 , ..., x′′′l ) solves (ii) at p = p′′, which establishes gross substitutability.

It remains for us to point out what it means for the map from (s1, a) in R2
++ to

u1(as1) to be supermodular. It is not hard to check that this is equivalent to the con-

vexity of the map ũ1 : R → R given by ũ1(z1) = u1(e
z1). In short, we have shown that

the additive utility function U will generate demand satisfying gross substitutability

if for all i ≥ 1, ui is concave and ũi is convex. It is also not hard to check that when

ui is C2 with u′i > 0, then ũi is convex if and only if −xiu
′′
i (xi)/u

′
i(xi) ≤ 1 for all

xi > 0. In other words, we have obtained the non-differentiable version of the well

known result.

Example 3. We consider the following two period saving-portfolio problem.10 At

date 1, an agent decides how much to save out of date 1 income w1. Savings can be

invested in two ways: a riskless asset A, which pays off r > 0 at date 2 and an asset

B which has a stochastic payoff of s at date 2, with s distributed according to the

density function f . In addition, the agent has a non-stochastic income of w2 at date 2.

The agent’s Bernoulli utility function is u(c1, c2) where c1 and c2 refer to consumption

at dates 1 and 2 respectively. If he holds a portfolio with a of asset A and b of asset B,

his utility given a date 1 consumption of c1 is U(c1, a, b) =
∫

u(c1, ar+bs+w2)f(s)ds.

We wish to determine how his savings and investments will vary with w1.

10For a discussion of other issues in the saving-portfolio problem, see Gollier (2001).
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At first glance, the methods developed in this paper seem unsuited to dealing with

this problem. Notice that Uab(c1, a, b) =
∫

u22(c1, ar + bs + w2)rsf(s)ds.11 Given risk

aversion, u22 will always be negative; if in addition, rs is always positive, then Uab

will be negative so U is certainly not a supermodular function. There are various

ways in which one can get around this difficulty. Most obviously, one could show

that the ordinal conditions needed for comparative statics are satisfied, even though

straightforward supermodularity is not: this is a method we will exploit in Example

8, which deals with another variation of the standard two asset portfolio problem. In

this example, we will give a different, and quite intuitive, treatment of this problem.

Without loss of generality, we can assume that both assets have the same positive

date 1 price p > 0. We can then reformulate the agent’s problem by imagining him

choosing between two assets: a riskless asset A with the constant payoff r and a risky

free asset X which has payoff t = s−r. Note that X can be constructed by buying one

B and selling one A. Formally, the agent solves the following problem P: maximize

Ũ(c1, ã, x) =
∫

u(c1, ãr+xt+w2)g(t)dt subject to c1 +pã = w1, where g is the density

function of t. We will identify conditions under which the optimal values of c1, ã and

x are all increasing with w1. In terms of the agent’s original problem (which is the

one we are interested in), this means that optimal date 1 consumption, c1, and also

savings, i.e., pa+pb, which equals pã, both increase with w1. It also means, given the

way X is constructed, that investment in B increases with w1. However, since we do

not know the relative magnitudes of the changes to x and ã given an increase in w1,

we cannot determine if the agent will buy more or less of A.

We shall say that P obeys the regularity conditions if the following holds: u is C2

and concave, u2(c1, c2) > 0 for all (c1, c2), the optimum is unique, obeys by the first

order conditions and varies smoothly with w1. Since Ũ is then concave, by Corollary

1, to guarantee normality, we require Ũ to be supermodular locally at the optimum;

11Notice that we are using subscripts to denote derivatives. We will do so whenever there is little

risk of confusion.
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in other words, that there is some neighborhood around the optimum in which the

cross derivatives are positive.12

The following proposition is proved in Appendix A.

Proposition 9: Suppose that the problem P obeys the regularity conditions and

the solution (c∗1, ã
∗, x∗) at w1. Then Ũ is locally supermodular at (c∗1, ã

∗, x∗) if the

following conditions hold:

(a) −u22(c1, c2)/u2(c1, c2) strictly decreases with c2 for all c1, i.e., there is strictly

decreasing risk aversion, and

either (b’) u12 ≡ 0 (in other words, u is additively time-separable) or (b”) u12(c1, c2) >

0 for all (c1, c2) and u12(c1, c2)/u2(c1, c2) strictly increases with c2 for all c1.

Note that the standard two asset portfolio problem with no date 1 consumption

is covered by Proposition 9 since we can set u(c1, c2) = v(c2); combining Proposition

9 and Corollary 1 will then give us the familiar result that decreasing risk aversion

leads to investment in the risky asset expanding with wealth. Proposition 9 covers

the case when u is time separable (b’), but it also deals, more generally, with the case

where it is supermodular (b”). Supermodularity may be plausible for various reasons;

when interpreted as habit formation, it has been quite extensively considered as an

explanation of the equity premium puzzle (see, for example, Constantinides (1990)).

The supermodularity of u means that raising c1 has a positive impact on u2. The

second condition in (b”) says that this positive impact should increase in proportional

terms as c2 increases; more precisely, it says that the elasticity of u2 with respect to

c1 increases with c2.

4. Applications to Producer Theory

Throughout this section, we shall be considering a firm producing a single product

using l inputs. We assume that when q > 0 is produced, the firm derives from it a

12More carefully: since the optimal portfolio varies smoothly with w1, any violation of normality

must mean a local violation of normality, but this is impossible since there is always an open

neighborhood around each optimum in which Corollary 1 is applicable.
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revenue of R(q). The production function is F , so if x in Rl
+ is the input vector, the

output is q = F (x).

Example 4. We wish to examine the impact on optimal output of a change in

input prices. To keep the discussion short we shall make the standard assumptions

which guarantee the following: at the input price vector p in Rl
++, there is a unique

cost-minimizing bundle which produces output q, which we will denote by X(p, q);

X(p, q) coincides with the bundle maximizing output when input prices are at p

and expenditure is kept at p · X(p, q); the envelope theorem is applicable, so that

differentiating the cost function C(p, q) = p ·X(p, q) by pi gives us Xi(p, q).

The firm chooses output q to maximize profit, which is R(q)−C(p, q). By Propo-

sition 8, the optimal q decreases with pi if C is supermodular in (pi, q). Since

∂C

∂pi

(p, q) = Xi(p, q),

this is in turn equivalent to the demand for i being normal.13 Applying Corollary 1,

we see that this is guaranteed if F is supermodular and i-concave.

Note that this conclusion makes no assumptions about the function R. Note

also that if we want output to be decreasing with respect to all input prices, then a

sufficient condition is that F is supermodular and partially concave. In the production

context, supermodularity has the interpretation that all inputs are complements in

the production process. Partial concavity means, in particular, that whenever one

input is held fixed, increasing all other inputs by a multiple of k will not raise output

by more than a multiple of k. However, increasing returns to scale is not excluded by

the assumption, as is clear from the function F (x1, x2) = x1x2.

Example 5. We wish to examine the impact of a technological change on the

optimal output; specifically, if q = AF (x), how would an increase in A affect the

optimal level of q? It is convenient in this context to think of inputs as negative

13The connection between normality of input demand and the impact on marginal costs (and thus

output) of an input price change is well known (see, for example, McFadden (1978) and Athey et al

(1998)).
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variables, so we define F̃ : Rl
− → R by F̃ (x̃) = F (−x̃). We can then formulate the

firm’s problem as a constrained maximization problem. Assuming that p > 0 is the

input price vector and that R(q) is the revenue from output q, the firm maximizes

Π(x̃, q) = R(q)+p·x̃ subject to q ≤ AF̃ (x̃). Clearly Π is supermodular and q-concave.

If F is continuous, supermodular, concave, and increasing, then F̃ is continuous,

supermodular, concave and decreasing. Applying Proposition 7 and Theorem 1, we

see that the optimal level of q rises with A.

Note that the conclusion requires no assumptions on R. Note also that the con-

clusion is about the optimal q and says nothing about x. In fact, it is not hard to

construct examples where the optimal level of x will fall or rise.

Example 6. The classic formulation of the LeChatelier Principle in economics

considers the impact of a small reduction in the price of an input (say input 1) on

the demand for 1. It says that in the short run, interpreted as the time frame in

which some inputs are not free to vary, the increase in the demand for 1 is smaller

than in the long run, when all inputs are free to vary. Milgrom and Roberts (1996)

has shown that this result also holds when the price reduction is large, provided

the profit function is a supermodular function of the inputs. Our next result gives

a formulation of the LeChatelier principle which extends the result of Milgrom and

Roberts by enlarging on the class of permissible constraints faced by the firm in the

short run.14

Proposition 10: Let x∗ be a solution to the problem of (i) maximizing Π(x, a′)

subject to x in Rl
+, where Π(·, a) : Rl

+ → R is given by Π(x, a) = R(F (x))−p ·x+ax1.

Suppose, also, that there are solutions to the following problems:

(ii) maximize Π(x, a′′) subject to x ∈ C, where a′′ > a′ and C is a subset of Rl
+

containing x∗; and (iii) maximize Π(x, a′′).

14For a recent discussion of the LeChatelier Principle in its classical form, together with an ex-

tension in a direction different from the one considered here (or in Milgrom and Roberts (1996)) see

K. Roberts (1999).
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Then there are x∗∗ and x∗∗∗, solutions to problems (ii) and (iii) respectively, such that

x∗∗∗1 ≥ x∗∗1 ≥ x∗1, provided either of the following conditions hold:

(A) R ◦ F is supermodular and XC is greater than C in the strong set order, where

XC = {x ∈ Rl
+ : x ≥ c for some c ∈ C}.

(B) R◦F is supermodular and 1-concave, and XC is greater than C in the generalized

strong set order.

The proof of this result is in the Appendix. Note that the change in the parameter

from a′ to a′′ can be interpreted as fall in the price of input 1 from p1− a′ to p1− a′′.

In the short run (case (ii)), the firm is constrained to choose inputs from the set C;

in the long run (case (iii)), no constraints are imposed. The desired conclusion holds

under two sets of assumptions. In both cases, R ◦ F is assumed to be supermodular,

which guarantees the supermodularity of the profit function Π. In (B), R ◦ F (and

thus Π) is also assumed to be 1-concave, but the class of constraint sets permitted is

larger than in (A), because the set ordering requirement is weaker.

Milgrom and Roberts (1996) considers the case where certain inputs are held

fixed in the short run. Formally, they are considering a constraint set of the form

C = {x ∈ Rl
+ : xi = ki for i = m,m + 1, ..., l}. It is quite obvious that in this case

XC is greater than C in the strong set order, so that condition (A) may be applied,

but this is just one of many possible types of constraints that a firm might face in the

short run. It is not hard to check that XC dominates C in the strong set order for

any set C which has the free disposal property: if x′ is in C, then x > 0 with x < x′

is also in C. Short run constraints of this form are quite plausible; for example, a

firm which, in the short run cannot allow its expenditure to exceed w will formally

have C = {x ∈ Rl
+ : p · x− a′′x1 ≤ w}.

For an example of the type of short run constraint permitted by condition (B),

let φ : Rl
+ → R be any continuous and increasing function and let r be in the range

of φ. The set C = φ−1(r) is closed and nonempty, and XC will dominate C in the

generalized strong set order. This is easy to check, and it is also easy to see that XC
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need not dominate C in the strong set order (so that condition (A) is inapplicable).15

Short run constraints of this form are economically plausible. For example, suppose

that the inputs m, m + 1,..., l are intrinsically the same good, i.e., they have the

same inherent characteristics, but are only considered as different inputs because

they play different roles in the production process. Imagine that in the short run, due

to contractual and technological reasons, the total amount of this good used cannot

be varied, though the firm is free to employ what they already have in different ways.

In that case, C = {x ∈ Rl
+ :

∑l
i=m xi =

∑l
i=m x∗i }, which equals φ−1(r) if we define

φ(x) =
∑l

i=m xi and r =
∑l

i=m x∗i .

5. Two-Dimensional Constrained Optimization Problems

In this section, we will focus on the comparative statics of constrained optimiza-

tion problems which are set in R2. The general theory we have developed so far in

an l-dimensional context is particularly simple and intuitive in this special case. The

results here are also interesting because comparative statics problems in R2 are ubiqui-

tous in economic theory. Throughout this section, we shall assume that X = X1×X2

where X1 and X2 are two open intervals in R2. The next result gives sufficient condi-

tions under which the C1 function f : X → R is 2-quasiconcavemodular. We shall be

considering functions for which either f1(x) > 0 or f2(x) > 0 for all x. (We shall be

using subscripts to denote derivatives in this section.) We say that f has well behaved

indifference curves if either of these conditions holds:

(i) f2(x) > 0 for all x and at each x∗ = (x∗1, x
∗
2) in X, there is a differentiable curve

ψ : X1 → R such that ψ(x∗1) = x∗2 and f(x1, ψ(x1)) = f(x∗1, x
∗
2) for all x1 in X1; or

(ii) f1(x) > 0 for all x and at each x∗ = (x∗1, x
∗
2) in X, there is a differentiable curve

φx∗ : X2 → R such that φ(x∗2) = x∗1 and f(φ(x2), x2) = f(φ(x∗2), x
∗
2) for all x2 in X2.

15Let x′ be in C and y be in XC . Then φ(y) > r while φ(x′ ∧ y) ≤ r (since φ is increasing). Thus

there is λ in [0, 1] such that φ(x′ ∧ y + λvx′) = r. Clearly x′ ∧ y + λvx′ is in φ−1(r) = C while

x′ ∨ y − λvx′ is in XC .
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Proposition 11: Suppose that f : X → R has well behaved indifference curves.

Then f is 2-quasiconcavemodular if either of the following conditions hold:

(i) f2 > 0 and f1(x1, x2)/f2(x1, x2) is increasing in x1; or

(ii) f1 > 0 and f2(x1, x2)/f1(x1, x2) is decreasing in x1.

Note that −f1(x1, x2)/f2(x1, x2) is the slope of the indifference curve through

(x1, x2), so all the proposition requires is that f obeys the declining slope condition:

the slope of the indifference curve through (x1, x2) falls as x1 increases. That this

guarantees the 2-quasiconcavemodularity of f is quite intuitive; the formal proof is in

Appendix A.16 Note also that this condition ordinal. In particular, the function need

neither be supermodular nor concave nor even quasiconcave. However, it is consistent

with Proposition 1: one can check directly that if f is supermodular and 2-concave

then the declining slope condition is satisfied. From our discussion in Example 1, we

know that a utility function which generates indifference curves obeying this condition

will have normal demand for good 2. This fact is known (see Milgrom and Shannon

(1994)); we now turn to a result which generalizes this example.

Let f : X → R be the objective function and Ih and Ig be two intervals in X2 such

that Ih dominates Ig in the strong set order (essentially this means that the infimum

and supremum of Ih are greater than the infimum and supremum respectively of Ig).

Suppose that Ig and Ih are respectively the domains of functions g and h, which are

mapped into X1. We wish to compare the solutions of the following two problems:

Pg: maximize f(x) subject to x in G = {x ∈ X : x2 ∈ Ig and x1 ≤ g(x2)} and

Ph: maximize f(x) subject to x in H = {x ∈ X : x2 ∈ Ih and x1 ≤ h(x2)}.
Theorem 2: Suppose that f : X → R is 2-quasiconcavemodular, and suppose

that the problems Pg and Ph (as defined above) satisfy either of these conditions:

16When the partial derivatives of f are both positive, it is fairly easy to see that this declining slope

condition is also necessary for 2-quasiconcavemodularity. However, this condition is not necessary if

f1 < 0 and f2 > 0. In this case f is (trivially) 2-quasiconcavemodular; the indifference curves must

all slope upwards, but they need not obey the declining slope condition.
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(i) for all x′′2 and x′2 in Ig∩Ih with x′′2 > x′2, we have g(x′2) ≤ h(x′2) and g(x′′2)−g(x′2) ≤
h(x′′2)− h(x′2) ≤ 0; or

(ii) f is strictly increasing in x2 and for all x′′2 and x′2 in Ig ∩ Ih with x′′2 > x′2, we

have g(x′2) ≤ h(x′2) and g(x′′2)− g(x′2) ≤ h(x′′2)− h(x′2).

Then the solution set for (Ph) is 2-greater than the solution set for (Pg).

We provide a formal proof of this result in the Appendix, but its pictorial intuition

is entirely straightforward. The constraint sets G and H are depicted in Figure 2.

Condition (i) guarantees that the boundary of H is to the left of G’s and is also

steeper at every x2 for which comparison can be made; on the other hand, because

f is 2-quasiconcavemodular, the indifference curves generated by f become flatter as

x2 increases. Together, these two properties guarantee that optimal solutions must

involve an increase in the value of x2 as one changes the constraint set from G to H.

In terms of the formal language of this paper, condition (i) guarantees that H >2 G,

so that monotonicity follows from an application of Theorem 1. (Note that condition

(ii) is similar to (i) except that it requires f to be strictly increasing in x2, which

allows for the restriction on the constraint set to be weakened.)

We now turn to some comparative statics problems in R2 which can be solved using

Theorem 2. Many of these problems can also be solved, in part or in whole, using

other methods. Suppose that we are interested in how the value of x2 which maximizes

f(x1, x2) subject to x1 ≤ g(x2, t) changes as the parameter t changes. Provided we

know that f is locally non-satiated, so that the constraint is binding, this problem can

be converted into the 1-dimensional problem of maximizing f(g(x2, t), x2). This latter

problem can often then be fruitfully studied using techniques already developed for

studying 1-dimensional problems (see, in particular, Athey et al (1998)). However,

this does not negate the value of Theorem 2 because even when other techniques

can be used, this theorem provides a particularly transparent approach to many such

comparative statics problems.

Example 7. Consider a profit maximizing firm producing a single product. If it

27



charges a price p > 0, its demand is D(p, θ) > 0 where θ is some parameter. (In a

Bertrand game with differentiated products θ will represent the prices of other firms.)

The cost of producing output q is C(q), so that the firm’s objective is to maximize

pD(p, θ) − C(D(p, θ)). Suppose that, as θ increases, ln D(p, θ) increases and the

difference ln D(p, θ) − ln D(p′, θ), for any p′ > p, also increases; respectively, this

means that demand increases and becomes less elastic with respect to its own price

as θ increases. Milgrom and Shannon (1994) has shown that with these assumptions

on demand, the profit maximizing price charged by the firm increases with θ if the firm

has increasing marginal costs.17 By formulating the firm’s problem as a constrained

optimization problem, we can see with great clarity that their conclusion follows from

an application of Theorem 2.

Let q̃ the be log output. Then the firm’s problem is to maximize Π : R++×R → R

given by Π(p, q̃) = peq̃ − C(eq̃), subject to q̃ ≤ ln D(p, θ). Suppose θ′ > θ; then the

conditions we have imposed on demand guarantee that the maps p → ln D(p, θ) and

p → ln D(p, θ′) are related to each other in the way that g and h are related in

Theorem 2(ii). Note also that Π is strictly increasing in p, so to apply Theorem 2(ii),

we only require that Π be 2-quasiconcavemodular. To keep things simple, assume

that C is differentiable; then Proposition 11(i) says that Π is 2-quasiconcavemodular

if the ratio of the partial derivatives with respect to q̃ and to p, which is p− C ′(eq̃),

is decreasing with q̃. This holds if C ′′ ≥ 0.

It is also clear, from our formulation of the problem, that the comparative stat-

ics will hold whenever the objective function is 2-quasiconcavemodular, which po-

tentially can accommodate other interesting objective functions besides the stan-

dard one considered so far. A particularly simple case is the following. Suppose

that marginal cost is constant and that, at price p, the log-demand is stochastic,

17Strictly speaking, our assumptions are a bit weaker than in Milgrom and Shannon (1994). We

do note assume the differentiability of demand, nor do we assume that the demand for the good is

a decreasing function of its own price.
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taking the value ln D(p, θ) + s, with the distribution of s governed by the density

function f . The firm has the Bernoulli utility function u, so that we may con-

sider the firm’s problem as that of a constrained maximization problem: maximize

U(q̃, p) =
∫
R u((p−c) exp(q̃+s))f(s)ds subject to q̃ ≤ ln D(p, θ). U is strictly increas-

ing in p if u is strictly increasing. The slope of the indifference curve at (q̃, p) is simply

c−p, which is independent of q̃. So, by Proposition 11(i), U is 2-quasiconcavemodular

and we conclude that the optimal price rises with θ (under the maintained assump-

tions on ln D(p, θ)).

Example 8. Consider the standard portfolio problem of an agent who has to choose

between two assets, a safe asset with constant and positive payoff r and a risky asset

with payoff s, governed by the density function f . The agent has the Bernoulli utility

function u : R → R, so that it’s objective function is U(a, b) =
∫

u(bs + ar)f(s)ds.

It is well known that the agent’s investment in the risky asset will increase with

wealth if his coefficient of risk aversion decreases with wealth. The standard proof

of this result converts the agent’s problem into a single variable (the level of risky

investment) problem by making a substitution using the budget identity and then

establishing that some version of the single crossing property holds (see, for example,

Gollier (2001) or Athey (2002)).

Another natural way of obtaining this result is simply to prove that U is 2-

concavemodular. The function U is strictly increasing in a if u is strictly increasing,

so by Proposition 11(ii), we need only show
∫

u′(bs + ar)sf(s)ds∫
u′(bs + ar)rf(s)ds

is increasing with a. For this to hold, it is sufficient that u′(as+ br) be log supermod-

ular in (s, b).18 The cross derivative of ln u′(as + br) is (ln u′)′′(as + br)ar; it is not

hard to check that u has decreasing risk aversion if and only if (ln u′)′′ ≥ 0 (in other

18The ratio
∫

g(s)φ(s, θ)ds/
∫

h(s)φ(s, θ)ds increases with θ if g(s)/h(s) increases with s and φ is

a log-supermodular function of (s, θ) (see Athey (2002)). In our case, θ = a, φ = u′, g(s) = sf(s),

and h(s) = rf(s).
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words, ln u′ is convex), so u′(as + br) is log supermodular if we restrict the domain of

a to a > 0. As is well known (see Gollier (2001)), we can, if we prefer, make this last

restriction non-binding by assuming that the risky payoff has a mean return greater

than r and that u is concave (until this point, the concavity of u has not been used).

We can use our approach to generalize this standard result to the case when both

assets are risky.19 Suppose that asset A has the payoff rt, where r is a positive

constant and t > 0 is stochastic; asset B has a payoff st, where s is also stochastic.

We assume that s and t are independent and are distributed according to density

functions f and h respectively. If we wish, we can interpret this as a situation in

which both assets have nominal payoffs and the price level is stochastic, so that rt

and st measure the real returns of the two assets. The agent’s utility when he holds

a of asset A and b of asset B is then given by

U(a, b) =
∫

u(bst + art)f(s)h(t)ds dt. (7)

The next proposition guarantees the 2-quasiconcavemodularity of U and thus the

normality of demand for asset B. Its proof is in Appendix A.

Proposition 12: The function U as defined by (7) is 2-quasiconcavemodular if

u is C3, u′ > 0, u′′ ≤ 0 and the coefficient of risk aversion of u is decreasing.

6. Changing Variables in Comparative Statics Problems

Let X = Πl
i=1Xi, where each Xi is an interval in R and let f be some real-

valued function defined on X. Let φ : X̃l → Xl be a strictly increasing function

from the interval X̃l into Xl. Writing X̃ = Πl−1
i=1Xi × X̃l, we define f̃ : X̃ → R

by f̃(x) = f(x1, x2, ..., φ(xl)); thus, f̃ is related to f by a change of variables. It is

straightforward to check that the following properties, if it holds for f , will be inher-

ited by f̃ : supermodularity, quasisupermodularity, l-concavity, l-concavemodularity,

and l-quasiconcavemodularity.

19For other comparative statics results with two risky assets see Jewitt (2000).
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To appreciate the import of these simple claims imagine a situation where we wish

to examine the comparative statics of variable l and we have a result which relies

on the objective function being l-quasiconcavemodular. Suppose also that we have

somehow managed to establish l-quasiconcavemodularity for a particular objective

function f . In that case, l-quasi-concavemodularity, and thus the comparative statics

result, will also hold for f̃ . In other words, the scope of applicability of our result has

been enlarged from a particular objective function to a larger family of functions. Our

observations here echo those of Milgrom (1994) who shows that in certain comparative

statics problems, simplifying assumptions are not restrictive since any conclusion

under those assumptions must also hold when they are replaced by less stringent and

more realistic assumptions.

Similarly, for any set K in X we can define K̃ in X̃ by K̃ = {x ∈ X̃ : (x1, x2, ..., φ(xl)) ∈
K}. It is very easy to see that if K ′′ is greater than K ′ in the strong set order then

K̃ ′′ is greater than K̃ ′ in the strong set order and if K ′′ is l-greater than K ′ in the

generalized strong set order than K̃ ′′ is l-greater than K̃ ′ in the generalized strong set

order. Our observations in the previous paragraph are also relevant in this case: such

variable changes can significantly expand the scope of a comparative statics result.

We illustrate this in the next example.

Example 9. Consider an open economy producing goods 1 and 2 using capital and

labor. There is no joint production; good i (i = A, B) has the production function fi :

R2
+ → R+, with fi quasiconcave and homogeneous of degree one (in other words, has

constant returns to scale). These two assumptions also guarantee that fi is concave

(see Champsaur and Milleron (1983)). The economy has an endowment K̄ of capital

and L̄ of labor. Production decisions in this economy are made by two representative

firms; firm i chooses (ki, li) in R2
+ to maximize Πi(li, ki) = Ri(fi(ki, li)) − wKki −

wLli, where Ri(xi) is the revenue earned from selling xi units of good i and wK and

wL are prices of capital and labor respectively. An equilibrium in this economy is

reached when wK and wL are such that the firms’ demand for capital and labor
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equal the economy’s endowments. It is well known that under standard assumptions,

the equilibrium output of goods 1 and 2 can also be obtained via an optimization

procedure. Let S(K̄, L̄) in R2
+ be the production possibility set of this economy when

the aggregate endowment is (K̄, L̄). Then the equilibrium output of the two goods

coincides with that obtained from the following optimization problem: maximize

U(a, b) = RA(a) + RB(b) subject to (a, b) in S(K̄, L̄).

Suppose that the markets for the two goods are perfectly competitive, so Ri(xi) =

pixi. Rybcsynski’s Theorem considers an increase in the endowment of capital, say

from K̄ ′ to K̄ ′′, and identifies conditions on the relationship between fA and fB

which guarantee that more of good B and less of good A is produced at equilibrium.

(See Mas-Colell et al (1995); for reasons of brevity, we will not examine those condi-

tions.) This is illustrated in Figure 3, where the optimal output moves from (a∗, b∗) to

(a∗∗, b∗∗); because output prices are held fixed, the slope of the production possibility

frontiers at these points are the same. Note that because the production functions,

and hence the possibility sets are concave, the slope of the new production possibility

set at (a∗∗∗, b∗) must be steeper than the slope at (a∗, b∗). In other words, following

from the increase in capital, we must have S(K̄ ′′, L̄) >B S(K̄ ′, L̄).20 So we have a

situation where Theorem 2 is applicable. By Theorem 2, the optimal level of B will

rise - this is true whenever RA is concave (so that U is 2-concavemodular) and does

not require either RA or RB to be linear. However, with this departure, we will not

be able to say that the output of good A falls.

Now consider an increasing transformation of the production function of good B

from fB to f̂B = H ◦ fB, where H : R+ → R+ is a strictly increasing function. Like

fB, f̂B will be quasiconcave, but it will not in general be concave or have constant

returns to scale. We denote the production possibility sets generated by fA and f̂B

by Ŝ; because f̂B need not be concave, neither must Ŝ. One can easily check that

20It is not hard to prove this claim directly from the assumptions in Rybcsynski’s Theorem, if one

so wishes.
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Ŝ(K̄ ′, L̄) = {(a, b) ∈ R2
+ : (a,H−1(b)) ∈ S(K̄ ′, L̄)}; obviously, Ŝ(K̄ ′′, L̄) is similarly

related to S(K̄ ′′, L̄). Since S(K̄ ′′, L̄) >B S(K̄ ′, L̄) we must also have Ŝ(K̄ ′′, L̄) >B

Ŝ(K̄ ′, L̄). It follows from Theorem 2 that the output of B will rise with the endowment

of capital: the comparative statics result is robust to increasing transformations of

the production function of good B.

7. Conclusion

This paper has shown that the comparative statics of constrained optimization

problems can be studied in a unified way, with a simple and geometrically intuitive

method. In keeping with much of the recent literature, we have focussed on the precise

conditions needed for comparative statics, distinguishing them from those conditions

which may be needed for other properties like the existence or uniqueness of optimal

points. We hope that we have provided a set of tools that are easy to understand and

to use, and which can find application in many areas of economic theory.

APPENDIX A

Proof of Proposition 2: Suppose that there is x′ and y, with x′i > yi and λ such

that (2) is violated, so

f(x′ ∨ y − λvx′)− f(y) < f(x′)− f(x′ ∧ y + λvx′). (8)

Note that (x′ ∧ y + λvx′)i = yi < x′i so there is w̄i such that w̄i[x
′
i− (x′ ∧ y + λvx′)i] =

f(x′)− f(x′ ∧ y + λvx′). Furthermore, since x′ − (x′ ∧ y + λvx′) = (x′ ∨ y− λvx′)− y,

we have w̄i[x
′
i − (x′ ∧ y + λvx′)i] = w̄i[(x

′ ∨ y− λvx′)i − yi]. Deducting this term from

both sides of (8), we obtain

gw̄i
(x′ ∨ y − λvx′)− gw̄i

(y) < gw̄i
(x′)− gw̄i

(x′ ∧ y + λvx′) = 0.

So gw̄i
violates i-quasiconcavemodularity and we have a contradiction.

33



To prove (ii), note that if (8) is true for λ = 0, then the right hand side of (8) is

nonnegative (since f is increasing), while (x′ − x′ ∧ y)i = x′i − yi > 0. We could then

use the proof given for (i), choosing w̄i ≥ 0. (Set the other entries of the vector w̄ at

zero.) So we consider the case when (8) is true for λ > 0. (8) can be true only if x′

and y are unordered, and with λ > 0, x′ and (x′ ∧ y + λvx′) must also be unordered.

Thus, x′− (x′∧ y +λvx′) has both positive and negative entries, and there is w̄ in Rl
+

such that w̄ · [x′− (x′ ∧ y + λvx′)] = f(x′)− f(x′ ∧ y + λvx′). Now repeating the steps

in our proof of (i), we see that gw̄ must violate i-quasiconcavemodularity. QED

Proof of Proposition 4: We first prove that (?) implies that C ′′
i >i C ′. Let x′ be

in C ′ and y be in C ′′ with x′i > yi. If x′ > y, the condition for C ′′ >i C ′ requires

x′ to be in C ′′ and y to be in C ′: the first is true since C ′ ⊂ C ′′, while the second

follows from free disposal. So we assume that x′ and y are unordered. If y is in C ′,

the condition for C ′′ >i C ′ holds with λ = 1. This leaves us with the case of x and

y are unordered, with y not in C ′. Since x′ ∧ y is in X and less than x′, we know

that it is in C ′. By the closedness of C ′ and free disposal, there is λ∗ in [0, 1) such

that x′ ∧ y + λ∗vx′ is in C ′ and x′ ∧ y + λvx′ is not in C ′ for λ in (λ∗, 1]. Define

u = (1−λ∗)vx′ . Choose µ = λ∗/(1−λ∗) and u′ = x′−x′∧ y. We have ui = 0, u′i > 0.

We then have x′ ∧ y + λ∗vx′ in C ′, (x′ ∧ y + λ∗vx′)− µu + u′ = x in C ′, and x + u = y

in C ′′. So by (?), (x + u)− µu + u′ = x′ ∨ y − λ∗vx′ must be C ′′. Thus C ′′ >i C ′.

For the other direction, let x′ = x−µu + u′. By assumption, this is in C ′; also by

assumption, x + u is in C ′′ and x′i > xi + ui. Note that x′ ∧ (x + u) = x− µu. Since

C ′′ >i C ′, there must be a positive t smaller than µ such that x − tu is in C ′ and

x + u + u′− tu is in C ′′. Note that t cannot be negative because it is assumed that x

is at the ‘edge’ of C ′. Since C ′′ obeys free disposal, the fact that x + u + u′ − tu is in

C ′′ implies that x + u + u′ − µu is also in C ′′, which establishes (?). QED

Proof of Proposition 6(ii): Consider x′ and y, unordered, with x′i > yi and suppose

that C(x′) = k′ and C(y) = k′′. If k′′ < k′, then by the fact that C is increasing,

C(x′ ∧ y + λvx′) ≤ C(y) = k′′ < k′ = C(x′) for all λ in [0, 1], which means that (3) is
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vacuously true for all λ in [0, 1]. If k′′ = k′, then because C is strictly increasing, (3)

is vacuously true for λ in [0, 1) and trivially true at λ = 1. So we assume that k′′ > k′;

since C−1((−∞, k′′]) >i C−1((−∞, k′]) we know that there is λ̄ such that x′∧y + λ̄vx′

is in C−1((−∞, k′]) and x′ ∨ y− λ̄vx′ is in C−1((−∞, k′′]). Since C is continuous and

increasing, there is λ∗ ≥ λ̄ such that C(x′∧y+λ∗vx′) = k′ and C(x′∨y−λ∗vx′) ≤ k′′.

Furthermore, since C is strictly increasing, for λ < λ∗, we have C(x′ ∧ y + λvx′) < k′

and for λ > λ∗, we have C(x′ ∧ y + λ∗vx′) > k′ and C(x′ ∨ y− λ∗vx′) < k′′. Together,

this means that (3) holds. QED

Proof of Proposition 7: Define the function C acting on X = X̃ × I by C(x̃, xl) =

xl/s
′−G(x̃) and consider x′ in S ′ = C−1(−∞, 0] and y in S ′′, with x′l > yl. Assume also

that y is not in S ′, so C(y) > 0, the other case being trivial. Note that C is continuous,

increasing and l-convexmodular. By Proposition 6, C−1(−∞, C(y)] ≥l C−1(−∞, 0] =

S ′, so there is λ in [0, 1] such that x′ ∧ y + λvx′ is in S ′ and z = x′ ∨ y − λvx′ with

C(z) ≤ C(y). Since y is S ′′, C(y)+(yl/s
′′)−(yl/s

′) ≤ 0, so C(z)+(yl/s
′′)−(yl/s

′) ≤ 0.

Note that zl = x′l > yl, and since the map from (t, s) to t/s is submodular, we have

(zl/s
′′)− (zl/s

′) < (yl/s
′′)− (yl/s

′). Thus C(z) + (zl/s
′′)− (zl/s

′) ≤ 0, which implies

that z is in S ′′. QED

Proof of Proposition 9: Differentiating Ũ by ã and x, we obtain

Ũã,x(c
∗
1, ã

∗, x∗) =
∫

u22(c
∗
1, ã

∗r + x∗t + w2)rtg(t)dt

= r
∫ [

−u22

u2

]
(−u2(c

∗
1, ã

∗r + x∗t + w2)) tg(t)dt.

Let k0 be the coefficient of risk aversion at (c∗1, ã
∗r + w2) (when t = 0). Since the

coefficient is strictly decreasing,

Ũã,x(c
∗
1, ã

∗, x∗) > rk0

∫
(−u2(c

∗
1, ã

∗r + x∗t + w2)) tg(t)dt = 0,

where the last equality follows from the first order condition Ũx(c
∗
1, ã

∗, x∗) = 0 (recall

that X is free). So we are left with showing that

Ũc1,ã(c
∗
1, ã

∗, x∗) =
∫

u12(c
∗
1, ã

∗r + x∗t + w2)rg(t)dt and
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Ũc1,x(c
∗
1, ã

∗, x∗) =
∫

u12(c
∗
1, ã

∗r + x∗t + w2)tg(t)dt

are both nonnegative in some neighborhood of the optimum. This is obvious under

(b’) since both terms will be identically zero. With the conditions in (b”), the first

term is obviously positive since u is supermodular. Clearly, those conditions also

guarantee that

Ũc1,x(c
∗
1, ã

∗, x∗) =
∫ [

u12

u2

]
(u2(c

∗
1, ã

∗r + x∗t + w2)) tg(t)dt

is positive, once we apply an argument similar to the one we used for Ũã,x. QED

Proof of Proposition 10: Since x∗ is in C and the map (x1, a) → ax1 is supermodu-

lar, Proposition 8 guarantees that there is x∗∗ solving problem (ii) such that x∗∗1 ≥ x∗1.

(Note that this parameter change is more specific than the general parameter change

considered by Milgrom and Roberts (1996).)

Since in both (A) and (B) Π is supermodular in x and has increasing differ-

ences in (x, a), and since argmaxx∈Rl
+
Π(x, a′′) is nonempty by assumption, there is

some x̄ in argmaxx∈Rl
+
Π(x, a′′) such that x̄ ≥ x∗ (see Topkis (1998) or Milgrom

and Shannon (1994)). Since x∗ is in C, x̄ also solves maxx∈XC
Π(x, a′′); in particular

argmaxx∈XC
Π(x, a′′) is nonempty. We also know that argmaxx∈CΠ(x, a′′) contains x∗∗.

Thus there is x∗∗∗ in argmaxx∈XC
Π(x, a′′) such that x∗∗∗1 ≥ x∗∗1 ; in case (A) this follows

from the standard monotone comparative statics results (see Topkis (1998) or Mil-

grom and Shannon (1994)) while in case (B) it follows from Theorem 1. Finally note

that x∗∗∗ is in argmaxx∈Rl
+
Π(x, a′′) since x̄ is in XC and also in argmaxx∈Rl

+
Π(x, a′′).

QED

Proof of Proposition 11: This proof is a straightforward variation of the one

given by Milgrom and Shannon (1994, Theorem 3) for the single crossing property.

Suppose that x′1 < x′′1 and x′2 > x′′2 with f(x′1, x
′
2) ≥ f(x′′1, x

′′
2). We wish to show that

f(x′1 + k, x′2) ≥ f(x′′1 + k, x′′2) for any positive k. Define I to be the interval [x′1, x
′′
1]

and consider the indifference curve through the point (x′′1, x
′′
2). On the interval I,

this curve can be represented by the function τ : I → R, where τ(x′′1) = x′′2. Then
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f(x′′1 + k, τ(x′′1))− f(x′1 + k, τ(x′1)) equals

∫ x′′2+k

x′1+k

df

dt
(t, τ(t− k)) dt =

∫ x′′2+k

x′1+k
f1(t, τ(t− k)) + f2(t, τ(t− k))τ ′(t− k) dt

=
∫ x′′2+k

x′1+k

[
f1(t, τ(t− k))

f2(t, τ(t− k))
+ τ ′(t− k)

]
f2(t, τ(t− k)) dt

By the declining slope property in (i), this expression is less

∫ x′′2+k

x′1+k

[
f1(t− k, τ(t− k))

f2(t− k, τ(t− k))
+ τ ′(t− k)

]
f2(t, τ(t− k)) dt,

which in turn equals zero because f(t, τ(t)) is identically constant and has a zero

derivative. So we conclude that f(x′1 + k, τ(x′1)) ≥ f(x′′1 + k, τ(x′′1)) = f(x′′1 + k, x′′2).

Since f(x′1, x
′
2) ≥ (>)f(x′′1, x

′′
2) by assumption, and f is strictly increasing in variable 2,

x′2 ≥ (>)τ(x′1). Given that f is strictly increasing in variable 2, we have f(x′1+k, x′2) ≥
(>)f(x′′1 + k, x′′2).

The proof in the case of condition (ii) is similar. QED

Proof of Theorem 2: We claim that (i) implies that H >2 G; the result then

follows from Theorem 1. Let (x′1, x
′
2) be in G and (y1, y2) be in H such that x′2 > y2

and y1 > g(y2). (All the other cases are trivial.) Consider the four points (x′1, x
′
2),

(g(y2), y2), (y1, y2), and (x′1 + [y1 − g(y2)], x
′
2); they form a parallelogram, indeed a

backward leaning parallelogram since x′1 ≤ g(x′2) ≤ g(y2). Note that the second point,

(g(y2), y2), is in G, so we need only show that the last point is in H. This is true

since

x′1 + [y1 − g(y2)] ≤ h(x′2) + [x′1 − h(x′2)] + [y1 − g(y2)]

≤ h(x′2) + [g(x′2)− h(x′2)] + [h(y2)− g(y2)]

≤ h(x′2).

Case (ii) is just a slight modification of (i). In this case, let (x′1, x
′
2) be a solution to

Pg and let (y1, y2) be a solution to Ph. As in the previous case, we assume that x′2 > y2

and y1 > g(y2) (the other cases being trivial) and consider the four points (x′1, x
′
2),
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(g(y2), y2), (y1, y2), and (x′1+[y1−g(y2)], x
′
2). The same argument as before guarantees

that the second point is in G and the fourth point is in H. We claim that they form

a backward leaning parallelogram. If not, g(y2) ≤ x′1 and so (x′1 + [y1 − g(y2)] ≥ y1.

Since (x′1 + [y1 − g(y2)], x
′
2) is in H so must (y1, x

′
2). By the strict monotonicity of

f in variable 2, f(y1, x
′
2) > f(y1y2), which contradicts the assumption that (y1, y2)

solves Ph.

Thus {(y1, y2), (x
′
1 +[y1−g(y2)], x

′
2)} >2 {(x′1, x′2), (g(y2), y2)}. Applying Theorem

1 again, we see that f(x′1 + [y1 − g(y2)], x
′
2) ≥ f(y1, y2) and f(g(y2), y2) ≥ f(x′1, x

′
2).

So (x′1 + [y1 − g(y2)], x
′
2) solves Ph and (g(y2), y2) solves Pg. QED

Proof of Proposition 12: By Proposition 11, we need to show that the ratio

R(a, b) =

∫
u′(bst + art)stf(s)h(t)dtds∫
u′(bst + art)rtf(s)h(t)dtds

is increasing with a. Define v(z) =
∫

u(tz)h(t)dt; then v′(z) =
∫

u′(tz)th(t)dt, so that

R(a, b) =
∫

v′(bs + ar)sf(s)ds/
∫

v′(bs + ar)rf(s)ds. From the argument in the main

body of the paper, we know that this is increasing in a provided v exhibits decreasing

risk aversion. It is not hard to check (alternatively, see Gollier (2001)) that, when v

is concave (which it is since u is concave), this property holds if and only if

−v′′′(z)

v′′(z)
≥ −v′′(z)

v′(z)
for all z.

To show this, we set −v′′(z)/v′(z) = λ and claim that

v′′′ + λv′′ =
∫ [

t3u′′′(tz) + λt2u′′(tz)
]
h(t)dt ≥ 0.

Clearly, this is true if there is some number m such that

t3u′′′(tz) + λt2u′′(tz) ≥ m
[
λu′(tz)t + u′′(tz)t2

]
(9)

since the integral of the right hand side gives λv′(z) + v′′(z) = 0.21 Denoting a =

−u′′(tz)/u′(tz), and recalling that −u′′′(tz)/u′′(tz) ≥ a since u has diminishing risk

21In fact the existence of m is also necessary (see Gollier (2001) who refers to this equivalence as

the diffidence theorem).
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aversion, we can check that a sufficient condition for (9) to be true (after dividing by

t > 0) is that a2t2 − λat ≥ m[λ− at]. This is true if we set m = −λ. QED

APPENDIX B

In this appendix, we examine the implications that concavemodularity and quasi-

concavemodularity have on the concavity of a function. We call a function g : I → R,

where I is an interval in R, concave if g(t) − g(t′) ≥ g(t + c) − g(t′ + c) when-

ever t < t′, c > 0, and the the four points concerned lie in I. Note that the def-

inition we have adopted is not the standard one, which says that g is concave if

g(αt + (1 − α)t′) ≥ αg(t) + (1 − α)g(t′) for all t and t′ in I and α in [0, 1]. It is not

hard to show that the standard concavity property implies the one we have adopted;

if g is continuous, it is also not hard to show that our concavity property implies the

standard one.22

Similarly, we will adopt a slightly different definition of quasiconcavity. We say

that g is quasiconcave if for all t < t′ and c > 0, g(t) > g(t′) implies that g(t + c) ≥
g(t′+ c). The standard definition says that g is quasiconcave if, for any scalar M , the

set {x ∈ I : g(x) ≥ M} is convex. It is not hard to check that this standard property

implies the one we have adopted; when g is continuous, our property also implies the

standard one.23

22Without continuity, our property does not imply the. standard concavity property. It is well

known that there is a function H : R → R obeying H(t + t′) = H(t) + H(t′) which is discontinuous

at all points on R (see Hardy, Littlewood, and Polya (1952)). Since any concave function must be

continuous on the interior of its domain, H is not concave. On the other hand H clearly satisfies

our weaker definition of concavity. We should point out that the concavity property we used in

Proposition 1 (analogously, the convexity property we used Proposition 5) is, in fact, the weaker

property we have adopted in this appendix, rather than the standard one.
23The function H in the previous footnote obeys our definition of quasiconcavity, but it will violate

the standard definition. This is because a quasiconcave function can only have a countable number

of discontinuities, whereas H is discontinuous everywhere. There is an easy way of seeing that a

quasiconcave function (in the standard sense) can only be countably discontinuous. First, note that
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Let X be a convex sublattice of Rl. The function f : X → R is said to be concave

(quasiconcave) in direction v if for all x in X, the map from the scalar t to f(x + tv)

is concave (quasiconcave). The domain of this map is taken to be the largest possible

interval so that x + tv lies in X. The function f is i-concave (i-quasiconcave) if it is

concave (quasiconcave) in all directions v such that v > 0 and vi = 0.

Our first result is an increasing difference formulation of concavemodularity which

will be convenient for expositional purposes. We will skip the obvious proof.

Lemma B1: The function f : X → R is i-concavemodular if and only if for all

vectors v such that vi < 0 and vj > 0 for some j, we have

f(x + λv+)− f(x + v + λv+) ≥ f(x)− f(x + v)

where λ is a positive scalar and v+ = v ∨ 0.

The next proposition says that, with some mild additional assumptions, there

is a converse to Proposition 1; i.e., a function which is i-concavemodular must be

i-concave.

Proposition B1: Let X ⊂ Rl be a convex and open sublattice and suppose that

f : X → R is an i-concavemodular function which is also continuous in xi. Then f

is i-concave.

Proof: Suppose, by way of contradiction, that there is v̄ > 0 with v̄i = 0, and λ > 0

such that f(x)−f(x+ v̄) > f(x+λv̄)−f(x+ v̄+λv̄). Since f is continuous in xi, and

X is open, there is δ > 0 and sufficiently close to zero such that f(x)−f(x+ v̄−δei) >

f(x+λv̄)− f(x+ v̄− δei +λv̄), where ei is the unit vector pointing in direction i. By

Lemma B1, this is a violation of i-concavemodularity since (v̄ − δei) ∨ 0 = v̄. QED

The next result concerns functions which are concavemodular (in all directions).

It turns out that these functions must be concave in all directions except the strictly

positive and the strictly negative.

there must be some t∗ in the domain of the function such that the function is increasing for t < t∗

and is decreasing for t > t∗. Second, increasing and decreasing functions can only have countably

many discontinuities.
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Proposition B2: Let X ⊂ Rl be a convex and open sublattice and suppose

that f : X → R is a concavemodular function which is also continuous in each of its

arguments (but not necessarily jointly continuous). Then f has the following concavity

property: for all x in X, f is concave at x in all directions v satisfying v 6À 0 and

v 6¿ 0. In particular, f must be partially concave.

Proof: For v > 0 (or v < 0) such that vi = 0 for some i, we can appeal to

Proposition B1. (Note that this is the only place where the continuity property

imposed on f and the openness of X is used.) We now turn to the case where v is

such that vi < 0 for some i and vj > 0 for some j. Let t be a positive scalar. Denote

v+ = v ∨ 0 and v− = v ∧ 0. We have

f(x)− f(x + v) ≤ f(x + tv+)− f(x + v + tv+)

≤ f(x + tv+ + tv−)− f(x + v + tv+ + tv−)

= f(x + tv)− f(x + v + tv);

the first inequality arises from i-concavemodularity and the second from j-concavemodularity.

(Note that all the elements referred to in the inequalities are in X because it is a con-

vex lattice.) QED

As a simple illustration, consider the function f : R2
++ → R given by f(x1, x2) =

x1x2. Clearly this function is partially concave and supermodular. By Proposition

1, it is concavemodular, which means by Proposition B2 that it is concave in all

directions except possibly those which are strictly positive or strictly negative. To

check this, consider the behavior of the function along the ray emanating from the

point (x̄1, x̄2) and in the direction (a, b): f(x̄1+at, x̄2+bt) = x̄1x̄2+(bx̄1+ax̄2)t+abt2,

which is a concave function of t whenever a and b are of different signs, but convex

whenever a and b are both strictly positive or strictly negative.

The results we have reported so far have analogs for quasiconcavemodular func-

tions. The next result is obviously analogous to Proposition B1.

Proposition B3: Let X ⊂ Rl be a convex and open sublattice and suppose that
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f : X → R is an i-quasiconcavemodular function which is also continuous in xi. Then

f is i-quasiconcave.

Proof: Suppose, by way of contradiction, that there is v̄ > 0 with v̄i = 0, and a

positive scalar λ such that f(x)− f(x + v̄) > 0 and f(x + λv̄)− f(x + v̄ + λv̄) < 0.

Since f is continuous in xi, and X is open, there is δ > 0 and sufficiently close to

zero such that f(x) − f(x + v̄ − δei) > 0 and f(x + λv̄) − f(x + v̄ − δei + λv̄) < 0,

where ei is the unit vector pointing in direction i. By Lemma B1, this is a violation

of i-quasiconcavemodularity since (v̄ − δei) ∧ 0 = v̄. QED

Our final result shows that any continuous and increasing quasiconcavemodular

function must have convex upper contour sets (in other words, that it is quasiconcave

in the standard sense). Note, once again, that this is borne out by the example

f(x1, x2) = x1x2.

Proposition B4: Let X ⊂ Rl be a convex sublattice and suppose that f : X → R

is a continuous, increasing and quasiconcavemodular function. Then for any M , the

set SM = {x ∈ X : f(x) ≥ M} is convex.

Proof: By adapting the proof of Proposition B2, we can easily establish that f is

quasiconcave in direction v for all v with vi > 0 for some i and vj < 0 for some j.

Suppose that f(x) − f(x + v) > 0. By the i-quasiconcavemodularity of f , we have

f(x + tv+)− f(x + v + tv+) > 0 and by j-quasiconcavemodularity, we have

f(x + tv+ + tv−)− f(x + v + tv+ + tv−) = f(x + tv)− f(x + v + tv) > 0,

which shows that f is quasiconcave in direction v. Now consider two distinct points

x′ and x′′ in SM . If x′′ > x′ or x′ > x′′, it is clear that f(tx′ + (1 − t)x′′) ≥ M for t

in [0, 1] since f is increasing. So we assume that x′ and x′′ are not ordered, in which

case we know that f is quasiconcave in the direction v̄ = x′′ − x′. Recall, however,

that our definition of quasiconcavity is nonstandard (see the second paragraph of

this appendix); nonetheless, when f is continuous this coincides with the standard

definition, and the latter says that f(tx′ + (1− t)x′′) ≥ M for all t in [0, 1]. QED
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