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1 Introduction

In their pioneering studies, Ramsey (1926) and de Finetti (1937) originated the idea of

distinguishing events according to whether they are ‘exchangeable’ or ‘ethically neutral’,

providing the basis for their construction of a decision maker’s subjective probability over

events. Savage’s (1954) subsequent formulation departs from this direction and nevertheless

yields an overall subjective probability on a sigma algebra of events. Building on Savage’s

approach, Machina and Schmeidler (1992) and subsequently Grant (1995) provide more

parsimonious characterizations of what is termed probabilistic sophistication, in which the

choice behavior of a decision maker reflects her probabilistic belief in the sense that events

are distinguished only by their subjective probabilities.

Their contributions notwithstanding, some of the axioms employed by Machina and

Schmeidler (1992) and Grant (1995) are arguably too strong for the notion of probabilistic

sophistication. Consider, for instance, a decision maker with preferences over mappings from

finite partitions of the state space [0, 1] to an outcome set X (i.e., simple acts). Suppose the

decision maker translates each act into a lottery by associating with the ith partition element

its measure, pi ∈ [0, 1], and its assigned outcome, xi ∈ X. Denote such a lottery as, say,

L = (x1, p1; ...; xn, pn). As long as the decision maker is indifferent between two acts that

induce the same lottery, it seems reasonable to conclude that she is probabilistically sophis-

ticated. For instance, let X be the real line and suppose that the decision maker ranks any

simple act according to the expected value of the lottery it induces, and if two lotteries have

the same mean, the one with a smaller variance is preferred. According to the preceding

notion of probabilistic sophistication, the decision maker is probabilistically sophisticated.

However, this lexicographic preference satisfies all the axioms of Savage (1954), Machina and

Schmeidler (1992) and Grant (1995), except for P6 (‘continuity’).

As another example, suppose X is the two dimensional positive orthant, R2
+. Let E[L] =∑n

i=1 pixi and V (L) =
∑n

i=1 pi||xi − E[L]|| with || · || the Euclidean metric. Suppose the

decision maker’s preferences can be represented by the utility function U(L) =
∑n

i=1 pi(1 +

x1
i )(1+x2

i )− 1
2
V (L). Here too, the decision maker is probabilistically sophisticated (according
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to the preceding criteria). Moreover, if x1 > y1 and x2 > y2, then this decision maker strictly

prefers mixing any lottery L and (x1, x2) with probability p ∈ [0, 1) over mixing L and (y1, y2)

with probability p. Since these preferences are continuous and strictly increasing in payoffs,

they are arguably unobjectionable on normative grounds. Yet, it is straight forward to show

that they violate axioms P3 and P4 (‘monotonicity’ and ‘comparative likelihood’) in Machina

and Schmeidler (1992), as well as their analogues (P3CU , P3CL and P4CE) in Grant (1995).1

Say that two events are exchangeable if the decision maker is always indifferent to per-

muting their payoffs. Building on exchangeability as the primitive, we develop a notion of

comparability to capture the intuition behind a likelihood relation among events. Specifi-

cally, two disjoint events are comparable when one contains a subevent that is exchangeable

with the other. Informally, one is motivated to view one event as ‘larger’ or ‘more likely’

than the other. When all disjoint events are comparable in this way, we show that very

weak conditions - far weaker than Savage’s assumptions of monotonicity (P3), comparative

likelihood (P4), and continuity (P6) - suffice to deliver probabilistic sophistication on the

part of the decision maker. Indeed, the example of the lexicographic ranking and the ranking

implied by U(·) satisfy our axioms.

The next section introduces preliminary notions including formal definitions of event

exchangeability and comparability, presents our main result concerning probabilistic sophis-

tication, and relates our result to the existing literature.

2 A Parsimonious Axiomatization for Subjective Probabilities

2.1 Exchangeability and Comparability

Let Ω be a space whose elements correspond to all states of the world. Let X be a set of

payoffs and Σ an algebra on Ω. Elements of Σ are events. If e, E ∈ Σ and e ⊆ E, then

we say that e is a subevent of E. The set of simple acts, F , comprises all Σ-adapted and

X-valued functions over Ω that have a finite range. As is customary, x ∈ X is identified

1 It is important to note that P3 (‘monotonicity’) is synonymous with monotonicity in payoffs only if X
is one-dimensional (e.g., monetary payoffs). We thank Uzi Segal for suggesting this example.
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with the constant act that pays x in every state. Throughout the paper we assume that the

decision maker has a non-degenerate binary preference relation, �, on F as in Savage’s P1

and P5.2

For any collection of pairwise disjoint events, E1, E2, ..., En ⊂ Ω, and f1, f2, ..., fn, g ∈ F ,

let f1E1f2E2...fnEng denote the act that pays fi(ω) if the true state, ω ∈ Ω, is in Ei, and

pays g(ω) otherwise. We say that E ∈ Σ is null if fEh ∼ gEh ∀f, g, h ∈ F .

To capture the sense in which events are similar, we introduce a binary relation over

events via �:

Definition 1 (Event Exchangeability). For any pair of disjoint events E, E ′ ∈ Σ, E ≈ E ′

if for any x, x′ ∈ X and f ∈ F , xEx′E ′f ∼ x′ExE ′f.

Whenever E ≈ E ′ we will say that E and E ′ are exchangeable. Note that all null

events are exchangeable. Exchangeability may be viewed as a pre-notion of ‘equally likely’:

two events are ‘equally likely’ if the decision maker is indifferent to a permutation of their

payoffs. Without further structure this interpretation is not formally justified since, as the

next example demonstrates, ≈ is not necessarily transitive, and therefore not an equivalence

relation.

Example 1. Consider the partition {A, B1, B2, C} of Ω. Let X ≡ [0, 1] and the utility

representation over acts xAy1B1y2B2z be given by

V (x, y1, y2, z) = x + z +
y1 + y2

2
+

y1 − y2

4
x

It is straight forward to check that the representation satisfies first order dominance. It

should also be clear that A ≈ B1 ∪ B2 and C ≈ B1 ∪ B2. On the other hand, it is certainly

not the case that A ≈ C due to the asymmetry between x and z arising in the last term of

the utility function.

Intuitively, an event is ‘at-least-as-likely’ as any of its subevents. Exchangeability sup-

plies the motivation underlying a similar comparison across disjoint events, E, E ′ ∈ Σ: if a

2 As usual, � (resp. ∼) is the asymmetric (resp. symmetric) part of �. Under Savage’s P1, � is a weak
order on F , while P5 asserts that there exists f, g ∈ F such that f � g.
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subevent of E is exchangeable with E ′, then it is also natural to view E as ‘at-least-as-likely’

as E ′. Building on this, we define the following exchangeability based relation between any

two events.

Definition 2 (Event Comparability). For any events, E, E ′ ∈ Σ, E �C E ′ whenever E \E ′

contains a subevent, e, that is exchangeable with E ′ \ E. Moreover, e is referred to as a

comparison event.

Just as ≈ gives a pre-notion of ‘equal likelihood’ among events, �C provides a pre-notion

of an ‘at-least-as-likely’ relation. The event E is ‘at least as likely’ as E ′ if outside their

intersection the ‘more likely’ event (i.e., E \E ′) contains a ‘copy’ (i.e., the comparison event)

of the ‘less likely’ event (i.e., E ′\E). Since ∅ is a subevent of any event and ∅ is exchangeable

with itself, E ′ ⊆ E implies E �C E ′.

For any E, E ′ ∈ Σ, we say that E and E ′ are comparable whenever E �C E ′ or E ′ �C E.

Finally, define E �C E ′ whenever E �C E ′ and it is not the case that E ′ �C E. Likewise,

define ∼C as the symmetric part of �C .

We also need the following definitions:

Definition 3. �◦ is a likelihood relation over Σ if the following conditions hold:

i) �◦ is a weak order over Σ

ii) Ω �◦ ∅ and for every A ∈ Σ, A �◦ ∅ and Ω �◦ A

iii) for every A, B, C ∈ Σ such that C ∩ (A ∪B) = ∅, A �◦ B ⇔ A ∪ C �◦ B ∪ C

Note that the second requirement is satisfied by �C by virtue of the non-triviality of �,

while the last requirement is satisfied by the definition of �C . Thus establishing that �C is

a likelihood relation reduces to demonstrating that condition (i) holds.

Definition 4. µ is an agreeing probability measure for �◦ over Σ, if it is a probability

measure over Σ and for every A, B ∈ Σ, A �◦ (�◦)B ⇔ µ(A) ≥ (>)µ(B).
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For any probability measure, µ on Σ and act f ∈ F , refer to {(µ
(
f−1(x)

)
, x) | x ∈ X}

as the lottery induced by the act, f ∈ F with respect to µ. We say that µ is purely and

uniformly atomic whenever the union of all atoms has unit measure and all atoms have equal

measure. Finally, we say that µ is solvable if for every A, B ∈ Σ, µ(A) ≥ µ(B) implies the

existence of a subevent a ⊆ A with µ(a) = µ(B). Note that requiring µ to be solvable is

weaker than requiring it to be convex-ranged.3

2.2 Axioms and Main Result

Given a non-null event, e0, consider asking a decision maker to identify a disjoint event

(say e1) that is exchangeable with e0, then find another event (say e2) disjoint from e0 ∪ e1

and exchangeable with e1, then find another event (say e3) disjoint from e0 ∪ e1 ∪ e2 and

exchangeable with e2, and so on; then the following ‘Archimedean’ condition asserts that

this procedure must end after a finite number of steps:

Axiom A (Event Archimedean Property). Any sequence of pairwise disjoint and non-null

events, {ei}n
i=0 ⊆ Σ, such that ei ≈ ei+1 for every i = 0, ..., is necessarily finite.

Axiom A can also be restated to say that if {ei}∞i=0 ⊆ Σ is a sequence of pairwise disjoint

events with ei ≈ ei+1 for every i = 0, ..., then e0 is null.

Suppose that the decision maker behaves as if she assigns a unique probability measure to

each event, and the measure of events along with their assigned payoffs are the only relevant

characteristics for the purpose of her decision making. Clearly, if two events are equally

likely then their set differences are also equally likely and thus exchangeable. Thus, if Σ is

sufficiently ‘fine’ any event will contain a subevent with arbitrary yet smaller likelihood, and

therefore any two events in the decision maker’s world are comparable. When Σ is free of

atoms, the latter appears to be a fundamental attribute of probabilistic sophistication in the

absence of state dependence.4 The next assumption asserts this by requiring completeness

of �C .

3µ is convex-ranged if for every α ∈ [0, 1] and A ∈ Σ there is a subevent a ⊆ A with µ(a) = αµ(A).
4An atom is an event that cannot be partitioned into two or more non-null subevents.
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Axiom C (Completeness of �C). Given any disjoint pair of events, one of the two must

contain a subevent exchangeable with the other.

While completeness of �C may be appealing, added to Axiom A it is not sufficient for the

existence of a likelihood relation, let alone a unique agreeing probability measure representing

�C . Consider the following condition, which appears much weaker than Savage’s P3 and

P4:5

Axiom N (Event Non-satiation). For any pairwise disjoint E, A, E ′ ∈ Σ, if E ≈ E ′ and A

is non-null, then no subevent of E ′ is exchangeable with E ∪ A.

Axiom N is equivalent to requiring that whenever two events are exchangeable, adding a

disjoint non-null event to one of them makes the combined event strictly more ‘likely’ (i.e.,

E∪A �C E ′). How ‘minimal’ is Axiom N? The next result establishes that it is necessary for

any exchangeability based likelihood relation in which non-null sets are strictly more likely

than the empty set. Thus to the extent that the latter is desirable, Axiom N is a minimal

requirement for any theory of probabilistic sophistication in which exchangeable events are

equally likely.

Lemma 1. Assume that �◦ is a likelihood relation over Σ with (i) a symmetric part that

agrees with ≈ on disjoint sets, and (ii) A �◦ ∅ for all non-null A ∈ Σ. Then for any pairwise

disjoint E, E ′, A ∈ Σ such that A is not null, E ≈ E ′ implies that E ∪ A �◦ E ′.

Proof : Assume that E, E ′, A ∈ Σ are pairwise disjoint, A is not null, and E ≈ E ′ (meaning

that E ∼◦ E ′). Note that A �◦ ∅ ⇔ E ∪ A �◦ E. Transitivity of �◦ implies that

E ∪A �◦ E ′. If E ∪A ∼◦ E ′ then E ∪A ∼◦ E. In particular, the cancellation property (iii)

of a likelihood relation means that A ∼◦ ∅ – a contradiction. Thus E ∪ A �◦ E ′.

We now state several simple yet key implications of Axioms C and N that are useful in

proving our main theorem as well as relating the intuition behind its proof.

5 Savage’s P3 states that for any non-null event, E ⊆ Ω, act f ∈ F and any x, y ∈ X, x � y ⇔ xEf �
yEf . Savage’s P4 states that for any events E,E′ ∈ Σ and x∗, x∗, y

∗, y∗ ∈ X with x∗ � x∗, y∗ � y∗,
x∗Ex∗ � x∗E′x∗ implies y∗Ey∗ � y∗E′y∗. Machina and Schmeidler’s (1992) more restrictive P4∗ requires
that for any f, g ∈ F and whenever E ∩ E′ = ∅, x∗Ex∗E

′f � x∗E′x∗Ef implies y∗Ey∗E
′g � y∗E′y∗Eg.
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Lemma 2. Axioms C and N imply for any E, E ′, E ′′ ∈ Σ, E and E ′ disjoint: E �C E ′ and

E ′′ ⊆ E ′ ⇒ ∃ê ⊆ E with ê ≈ E ′′. Moreover, E \ ê is not null whenever E ′ \ E ′′ is not null.

Proof : Let e ⊆ E be the comparison set for E �C E ′. If E ′′ contains a subevent e′′ ≈ e

with E ′′ \ e′′ not null, then e′′ ∪ (E ′ \ e′′) ≈ e, in violation of N. Thus, by Axiom C, e �C E ′′

and ∃ê ⊆ e ⊆ E with ê ≈ E ′′. If E ′ \E ′′ is not null, then e \ ê cannot be null (and thus E \ ê

is not null), otherwise e ≈ E ′′ and e ≈ (E ′ \ E ′′) ∪ E ′′, in violation of N.

Lemma 3. Axiom N implies for any disjoint E, E ′ ∈ Σ: E ∼C E ′ ⇔ E ≈ E ′.

Proof : E ∼C E ′ ⇒ ∃e ⊆ E with e ≈ E ′. E \ e must be null (in which case E ≈ E ′).

Otherwise, E ′ ∼C e∪(E\e) implies that E ′ contains a subevent exchangeable with e∪(E\e)

in violation of N. Now, E ≈ E ′ implies E �C E ′ and E ′ �C E, thus implying E ∼C E ′.

Lemma 4. For any pairwise disjoint a, b, c, d ∈ Σ: a ≈ b and c ≈ d imply a ∪ c ≈ b ∪ d.

Proof : This is a direct consequence of Definition 1.

Lemma 5. Given Axioms C and N, and any pairwise disjoint a, b, c, d ∈ Σ: a ∪ b ≈ c ∪ d

and a ≈ c imply b ≈ d.

Proof : If b 6≈ d then Axiom C implies, without loss of generality, there is some b′ ⊂ b such

that b′ ≈ d and b \ b′ is not null. By Lemma 4, a ∪ b′ ≈ c ∪ d which violates Axiom N since

a ∪ b \ a ∪ b′ is not null.

Our main result delivers exchangeability-based probabilistic sophistication as necessary

and sufficient for Axioms A, C and N.

Theorem 1. Axioms A, C and N are satisfied if and only if there exists a unique, solvable,

and finitely additive agreeing probability measure, µ, for �C over Σ. Moreover, µ is either

atomless or purely and uniformly atomic, any two events have the same measure iff they

are exchangeable, and the decision maker is indifferent between any two acts that induce the

same lottery with respect to µ.
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We emphasize that for probabilistic sophistication we do not require Σ to be a σ-algebra,

thus µ need not be convex-ranged in the atomless case. In particular, when applied to

cases in which µ is solvable, our approach is more parsimonious than that of Kopylov (2004)

who derives probabilistic sophistication on event domains requiring less structure than σ-

algebras.6

2.3 Discussion

We now turn to a discussion of Theorem 1. We begin by examining the intuition behind the

derivation. We then compare our axioms with their counterparts in the literature.

2.3.1 Intuition

To derive probabilistic sophistication it is sufficient to prove that �C is a likelihood relation

that can be represented by a unique finitely additive measure, µ. If two acts, f and g, induce

the same lottery with respect to µ, the equivalence between ∼C and ≈ for two disjoint events

(Lemma 3) can be used to permute the payoffs of f so as to show that the decision maker

is indifferent between f and g. The non-trivial steps involve demonstrating that �C is

transitive and that Σ either consists of finitely many equal mass atoms or �C is fine and

tight – both cases known to be associated with a unique representing measure.7

To get a better sense of how Axioms A, C and N imply transitivity of �C , consider

E �C E ′ �C E ′′, and assume for simplicity that E, E ′, E ′′ ∈ Σ are pairwise disjoint. The

general idea is to establish that if E ′′ �C E, then one can construct an infinite sequence of

non-null pairwise disjoint events in violation of Axiom A. To see how this is done, we first

note a simple implication of Lemmas 2 and 5: E ′′ �C E implies that for any subevent e ⊆ E

there exists e′′ ⊆ E ′′ such that e′′ ≈ e and E ′′ \ e′′ �C E \ e. Essentially, comparability

and event non-satiation enable one to ‘cleave’ equally sized pieces from E ′′ and E, while

maintaining the ordering between the residual events.

6Kopylov’s results extend to non-solvable as well as non-algebraic structures.
7 A relation on Σ is fine if it contains no atoms and for any event, E, there exists a partition of Σ where no

partition element is strictly more likely than E. The relation is tight whenever E �C E′, there are A,B ∈ Σ
where A ∩ E′ = ∅ and B ⊂ E such that E �C A ∪ E′ and E \B �C E′.
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Now, consider that E ′′ �C E implies one can find a non-null subevent of E ′′, say e1,

such that E ′′ \ e1 ≈ E. Thus after ‘cutting’ e1 from E ′′ one arrives at E ′′ \ e1 �C E �C E ′.

Next, since E ′ � E ′′, one can cleave a piece, say e2, from E ′ such that e2 ≈ e1, giving

E ′ \ e2 �C E ′′ \ e1 �C E. This can be continued (e.g., cleave e3 ⊂ E such that e3 ≈ e2,

etc.) and yields the infinite sequence of non-null events. The contradiction with Axiom A

forces E �C E ′′ and the desired transitivity of �C . The actual proof, found in the Appendix,

makes use of such a construction, albeit in the more involved case where E, E ′ and E ′′ are

not pairwise disjoint.

If Σ is atomless, tightness follows easily from Axiom N; fine-ness relative to a non-null

event, E, can be established by ‘cleaving’ pairwise disjoint and equally sized pieces from

Ω \ E, which by Axiom A can only be done a finite number of times before one ends up

with a ‘remainder’ event that is smaller than E. Clearly, this construction leads to a finite

partition whose elements are no more likely than E. The fact that �C is a fine and tight

likelihood relation can then be used to deduce the unique existence of an agreeing probability

measure.8

If Σ contains an atom, then completeness requires that every other event contain a

subevent that is exchangeable with the atom. Thus, in particular, completeness of �C

implies that atoms must come in only one ‘size’, and that one can partition the state space

with a set of such atoms.9 In turn, Axiom A implies that any such partition is finite. While

the result in the atomic case is ‘trivial’ and of limited interest, it does shed some light on

a limitation of our approach: while Axiom C may be sensible when Σ is atomless, it is far

from innocuous otherwise. Interesting cases involving atoms require a relaxation or at least a

re-examination of the structure imposed. Moreover, additional assumptions will be required

to pin down a unique representing measure for �C when it is atomic.10

8See Wakker (1981).
9Details can be found in the proof of Theorem 1.

10This issue is not unique to our work – the majority of papers in this literature tend to focus on atomless
state spaces and those that do not require considerably more structure than we do; see Wakker (1984),
Chateauneuf (1985), Nakamura (1990), Gul (1992), Chew and Karni (1994), and Kobberling and Wakker
(2003).
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2.3.2 Relation to the Literature

In relating our approach to prior literature on probabilistic sophistication we focus primarily

on Machina and Schmeidler (1992) and Grant (1995).11

Comparison with Machina and Schmeidler (1992)

Machina and Schmeidler (1992) show that the existence of a continuous probabilistically

sophisticated utility representation of � agreeing with first degree stochastic dominance is

equivalent to P1, P3, P4∗, P5 and P6.12 This result delivers a unique convex-ranged prob-

ability measure where the measures of two events coincide if and only if the events are

exchangeable. Thus their axioms imply that �C is complete (i.e., all events are mutually

comparable) as well as Axiom A. It is also easy to show that monotonicity (i.e., P3) implies

event non-satiation. One can therefore interpret that, in establishing probabilistic sophistica-

tion in Theorem 1, we weaken the Machina and Schmeidler axioms as follows: P3 → Axiom

N, P4 and P6 → Axioms A and C. Indeed, in light of the preceding discussion, it seems

that completeness, together with Axiom A, endows the state space with a uniform character

reminiscent of the role typically played by P6. The latter, however, is much stronger given

that it leads to a continuous representation, whereas continuity is not required in our case.

Thus aside from monotonicity considerations, our assumptions substantively weaken those

of Savage (1954) or Machina and Schmeidler (1992). Moreover, consider the following result:

Proposition 1. Assume Savage’s P3, and Axiom C. Then for any x∗, x∗ ∈ X with x∗ � x∗,

disjoint E, E ′ ∈ Σ, and f ∈ F , x∗Ex∗E
′f � x∗E ′x∗Ef ⇔ E �C E ′.

The proposition establishes two things: given a weak ordering satisfying P3, Machina

and Schmeidler’s P4∗ is implied by completeness of �C ; moreover, �C is, in this case, the

comparative likelihood relation represented in their probabilistically sophisticated setting.

11Other related works include Sarin and Wakker (2000).
12See Footnote 2 for definitions of P1 and P5, and Footnote 5 for definitions of P3, P4 and P4∗. First

degree stochastic dominance, as used by Machina and Schmeidler, is essentially an expression of P3 in terms
of lotteries and, in the case of multi-dimensional outcomes, is more restrictive than monotonicity in outcomes
(see Footnote 1). Savage’s P6 requires that whenever f � g, then for any x ∈ X there is a sufficiently fine
finite partition of Ω, say {Ei}n

i=1 ⊂ Σ, such that xEif � g and f � xEig for every i = 1...n.
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In other words, to arrive at their representation theorem one need only replace N with P3

and add a stronger form of continuity to our list of conditions.

Comparison with Grant (1995)

The following highlights the limitations of an exchangeability based approach to probabilistic

sophistication.

Example 2. Consider the ‘mother’ example supplied by Grant (1995). If there are only two

outcomes in the world of the decision maker - namely, receipt of an indivisible good by Child

1 or by Child 2 - then a plausible representation for the mother’s preferences is the utility

function U(p) = p(1 − p), where p is the probability that Child 1 receives the indivisible

good and is subjectively generated by some device deemed by the mother to be uniform.

According to the definition of exchangeable events, any event with probability p ∈ [0, 0.5] is

exchangeable with its complement.

In the example, ≈ fails to deliver a notion of likelihood because given three disjoint

events, E, E ′ and A such that µ(E) = µ(E ′) = 0.4 and µ(A) = 0.2, the mother’s preference

behavior leads to the conclusion that E ≈ E ′ while E ∪ A ≈ E ′, in violation of Axiom N.

Failure of the latter to deliver what is clearly probabilistically sophisticated behavior can

be attributed to the highly restricted nature of the outcome space. If the good is divisible,

say chocolate, or there is an outcome in which nothing is given to either child, then it

will likely no longer be the case that any event is exchangeable with its complement; for

instance, if E is a probability 0.6 event, then it is reasonable to suppose that the mother is

not indifferent between giving each child a piece of chocolate if E is realized and nothing

otherwise, versus giving each child a piece of chocolate if the complement of E is realized

and nothing otherwise.

As stated, our axioms do not encompass those of Grant (1995) whose approach, in partic-

ular, can accommodate Example 2. Grant (1995) weakens P3 to either one of two variants:

conditional upper (or lower) eventwise monotonicity (P3CU or P3CL).13 However, the pre-

13These are formally stated in the proof to the next Proposition.
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ceding discussion suggests that a sufficiently enriched outcome space may not be subject to

the peculiarities of the mother example.14 Specifically, consider the following result which

establishes that in the presence of a ‘rich’ outcome space, either one of Grant’s P3CU and

P3CL implies Axiom N.

Proposition 2. Assume that for every non-null A ∈ Σ, f ∈ F , there exist x, x′ ∈ X such

that xAf � f � x′Af . Then either one of Grant’s P3CU or P3CL implies Axiom N.

The condition “for every non-null A ∈ Σ, f ∈ F there exist x, x′ ∈ X such that xAf �

f � x′Af” is a form of non-satiation in outcomes: there is always something sufficiently

good (resp. bad) that the decision maker is happy (resp. reluctant) to substitute for the

payoff scheme determined by f on A. It can therefore be viewed as a ‘richness’ assumption

on both � and the outcome set, X. Indeed, it is a challenge to find an intuitively behavioral

example in a state independent setting where the state space cannot be so ‘enriched’.

Under the conditions in Proposition 2, Grant’s unique measure representing probabilistic

sophistication agrees with �C , and his axioms (taken together) imply both completeness

of �C and Axiom A. In other words, probabilistically sophisticated preferences that satisfy

Grant’s axioms also satisfy ours provided that the outcome space is sufficiently rich to ensure

that Axiom N is also satisfied. Thus, in practice, Grant’s axioms are more demanding

than ours in the sense that they require a form of continuity and monotonicity not needed

in Theorem 1, and rule out many probabilistically sophisticated functional forms that are

admissible under our axioms.

A Appendix

Proof of Theorem 1: We prove the Theorem in several stages:

14To further emphasize the importance of ‘enriching’ the outcome space, we note that whenever X con-
tains only two outcomes, Σ is atomless, and � can be represented via a continuous and probabilistically
sophisticated utility function, Axiom N is satisfied if and only if the representation is monotonic in the sense
of P3. We thank I. Gilboa for pointing this out.
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a1 

a2 

a3 

b3 

b1 

b2 

c 

Figure 1: Venn diagram useful in proving Theorem 1.

Stage A. If E, E ′ and E ′′ are pairwise disjoint events, then E ≈ E ′ and E ′ ≈ E ′′ imply

E ≈ E ′′.

This is trivial if any of the events are null, so assume otherwise. If E 6≈ E ′′, then without

loss of generality, there is some non-null event e1 ⊂ E such that E \ e1 ≈ E ′′. Lemma 2

implies the existence of a non-null event e2 ⊂ E ′ such that E ′\e2 ≈ E\e1. The events e1 and

e2 are disjoint, so Lemma 5 gives e1 ≈ e2. The fact that E ′′ ≈ E ′ can be similarly used to

establish the existence of a set e3 ⊂ E ′′ disjoint from e1 and e2 such that e3 ≈ e2. Similarly,

E \ e1 ≈ E ′′ leads to e4 ⊂ E \ e1 such that e4 ≈ e3, etc. Clearly this can be continued to

construct an infinite sequence of non-null events that are disjoint such that ei+1 ≈ ei, in

violation of Axiom A.

Stage B. Let a1, a2, a3, b1, b2, b3 be pairwise disjoint events in Σ (see Figure 1). Then a1∪b3 ≈

a2 ∪ b2 and a2 ∪ b1 ≈ a3 ∪ b3 imply a1 ∪ b1 ≈ a3 ∪ b2.

The idea is to demonstrate the existence of events a′1, a
′
3, b

′
1 and b′2 where a′1 ⊆ a1, a

′
3 ⊆

a3, b
′
1 ⊆ b1, and b′2 ⊆ b2, such that a′1 ≈ a′3, a1 \ a′1 ≈ b′2, a3 \ a′3 ≈ b′1 and b1 \ b′1 ≈ b2 \ b′2.

This enables one to write, using Lemma 4, a1 ∪ b1 = a′1 ∪ (a1 \ a′1) ∪ b′1 ∪ (b1 \ b′1) ≈

a′3 ∪ b′2 ∪ (a3 \ a′3) ∪ (b2 \ b′2) = a3 ∪ b2, which is the desired result.

Step 1: Lemma 2 implies the existence of â1∪ b̂3 ≈ a2 and ǎ3∪ b̌3 ≈ a2, with â1 ⊆ a1, ǎ3 ⊆ a3,

and b̂3, b̌3 ⊆ b3. Similarly, Lemma 2 also implies the existence of â2 ≈ b̂3 and ǎ2 ≈ b̌3, where
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â2, ǎ2 ⊆ a2. Set a′2 ≡ a2 \ (â2 ∪ ǎ2) and note that using Lemma 5, a′2 ⊆ a2 \ â2 ≈ â1

and a′2 ⊆ a2 \ ǎ2 ≈ ǎ3. Lemma 2 implies the existence of a′1 ⊆ a1 and a′3 ⊆ a3 such that

a′1 ≈ a′2 ≈ a′3. Stage A gives a′1 ≈ a′3.

Step 2: Defining b′3 ≡ b̂3 ∪ b̌3 gives a′1 ∪ b′3 ≈ a2 ≈ a′3 ∪ b′3 (using Lemma 4). From

a1∪b3 ≈ a2∪b2, a3∪b3 ≈ a2∪b1, and the last step, Lemma 5 implies that (a1\a′1)∪(b3\b′3) ≈ b2

and (a3 \ a′3) ∪ (b3 \ b′3) ≈ b1. Lemma 2 implies there are b′2 ⊆ b2 and b′1 ⊆ b1 such that

b′2 ≈ a1 \ a′1 and b′1 ≈ a3 \ a′3. By Lemma 5, b1 \ b′1 ≈ b3 \ b′3 and b3 \ b′3 ≈ b2 \ b′2, thus Stage

A implies that b1 \ b′1 ≈ b2 \ b′2.

Stage C. �C is transitive

Now, given E, E ′, E ′′ ∈ Σ, suppose that E �C E ′ and E ′ �C E ′′. Let e′ ⊆ E ′ \ E ′′ be a

comparison subevent between E ′ and E ′′ (i.e., e′ ≈ E ′′ \E ′). Lemma 2 implies there is some

ê ⊆ E \
(
e′ ∪ (E ′ ∩ E ′′)

)
such that ê ≈

(
e′ ∪ (E ′ ∩ E ′′)

)
\ E. We can now apply Stage B as

follows. Let the lower circle in Figure 1 correspond to E ′′. This can be broken up into two

pieces: E ′′ \E ′ ≡ a3 ∪ b3 and E ′′ ∩E ′ ≡ b2 ∪ c. Likewise, let e′ correspond to a2 ∪ b1, so that

a2∪ b1 ≈ a3∪ b3. Finally, let a1∪ b3 ≡ ê and set: ξ = (e′∪ (E ′∩E ′′))∩E. Diagrammatically,

ξ corresponds to b1 ∪ c. Note that we identify the left and right circles with subevents of E

and E ′, respectively. It follows that: b1 = ξ∩e′, a2 = e′ \b1, b3 = ê∩E ′′, a1 = ê\b3, b2 =((
e′ ∪ (E ′ ∩ E ′′)

)
\ E

)
∩ E ′′, and a3 = E ′′ \

(
ê ∪ E ′). Now, ê ≈

(
e′ ∪ (E ′ ∩ E ′′)

)
\ E means

that a1 ∪ b3 ≈ a2 ∪ b2. Since a2 ∪ b1 ≈ a3 ∪ b3, Stage B implies a1 ∪ b1 ≈ a3 ∪ b2. Moreover,

since E ′′ \ E = a3 ∪ b2 and a1 ∪ b1 ⊆ E \ E ′′, by definition E �C E ′′.

Stage D. �C is a likelihood relation

Stage C establishes that �C is a weak order (transitive and complete) over Σ. Condition

(ii) in the definition of a likelihood relation is satisfied by �C due to the presence of non-null

events (P5) and Axiom N, while condition (iii) is automatically satisfied by the definition of

comparability.

Stage E. �C is either atomless and tight or purely and uniformly atomic.
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Assume first that Σ contains an atom, a, and denote ac as its relative complement in

Ω. Note that for any e ∈ Σ it cannot be that a �C e since a cannot be partitioned into

two or more non-null events. Thus ac �C a. If a ≈ ac then, by Axiom N, ac must also be

an atom and Σ therefore consists of two exchangeable atoms. Suppose instead that ac 6≈ a.

Then there is some event a1 ⊂ ac with a1 ≈ a and ac \ a1 not null. By Axiom N, a1 must be

an atom in Σ, and by Axiom C, ac \ a1 �C a. In turn this implies the presence of another

atom a2 ≈ a in ac \ a1 with a, a1 and a2 disjoint and pairwise exchangeable. According to

Axiom A, this can be continued at most a finite number of times, proving that the set of

non-null events in Σ is finite. Transitivity of ≈ (Stage A) implies that all atoms are pairwise

exchangeable.

Assume now that Σ is atomless. To demonstrate tightness (see Footnote 7), consider that

E �C E ′ implies there is some e ⊂ E\E ′ such that e ≈ E ′\E and E\(e∪E ′) is not null. Since

Σ is atomless, E \ (e∪E ′) can be split into two disjoint non-null events, ξ1 and ξ2, both in Σ,

subsets of E and disjoint from e∪E ′. By Axiom N, no subevent of E ′\E is exchangeable with

e∪ξ2. Thus Axiom C implies that E = e∪ξ2∪(E∩E ′)∪ξ1 �C (E ′\E)∪(E∩E ′)∪ξ1 = E ′∪ξ1

where ξ1 ∩ E ′ = ∅. A similar argument implies E \ ξ1 �C E ′, implying �C is tight.

Stage F. If �C is atomless, then it is fine.

To show this, for any E ∈ Σ we construct a finite partition of Ω at least as fine as E, {ei},

starting with e1 ≡ E. Next, Axiom C implies that either E �C Ec or Ec �C E. In the former

case, let e2 ≡ Ec and {e1, e2} forms a partition containing events at least as fine as E. In the

latter case, define e2 as the comparison subevent of Ec that, by definition, is exchangeable

with E. Once again, Axiom C implies that either E �C (E ∪ e2)
c or (E ∪ e2)

c �C E, and we

can continue constructing events exchangeable with E and disjoint from each other in the

obvious way. By Axiom A this construction must be finite and constitutes a partition of Ω

consisting of events at least as fine as E. Thus �C is fine.

Stage G. Conclusion

In either the atomic or the fine and tight case, there exists a unique finitely additive

probability measure, µ, that agrees with �C (see Wakker, 1981). µ is therefore solvable;
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moreover, it is a countably additive convex-ranged measure if Σ is a σ-algebra (as in Savage’s

original treatment). Finally, whenever the measure of two events, E, E ′, coincides, it must

be that E �C E ′ and E ′ �C E; in turn, Lemma 2 implies that E ≈ E ′.

To prove that the decision maker is indifferent between all acts inducing the same distri-

bution one can use the arguments in steps 4 and 5 in the proof of Theorem 1, Machina and

Schmeidler (1992), or step 5 in the proof of Theorem 1, Grant (1995). Proving necessity of

Axioms C and A is trivial; necessity of Axiom N follows from Lemma 1.

Proof of Proposition 1: Assume E �C E ′. For any x∗, x∗ ∈ X with x∗ � x∗ and f ∈ F ,

write x∗Ex∗E
′f = x∗ ξ∪ξ′x∗E

′ f , where ξ∪ξ′ = E and ξ′ ≈ E ′. By definition of ≈, we have

that x∗ξ∪ξ′x∗E
′f ∼ x∗ξ∪E ′x∗ξ

′f . By P3, the latter dominates x∗E ′x∗ξ∪ξ′f = x∗E ′x∗Ef .

Summarizing: x∗Ex∗E
′f � x∗E ′x∗Ef .

If E ′ �C E, then E ′ contains a non-null subevent e′ such that E ′ \ e′ ≈ E. Using P3:

E ′ �C E ⇒ x∗E ′x∗Ef � x∗Ex∗E
′f . Axiom C and the contrapositive of the latter gives

x∗Ex∗E
′f � x∗E ′x∗Ef ⇒ E �C E ′.

Proof of Proposition 2: Grant’s axioms state that for any x, y ∈ X, h ∈ F and disjoint

non-null E, E ′ ∈ Σ,

P3CU : x(E ∪ E ′)f � y(E ∪ E ′)f ⇒ xEyE ′f � y(E ∪ E ′)f

P3CL: x(E ∪ E ′)f � y(E ∪ E ′)f ⇒ x(E ∪ E ′)f � xEyE ′f

We first establish, under the hypothesis, Property †: for any disjoint E, E ′, A ∈ Σ, if

x(E ∪ A)x′E ′f ∼ xEx′(E ′ ∪ A)f for every x, x′ ∈ X and f ∈ F then A is null. Specializing

to f = x′, this becomes x(E ∪ A)x′ ∼ xEx′ for every x, x′ ∈ X. Note that, under the

hypothesis of the Proposition, when E is null A too must be null. Assuming E is not null,

for each z ∈ X there are y, y′ ∈ X such that z � y(E ∪ A)z and y′(E ∪ A)z � z. If P3CU is

satisfied and A is not null, it must be that zAyEz = yEz � y(E ∪ A)z, a contradiction of

x(E ∪A)x′ ∼ xEx′ for every x, x′ ∈ X. On the other hand, if P3CL is satisfied and A is not
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null, it must be that y′(E ∪ A)z � y′Ez = zAy′Ez, also a contradiction. Thus A is null.

We now demonstrate that Property † implies Axiom N. Suppose E, A, E ′ ∈ Σ are pairwise

disjoint, such that E ≈ E ′, and A is non-null. Let ξ′ be a subevent of E ′ that is exchangeable

with E ∪A. By exchanging ξ′ for E ∪A, we have for any x, x′ ∈ X and f ∈ F that, x′(E ∪

A)xE ′f ∼ x′ξ′x
(
(E ∪A)∪ (E ′ \ ξ′)

)
f = x′ξ′x

(
E ∪ (A∪E ′ \ ξ′)

)
f . Similarly, by exchanging

E with E ′ it follows that x′(E ∪ A)xE ′f ∼ x′(E ′ ∪ A)xEf = x′
(
ξ′ ∪ (A ∪ E ′ \ ξ′)

)
xEf .

Property † implies A∪E ′ \ ξ′ is null, contradicting the fact that A is not null. Avoiding the

contradiction requires that no subevent of E ′ is exchangeable with E ∪ A.
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