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1 Introduction

Economists and geneticists, among others, have implicitly or explicitly assumed the exact law

of large numbers for independent random matching in a continuum population, by which we

mean a non-atomic measure space of agents. This result is relied upon in large literatures within

general equilibrium theory, game theory, monetary theory, labor economics, illiquid financial

markets, and biology, as discussed in [6], which provides extensive references. Such a law of large

numbers allows a dramatic simplification of the dynamics of the cross-sectional distribution of

properties among a large population of randomly interacting agents. Mathematical foundations,

however, have been lacking, as has been noted by Green and Zhou [7].

Given the fundamental measurability problems associated with modeling a continuum

of independent random variables,1 there has, up to now, been no theoretical treatment of the

exact law of large numbers for independent random matching among a continuum population.

In [18], various versions of the exact law of large numbers and their converses are proved by

applying simple measure-theoretic methods to an extension of the usual product probability

space that has the Fubini property.2 The measure-theoretic framework of [18] is adopted in our

companion paper [6] to obtain an exact law of large numbers for random pairwise matching by

formulating a suitable independence condition in types.3

In particular, assuming independent random matching in a continuum population, and

some related independence assumptions regarding random mutation and match-induced type

changing, we prove in [6] that there is an almost-sure deterministic cross-sectional distribution

of types in a large population for both static and dynamic systems, a property that had been

widely used without a proper foundation. In addition, we show in [6] that the time evolution

of the cross-sectional distribution of types can be completely determined from the agent-level

Markov chain for type, with known transition matrices.

The main aim of this paper is to provide the first theoretical treatment of the existence

of independent random matching in a continuum population. In particular, we construct a

joint agent-probability space, and randomized mutation, partial matching, and match-induced

type-changing functions that satisfy the independence conditions used to obtain various law-of-

1See the discussions and references in [16] and [18].
2These results were originally stated on Loeb measure spaces in [16]. However, as noted in [18], they can be

proved for an extension of the usual product space that has the Fubini property; see also Chapter 7 in [14] (and
in particular, Sections 7.5 and 7.6), written by Sun.

3The independence condition that we propose in [6] is natural, but may not be obvious. For example, random
matching in a finite population may not allow independence among agents since the matching of agent i to agent
j implies of course that j is also matched to i, implying some correlation among agents. The effect of this
correlation is reduced to zero in a continuum population. A new concept, “Markov conditional independence
in types,” is proposed in [6] for dynamic matching, under which the transition law at each randomization step
depends on only the previous one or two steps of randomization.
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large-numbers results in the general framework of [6]. While our proofs in [6] of the exact law of

large numbers for independent random matching use only simple probabilistic manipulations,

the proofs in this paper of the existence results are relatively difficult, and make extensive use of

nonstandard analysis. The existence results themselves, however, are stated here using common

measure-theoretic terms. One can pick up some background knowledge on nonstandard analysis

from the first three chapters of the book [14].

Our proof of the existence result for dynamic settings is based on a new Fubini-type

theorem, shown here for Loeb transition probabilities. This result allows us to construct a

Loeb product transition probability system from a sequence of internal transition probabilities,

based on which we construct a continuum of independent Markov chains that is derived from

random mutation, random partial matching, and random match-induced type changing.

Historically, reliance on the exact law of large numbers for independent random matching

dates back at least to 1908, when G.H. Hardy [8] and W. Weinberg (see [2]) independently

proposed that random mating in a large population leads to constant and easily calculated

fractions of each allele in the population. Hardy wrote: “suppose that the numbers are fairly

large, so that the mating may be regarded as random,” and then used, in effect, an exact

law of large numbers for random matching to deduce his results. Consider, for illustration,

a continuum population of gametes consisting of two alleles, A and B, in initial proportions

p and q = 1 − p. Then, following the Hardy-Weinberg approach, the new population would

have a fraction p2 whose parents are both of type A, a fraction q2 whose parents are both of

type B, and a fraction 2pq whose parents are of mixed type (heterozygotes). These genotypic

proportions asserted by Hardy and Weinberg are already, implicitly, based on an exact law of

large numbers for independent random matching in a large population. We provide a suitable

existence framework.

Going from a static to a dynamic environment, we also provide an existence result that

allows the computation of a steady-state constant deterministic population distribution of

types. For illustration, suppose in the Hardy-Weinberg setting above that with both parents of

allele A, the offspring are of allele A, and that with both parents of allele B, the offspring are

of allele B. Suppose that the offspring of parents of different alleles are, say, equally likely to

be of allele A or allele B. The Hardy-Weinberg equilibrium for this special case is a population

with steady-state constant proportions p = 60% of allele A and q = 40% of allele B. With

the law of large numbers for independent random matching, this is verified by checking that,

if generation k has this cross-sectional distribution, then the fraction of allele A in generation

k + 1 is almost surely 0.62 + 0.5 × (2 × 0.6 × 0.4) = 0.6. Our existence results for a dynamic

model of random matching provide a mathematical foundation for this Hardy-Weinberg Law
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governing steady-state allelic and genotypic frequencies.

In the field of economics, Hellwig [9] is the first, to our knowledge, to have relied on

the effect of the exact law of large numbers for random pairwise matching in a market, in a

1976 study of a monetary exchange economy.4 Since the 1970s, a large economics literature

has routinely relied on an exact law of large numbers for independent random matching in a

continuum population, as indicated in [6].

The remainder of the paper is organized as follows. Section 2 considers existence of

independent random matching, both full and partial, in a static setting, after a brief introduc-

tion of the measure-theoretic framework in Section 2.1. Theorem 2.4 of Section 2.2, shows the

existence of random full matching with independent types, meaning roughly that, for essen-

tially every pair (i, j) of agents, the type of the agent to be randomly matched with agent i

is independent of the type of the agent to be randomly matched with agent j. Theorem 2.6

of Section 2.3 then considers existence for the case of random search and matching, that is,

for random partial matchings that are independent in types. Proofs of Theorems 2.4 and 2.6,

which use nonstandard analysis extensively in the computations, are given in Section 4.

Section 3 considers a dynamical system for agent types, allowing for random mutation,

partial matching, and match-induced random type changes. We borrow from our companion

paper [6] the inductive definition of such a dynamical system given in Section 3.1, and the

condition of Markov conditional independence found in Section 3.2. The latter condition cap-

tures the idea that at every time period, there are three stages: (1) an independent random

mutation, (2) an independent random partial matching, and (3) for those agents matched,

an independent random type change induced by matching. In economics applications, for ex-

ample, match-induced type changes arise from productivity shocks, changes in asset holdings

induced by trade between the matched agents, changes in credit positions, or changes in money

holdings. Theorem 3.1 of Section 3.3 shows the existence of a dynamical system D with ran-

dom mutation, partial matching and type changing that is Markov conditionally independent

in types with any given parameters. Theorem 3 of [6] then implies that the type processes

of individual agents in such a dynamical system D form a continuum of independent Markov

chains, and that the time evolution of the cross-sectional distribution of types is deterministic

and completely determined from a Markov chain with explictly calculated transition matrices.

Turning to Section 5, we first prove in Section 5.1 a generalized Fubini theorem for a Loeb

4Diamond [4] had earlier treated random matching of a large population with, in effect, finitely many em-
ployers, but not pairwise matching within a large population. The matching of a large population with a finite
population can be treated directly by the exact law of large numbers for a continuum of independent random
variables. For example, let N(i) be the event that worker i is matched with an employer of a given type, and
suppose this event is pairwise independent and of the same probability p, in a continuum population of such
workers. Then, under the conditions of [18], the fraction of the population that is matched to this type of
employer is p, almost surely.
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transition probability. Then, a generalized Ionescu-Tulcea theorem for an infinite sequence of

Loeb transition probabilities is shown in Section 5.2. Finally, a Fubini extension based on Loeb

product transition probability systems is constructed in Section 5.3. Based on the results in

Section 5, we prove Theorem 3.1 in Section 6.

Finally, we emphasize again that we must work with extensions of the usual product

measure spaces (of agents and states of the world), since a process formed by a continuum of

independent random variables is never measurable with respect to the completion of the usual

product σ-algebra, except in the trivial case that almost all of the random variables in the

process are constants.5

2 Existence of independent random matchings in the static case

In this section, we first give some background definitions in Section 2.1. Then, we consider the

existence of random matchings that are independent in types, for full and partial matchings,

in Sections 2.2 and 2.3, respectively. Proofs of the two existence theorems, Theorems 2.4 and

2.6, are given in Sections 4.1 and 4.2. The full and partial matching models in Theorems 2.4

and 2.6 satisfy the respective conditions in Theorems 1 and 2 in [6], which means that the

respective conclusions of Theorems 1 and 2 in [6], characterizing the implications of the law

of large numbers for process describing the cross-sectional distribution of types, hold for these

matching models.

2.1 Some background definitions

Let probability spaces (I,I, λ) and (Ω,F , P ) be our index and sample spaces respectively.6

In our applications, (I,I, λ) is an atomless probability space that indexes the agents.7 If one

prefers, I can be taken to be the unit interval [0, 1]. Let (I × Ω,I ⊗ F , λ ⊗ P ) be the usual

product probability space. For a function f on I × Ω (not necessarily I ⊗F-measurable), and

for (i, ω) ∈ I × Ω, fi represents the function f(i, · ) on Ω, and fω the function f( · , ω) on I.

In order to work with independent type processes arising from random matching, we

need to work with an extension of the usual measure-theoretic product that retains the Fubini

property. A formal definition, as in [18], is as follows.

Definition 2.1 A probability space (I×Ω,W, Q) extending the usual product space (I×Ω,I⊗

F , λ ⊗ P ) is said to be a Fubini extension of (I × Ω,I ⊗ F , λ ⊗ P ) if for any real-valued Q-

integrable function g on (I × Ω,W), the functions gi = g(i, · ) and gω = f( · , ω) are integrable

5See, for example, Proposition 1.1 in [17].
6All measures in this paper are countably additive set functions defined on σ-algebras.
7A probability space (I, I, λ) is atomless if there does not exist A ∈ I such that λ(A) > 0, and for any

I-measurable subset C of A, λ(C) = 0 or λ(C) = λ(A).

4



respectively on (Ω,F , P ) for λ-almost all i ∈ i and on (I,I, λ) for P -almost all ω ∈ Ω; and

if, moreover,
∫

Ω gi dP and
∫

I gω dλ are integrable respectively on (I,I, λ) and on (Ω,F , P ),

with
∫

I×Ω g dQ =
∫

I

(∫

Ω gi dP
)

dλ =
∫

Ω

(∫

I gω dλ
)

dP . To reflect the fact that the probability

space (I ×Ω,W, Q) has (I,I, λ) and (Ω,F , P ) as its marginal spaces, as required by the Fubini

property, it will be denoted by (I × Ω,I � F , λ � P ).

An I �F-measurable function f will also be called a process; while fi is called a random

variable of the process, and fω is called a sample function of the process.

We now introduce the following crucial independence condition. We state the definition

using a complete separable metric space X for the sake of generality; in particular, a finite

space or an Euclidean space is a complete separable metric space.

Definition 2.2 An I�F-measurable process f from I×Ω to a complete separable metric space

X is said to be essentially pairwise independent if for λ-almost all i ∈ I, the random variables

fi and fj are independent for λ-almost all j ∈ I.

2.2 Existence of independent random full matchings

We follow the notation in Section 2.1. Below is a formal definition of random full matching.

Definition 2.3 (Full matching.)

1. Let S = {1, 2, . . . ,K} be a finite set of types, α : I → S an I-measurable type function

of agents and p its distribution on S. For 1 ≤ k ≤ K, let Ik = {i ∈ I : α(i) = k} and

pk = λ(Ik) for each 1 ≤ k ≤ K.

2. A full matching φ is a bijection from I to I such that for each i ∈ I, φ(i) 6= i and

φ(φ(i)) = i.

3. A random full matching π is a mapping from I × Ω to I such that (i) πω is a full

matching for each ω ∈ Ω; (ii) let g be the type process α(π); then g is measurable from

(I × Ω,I � F , λ � P ) to S; (iii) for λ-almost all i ∈ I, gi has distribution p.

4. A random full matching π is said to be independent in types if the type process g is

essentially pairwise independent.

Condition (1) of this definition says that a fraction pk of the population is of type k.

Condition (2) says that there is no self-matching, and that if i is matched to j = φ(i), then j

is matched to i. Condition (3) (iii) means that for almost every agent i, the probability that i

is matched to a type-k agent is pk, the fraction of type k agents in the population. Condition
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(4) says that for almost all agents i and j ∈ I, the event that agent i is matched to a type-k

agent is independent of the event that agent j is matched to a type-l agent for any k, l ∈ S.

The following theorem shows the existence of an independent random full matching

model that satisfies a few strong conditions that are specified in Footnote 4 of McLennan and

Sonnenschein [15], and is universal in the sense that it does not depend on particular type

functions.8 Note that condition (1) (ii) below implies that for any i, j ∈ I, P (πi = j) = 0 since

λ({j}) = 0, which means that the probability that agent i is matched with a given agent j is

zero.

Theorem 2.4 There exists a Fubini extension (I × Ω,I � F , λ � P ) of the usual product

probability space with an atomless probability measure λ and a random full matching π from

(I × Ω,I � F , λ � P ) to I such that

1. (i) for each ω ∈ Ω, λ(π−1
ω (A)) = λ(A) for any A ∈ I, (ii) for each i ∈ I, P (π−1

i (A)) =

λ(A) for any A ∈ I, (iii) for any A1, A2 ∈ I, λ(A1 ∩ π−1
ω (A2)) = λ(A1)λ(A2) holds for

P -almost all ω ∈ Ω;

2. π is independent in types with respect to any given type function α from I to any finite

type space S.

2.3 The existence of independent random partial matchings

We shall now consider the case of random partial matchings. The following is a formal defini-

tion.

Definition 2.5 Let α : I → S be an I-measurable type function with type distribution p =

(p1, . . . , pK) on S. Let π be a mapping from I × Ω to I ∪ {J}, where J denotes “no match.”

1. We say that π is a random partial matching with no-match probabilities q1, . . . , qK in

[0, 1] if:

(i) For each ω ∈ Ω, the restriction of πω to I − π−1
ω ({J}) is a full matching on I −

π−1
ω ({J}).9

(ii) After extending the type function α to I ∪ {J} such that α(J) = J , and letting

g = α(π), we have g measurable from (I × Ω,I � F , λ � P ) to S ∪ {J}.

8When (I, I, λ) is taken to be the unit interval with the Borel algebra and Lebesgue measure, property (1)
(iii) of Theorem 2.4 can be restated as “for P -almost all ω ∈ Ω, λ(A1 ∩ π−1

ω (A2)) = λ(A1)λ(A2) holds for any
A1, A2 ∈ I” by using the fact that the countable collection of rational intervals in [0, 1] generates the Borel
algebra. Footnote 4 of [15] shows the non-existence of a random full matching π that satisfies (i)-(iii) of part
(1).

9This means that an agent i with πω(i) = J is not matched, while any agent in I − π−1
ω ({J}) is matched.

This produces a partial matching on I .
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(iii) For λ-almost all i ∈ Ik, P (gi = J) = qk and P (gi = l) = (1−qk)pl(1−ql)
PK

r=1
pr(1−qr)

.10

2. A random partial matching π is said to be independent in types if the process g (taking

values in S ∪ {J}) is essentially pairwise independent.11

The following theorem generalizes Theorem 2.4 to the case of random partial matchings.

Because the given parameters for no-matching probabilities may be type-dependent, it is not

possible to produce a universal matching model for random partial matchings as in the case of

full matchings.

Theorem 2.6 There is an atomless probability space (I,I, λ) of agents such that for any given

I-measurable type function β from I to S, and for any q ∈ [0, 1]S , (1) there exists a sample space

(Ω,F , P ) and a Fubini extension (I × Ω,I � F , λ � P ) of the usual product probability space;

(2) there exists an independent-in-types random partial matching π from (I ×Ω,I �F , λ � P )

to I with q = (q1, . . . , qK) as the no-match probabilities.

3 The existence of a dynamical system with random mutation, partial match-

ing and type changing that is Markov conditionally independent in types

A discrete-time dynamical system D with random mutation, partial matching, and type chang-

ing that is Markov conditionally independent in types is introduced in Section 4 of our compan-

ion paper [6]. The purpose of this section is to show the existence of such a dynamical system

D with any given parameters. In Sections 3.1 and 3.2, we reproduce respectively the inductive

definition of a dynamical system with random mutation, partial matching, and type changing

and the condition of Markov conditional independence, which originated with [6]. The general

existence of the dynamical system D is presented in Theorem 3.1 in Section 3.3 and its proof

in Section 6.

3.1 Definition of a dynamical system with random mutation, partial matching

and type changing

Let S = {1, 2, . . . ,K} be a finite set of types. A discrete-time dynamical system D with random

mutation, partial matching and type changing in each period can be defined intuitively as

10If an agent of type k is matched, its probability of being matched to a type-l agent should be proportional
to the type distribution of matched agents. The fraction of the population of matched agents among the total
population is

PK

r=1
pr(1− qr). Thus, the relative fraction of type-l matched agents to that of all matched agents

is (pl(1−ql))/
PK

r=1
pr(1−qr). This implies that the probability that a type-k agent is matched to a type-l agent

is (1 − qk)(pl(1 − ql))/
PK

r=1
pr(1 − qr). When

PK

r=1
pr(1 − qr) = 0, we have pk(1 − qk) = 0 for all 1 ≤ k ≤ K,

in which case almost no agents are matched, and we can interpret the ratio ((1− qk)pl(1− ql))/
PK

r=1
pr(1− qr)

as zero.
11This means that for almost all agents i, j ∈ I , whether agent i is unmatched or matched to a type-k agent

is independent of a similar event for agent j.

7



follows. The initial distribution of types is p0. That is, p0(k) (denoted by p0
k) is the initial

fraction of agents of type k. In each time period, each agent of type k first goes through a

stage of random mutation, becoming an agent of type l with probability bkl. In models such

as [5], for example, this mutation generates new motives for trade. Then, each agent of type k

is either not matched, with probability qk, or is matched to a type-l agent with a probability

proportional to the fraction of type-l agents in the population immediately after the random

mutation step. When an agent is not matched, she keeps her type. Otherwise, when a pair of

agents with respective types k and l are matched, each of the two agents changes types; the

type-k agent becomes type r with probability νkl(r), where νkl is a probability distribution on

S, and similarly for the type-l agent.

We shall now define formally a dynamical system D with random mutation, partial

matching and type changing. As in Section 2, let (I,I, λ) be an atomless probability space

representing the space of agents, (Ω,F , P ) a sample probability space, and (I×Ω,I�F , λ�P )

a Fubini extension of the usual product probability space.

Let α0 : I → S = {1, . . . ,K} be an initial I-measurable type function with distribution

p0 on S. For each time period n ≥ 1, we first have a random mutation that is modeled by a

process hn from (I × Ω,I � F , λ � P ) to S, then a random partial matching described by a

function πn from (I×Ω,I�F , λ�P ) to I∪{J} (where J represents no matching), followed by

type changing for the matched agents that is modeled by a process αn from (I×Ω,I�F , λ�P )

to S.

For the random mutation step at time n, given a K ×K probability transition matrix12

b, we require that, for each agent i ∈ I,

P
(

hn
i = l |αn−1

i = k
)

= bkl, (1)

the specified probability with which an agent i of type k at the end of time period n−1 mutates

to type l.

For the random partial matching step at time n, we let p n−1/2 be the expected cross-

sectional type distribution immediately after random mutation. That is,

p
n−1/2
k = p n−1/2(k) =

∫

Ω
λ({i ∈ I : hn

ω(i) = k}) dP (ω). (2)

The random partial matching function πn at time n is defined by:

1. For any ω ∈ Ω, πn
ω( · ) is a full matching on I − (πn

ω)−1({J}), as defined in Section 2.3.

2. Extending hn so that hn(J, ω) = J for any ω ∈ Ω, we define gn : I × Ω → S ∪ {J} by

gn(i, ω) = hn(πn(i, ω), ω),

12Here, bkl is in [0, 1], with
PK

l=1
bkl = 1 for each k.
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and assume that gn is I � F-measurable.

3. Let q ∈ [0, 1]S . For each agent i ∈ I,

P (gn
i = J |hn

i = k) = qk,

P (gn
i = l |hn

i = k) =
(1 − qk)(1 − ql)p

n−1/2
l

∑K
r=1(1 − qr)p

n−1/2
r

. (3)

Equation (3) means that for any agent whose type before the matching is k, the probability of

being unmatched is qk, and the probability of being matched to a type-l agent is proportional

to the expected cross-sectional type distribution for matched agents. When gn is essentially

pairwise independent (as under the Markov conditional independence condition in Section 3.2

below), the exact law of large numbers in [16] and [18] implies that the realized cross-sectional

type distribution λ(hn
ω)−1 after random mutation at time n is indeed the expected distribution

p n−1/2, P -almost surely.13

Finally, for the step of random type changing for matched agents at time n, a given

ν : S × S → ∆ specifies the probability distribution νkl = ν(k, l) of the new type of a type-k

agent who has met a type-l agent. When agent i is not matched at time n, she keeps her type

hn
i with probability one. We thus require that the type function αn after matching satisfies,

for each agent i ∈ I,

P (αn
i = r |hn

i = k, gn
i = J) = δr

k,

P (αn
i = r |hn

i = k, gn
i = l) = νkl(r), (4)

where δr
k is one if r = k, and zero otherwise.

Thus, we have inductively defined a dynamical system D with random mutation, partial

matching, and match-induced type changing with parameters (p0, b, q, ν).

3.2 Markov conditional independence in types

In this section, we consider a suitable independence condition on the dynamical system D.

For n ≥ 1, to formalize the intuitive idea that given their type function αn−1, the agents

randomly mutate to other types independently at time n, and that their types in earlier periods

have no effect on this mutation, we say that the random mutation is Markov conditionally

independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I,

P (hn
i = k, hn

j = l |α0
i , . . . , α

n−1
i ;α0

j , . . . , α
n−1
j ) = P (hn

i = k |αn−1
i )P (hn

j = l |αn−1
j ) (5)

13As noted in Footnote 10, if the denominator in equation (3) is zero, then almost no agents will be matched
and we can simply interpret the ratio as zero.
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holds for all types k, l ∈ S.14

Intuitively, the random partial matching at time n should depend only on agents’ types

immediately after the random mutation. One may also want the random partial matching to

be independent across agents, given events that occurred in the first n − 1 time periods and

the random mutation at time n. We say that the random partial matching πn is Markov

conditionally independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I,

P (gn
i = c, gn

j = d |α0
i , . . . , α

n−1
i , hn

i ;α0
j , . . . , α

n−1
j , hn

j ) = P (gn
i = c |hn

i )P (gn
j = d |hn

j ) (6)

holds for all types c, d ∈ S ∪ {J}.

The agents’ types at the end of time period n should depend on the agents’ types im-

mediately after the random mutation stage at time n, as well as the results of random partial

matching at time n, but not otherwise on events that occurred in previous periods. This mo-

tivates the following definition. The random type changing after partial matching at time n

is said to be Markov conditionally independent in types if for λ-almost all i ∈ I and

λ-almost all j ∈ I, and for each n ≥ 1,

P (αn
i = k, αn

j = l | α0
i , . . . , α

n−1
i , hn

i , gn
i ;α0

j , . . . , α
n−1
j , hn

j , gn
j )

= P (αn
i = k |hn

i , gn
i )P (αn

j = l |hn
j , gn

j ) (7)

holds for all types k, l ∈ S.

The dynamical system D is said to be Markov conditionally independent in types

if, in each time period n, each random step (random mutation, partial matching, and type

changing) is so.

3.3 The existence theorem

The following theorem shows the existence of a dynamical system with random mutation,

partial matching and type changing that is Markov conditionally independent in types. Its

proof will be given in Section 6 after the development of a generalized Fubini theorem for a

Loeb transition probability and a Loeb product transition probability system in Section 5.

Theorem 3.1 Fixing any parameters p0 for the initial cross-sectional type distribution, b for

mutation probabilities, q ∈ [0, 1]S for no-match probabilities, and ν for match-induced type-

change probabilities, there exists a Fubini extension of the usual product probability space on

which is defined a dynamical system D with random mutation, partial matching and type chang-

ing that is Markov conditionally independent in types with these parameters (p0, b, q, ν).

14We could include the functions hm and gm for 1 ≤ m ≤ n − 1 as well. However, it is not necessary to do
so since we only care about the dependence structure across time for the type functions at the end of each time
period.
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Note that the dynamic matching model D described in Theorem 3.1 above satisfies the

conditions in Theorem 3 of [6]. Thus, the conclusions of Theorem 3 in [6] also hold for the

matching model D, including the statements that the type processes of individual agents in

such a dynamical system D form a continuum of independent Markov chains, and that the

time evolution of the cross-sectional type process is completely determined from a Markov

chain with known transition matrices.

4 Proofs of Theorems 2.4 and 2.6

In this section, we give the proofs for Theorems 2.4 and 2.6 in Sections 4.1 and 4.2 respectively.

The space of agents used from this section onwards will be based on a hyperfinite Loeb

counting probability space (I,I, λ) that is the Loeb space (see [13] and [14]) of internal proba-

bility space (I,I0, λ0), where I is a hyperfinite set, I0 its internal power set, and λ0(A) = |A|/|I|

for any A ∈ I0 (i.e., λ0 is the internal counting probability measure on I). Using the usual

ultrapower construction as in [14], the hyperfinite set I itself can be viewed as an equivalence

class of a sequence of finite sets whose sizes go to infinity, and the external cardinality of I is

the cardinality of the continuum. Thus, one can also take the unit interval [0, 1] as the space of

agents, endowed with a σ-algebra and an atomless probability measure via a bijection between

I and the unit interval.

All of the internal probability spaces to be discussed from this section onwards are

hyperfinite internal probability spaces. A general hyperfinite internal probability space is an

ordered triple (Ω,F0, P0), where Ω = {ω1, ω2, . . . , ωγ} for some unlimited hyperfinite natural

number γ, F0 is the internal power set on Ω, and P0(B) =
∑

1≤j≤γ,ωj∈B P0({ωj}) for any

B ∈ F0. When the weights P0({ωj}), 1 ≤ j ≤ γ are all infinitesimals, (Ω,F0, P0) is said to

be atomless, and its Loeb space (Ω,F , P ), as a standard probability space, is atomless in the

usual sense of Footnote 7. Note that nonstandard analysis is used extensively from this section

onwards. The reader is referred to the first three chapters of [14] for more details.

4.1 Proof of Theorem 2.4

Let N be any fixed unlimited even hyperfinite natural number in ∗
N∞. Let I = {1, 2, ..., N},

let I0 be the collection of all the internal subsets of I, and let λ0 be the internal counting

probability measure on I0. Let (I,I, λ) be the Loeb space of the internal probability space

(I,I0, λ0). Note that (I,I, λ) is obviously atomless.

We can draw agents from I in pairs without replacement; and then match them in these

pairs. The procedure can be the following. Take one fixed agent; this agent can be matched

with N − 1 different agents. After the first pair is matched, there are N − 2 agents. We can
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do the same thing to match a second pair with N − 3 possibilities. Continue this procedure

to produce a total number of 1 × 3 × ... × (N − 3) × (N − 1), denoted by (N − 1)!!, different

matchings. Let Ω be the space of all such matchings, F0 the collection of all internal subsets

of Ω, and P0 the internal counting probability measure on F0. Let (Ω,F , P ) be the Loeb space

of the internal probability space (Ω,F0, P0).

Let (I ×Ω,I0 ⊗F0, λ0 ⊗ P0) be the internal product probability space of (I,I0, λ0) and

(Ω,F0, P0). Then I0 ⊗ F0 is actually the collection of all the internal subsets of I × Ω and

λ0 ⊗ P0 is the internal counting probability measure on I0 ⊗ F0. Let (I × Ω,I � F , λ � P )

be the Loeb space of the internal product (I × Ω,I0 ⊗ F0, λ0 ⊗ P0), which is indeed a Fubini

extension of the usual product probability space.15

Now, for a given matching ω ∈ Ω and a given agent i, let π(i, ω) be the unique j such

that the pair (i, j) is matched under ω. For each ω ∈ Ω, since πω is an internal bijection on I,

it is obvious that πω is measure-preserving from the Loeb space (I,I, λ) to itself. Thus, (i) of

part (1) is shown.

It is obvious that for any agent i ∈ I,

P0({ω ∈ Ω : πi(ω) = j}) =
1

N − 1
(8)

for any j 6= i; that is, the i-th agent is matched with equal chance to other agents.

Fix any i ∈ I. For any internal set C ∈ I0, equation (8) implies that P0(ω ∈ Ω : πi(ω) ∈

C) is |C|/(N − 1) if i /∈ C, and (|C| − 1)/(N − 1) if i ∈ C, where |C| is the internal cardinality

of C. This means16 that

P0(π
−1
i (C)) '

|C|

N
= λ0(C) ' λ(C). (9)

Therefore, πi is a measure-preserving mapping from (Ω,F0, P ) to (I,I0, λ), and is measure-

preserving from the Loeb space (Ω,F , P ) to the Loeb space (I,I, λ).17 Thus, (ii) of part (1)

is shown.

15For any given two Loeb spaces (I, I, λ) and (Ω,F , P ), it is shown in [12] that the Loeb product space
(I×Ω, I�F , λ�P ) is uniquely defined by the marginal Loeb spaces. Anderson noted in [1] that (I×Ω, I�F , λ�P )
is an extension of the usual product (I × Ω, I ⊗ F , λ ⊗ P ). Keisler proved in [11] (see also [14]) that the Fubini
property still holds on (I × Ω, I � F , λ � P ). Thus, the Loeb product space is a Fubini extension of the usual
product probability space. In addition, it is shown in Theorem 6.2 of [16] that when both λ and P are atomless,
(I × Ω, I � F , λ � P ) is rich enough to be endowed with a process h whose random variables are essentially
pairwise independent and can take any variety of distributions (and in particular the uniform distribution on
[0, 1]).

16For two hyperreals α and β, α ' β means that the difference α − β is an infinitesimal; see [14].
17For any Loeb measurable set B ∈ I and for any standard positive real number ε, there are internal sets C

and D in I0 such that C ⊆ B ⊆ D and λ0(D − C) < ε. Thus π−1

i (C) ⊆ π−1

i (B) ⊆ π−1

i (D), and

P0(π
−1

i (D) − π−1

i (C)) ' λ0(D − C) < ε,

which implies that π−1

i (B) is Loeb measurable in F . Also, λ(C) ≤ P (π−1

i (B)) ≤ λ(D), and thus |P (π−1

i (B)) −
λ(B) | ≤ λ(D − C) ≤ ε for any standard positive real number ε. This means that P (π−1

i (B)) = λ(B).
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We can also obtain that

(λ0 ⊗ P0)(π
−1(C)) =

∫

i∈I
P0(π

−1
i (C)) dλ0(i) ' λ0(C) ' λ(C). (10)

A proof similar to that of Footnote 17 shows that π is a measure-preserving mapping from

(I × Ω,I � F , λ � P ) to (I,I, λ).

Next, for i 6= j, consider the joint event

E = {ω ∈ Ω : (πi(ω), πj(ω)) = (i′, j′)}, (11)

that is, the i-th agent is matched to the i′-th agent and the j-th agent is matched to the j′-th

agent. There are three cases to consider. The first case is (i′, j′) = (j, i), that is, the i-th agent

is matched to the j-th agent and the j-th agent is matched to the i-th agent. In this case,

P0(E) = 1/(N − 1). The second case is that of P0(E) = 0, which holds when i′ = i or j′ = j

(the i-th agent is matched to herself, or the j-th agent is matched to herself), or when i′ = j

but j′ 6= i (the i-th agent is matched to the j-th agent, but the j-th agent is not matched to

the i-th agent), or when j′ = i but i′ 6= j (the j-th agent is matched to the i-th agent, but

the i-th agent is not matched to the j-th agent), or when i′ = j′ (both the i-th agent and the

j-th agent are matched to the same agent). The third case applies if the indices i, j and i′, j′

are completely distinct. In this third case, after the pairs (i, i′), (j, j′) are drawn, there are

N − 4 agents left, and hence there are (N − 5)!! ways to draw the rest of the pairs in order to

complete the matching. This means that P0(E) = (N − 5)!!/(N − 1)!! = 1/((N − 1)(N − 3)).

Let (I × I,I0 ⊗ I0, λ0 ⊗ λ0) be the internal product of (I,I0, λ0) with itself, and (I ×

I,I � I, λ � λ) the Loeb space of the internal product. Fix any i, j ∈ I with i 6= j. Let D

be the diagonal {(i′, i′) : i′ ∈ I}. The third case of the above paragraph implies that for any

internal set G ∈ I0 ⊗ I0,

P0({ω ∈ Ω : (πi(ω), πj(ω)) ∈ G − (D ∪ ({i, j} × I) ∪ (I × {i, j}))})

=
|G − (D ∪ ({i, j} × I) ∪ (I × {i, j})) |

(N − 1)(N − 3)
'

|G|

(N)2
= (λ0 ⊗ λ0)(G). (12)

By using the formula for P0(E) in the first two cases, we can obtain that

P0({ω ∈ Ω : (πi(ω), πj(ω)) ∈ (D ∪ ({i, j} × I) ∪ (I × {i, j}))}) =
1

N − 1
' 0. (13)

Equations (12) and (13) imply that

P0({ω ∈ Ω : (πi(ω), πj(ω)) ∈ G}) ' (λ0 ⊗ λ0)(G). (14)

A proof similar to that of Footnote 17 shows that (πi, πj) is a measure-preserving mapping

from (Ω,F , P ) to (I × I,I � I, λ � λ).
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Let α be an I-measurable type function with a distribution p on S, Ik = α−1({k}) and

pk = λ(Ik) for 1 ≤ k ≤ K. Let g = α(π). Then, for any 1 ≤ k ≤ K, g−1({k}) = π−1(Ik), which

is Loeb product measurable in I �F with λ�P -measure pk because of the measure-preserving

property of π. Hence, g is I � F-measurable. For each i ∈ I, the measure-preserving property

of πi implies that gi has the same distribution p as α.

Fix any i, j ∈ I with i 6= j. For any 1 ≤ k, l ≤ K, the measure-preserving property of

(πi, πj) implies that

P (gi = k, gj = l) = P ({ω ∈ Ω : (πi(ω), πj(ω)) ∈ Ik × Il})

= (λ � λ)(Ik × Il) = P (gi = k) · P (gj = l), (15)

which means that the random variables gi and gj are independent. Hence, part (2) is shown.

Finally, take any A1, A2 ∈ I, and let f(i, ω) = 1A2
(π(i, ω)) for all (i, ω) ∈ I × Ω. Then,

f is an iid process with a common distribution on {0, 1} with probabilities λ(A2) on {1} and

1 − λ(A2) on {0}. By the exact law of large numbers in Theorem 5.2 of [16] or Theorem

3.5 of [18],18 one has for P -almost all ω ∈ Ω, λA1((fA1)−1
ω ({1}) = λ(A2), which implies that

λ(A2) = λ(A1 ∩ π−1
ω (A2))/λ(A1). Hence, (iii) of part (1) follows.

4.2 Proof of Theorem 2.6

Let M be any fixed unlimited hyperfinite natural number in ∗
N∞, and let I = {1, 2, . . . ,M} be

the space of agents. Let I0 be the collection of all the internal subsets of I, and λ0 the internal

counting probability measure on I0. Let (I,I, λ) be the Loeb space of the internal probability

space (I,I0, λ0).

Let β be any I-measurable type function from I to S = {1, . . . ,K}. We can find an

internal type function α from I to S such that λ({i ∈ I : α(i) 6= β(i)}) = 0. Let Ak = α−1(k)

and |Ak| = Mk for 1 ≤ k ≤ K with
∑K

k=1 Mk = M . Then λ(Ak) = pk ' Mk/M for 1 ≤ k ≤ K.

Without loss of generality, we can assume that Mk ∈ ∗
N∞.19 For each k in {1, . . . ,K}, pick

a hyperfinite natural number mk such that Mk − mk ∈ ∗
N∞ and qk ' mk/Mk, and such that

18What we need in this paper is a special case of Theorem 3.5 in [18]. Let f be a process from (I×Ω,I�F , λ�P )
to a complete separable metric space X. Assume that the random variables fi, i ∈ I are pairwise independent.
Then, for P -almost all ω ∈ Ω, the sample function fω has the same distribution as f in the sense that for any
Borel set B in X, λ(f−1

ω (B)) = (λ�P )(f−1(B)). Fix any A ∈ I with λ(A) > 0. Let fA be the restriction of f to
A×Ω, λA and λA

�P the probability measures rescaled from the restrictions of λ and λ�P to {D ∈ I : D ⊆ A}
and {C ∈ I�F : C ⊆ A×Ω} respectively. Then, for the case that the random variables fi, i ∈ I have a common
distribution µ on X, the sample function (fA)ω also has distribution µ for P -almost all ω ∈ Ω.

19When pk = 0, we may still need to divide some number mk by Mk so that the ratio is infinitely close to a
real number qk. We can take Mk ∈ ∗

N∞ with Mk/M ' 0. We then take an internal subset of I with Mk many
points as Ak and adjust the rest Al, l 6= k, on some λ-null internal sets. This will produce a new internal type
function α with the desired properties.
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N =
∑K

l=1(Ml − ml) is an unlimited even hyperfinite natural number. It is easy to see that

N

M
=

K
∑

l=1

Ml

M

(

1 −
ml

Ml

)

'
K

∑

l=1

pl(1 − ql). (16)

For each k in {1, 2, . . . ,K}, let Bk be an arbitrary internal subset of Ak with mk elements,

and let Pmk
(Ak) be the collection of all such internal subsets. For given Bk ∈ Pmk

(Ak) for

k = 1, 2, . . . ,K, let πB1,B2,...,BK be a (full) matching on I − ∪K
k=1Bk produced by the method

described in the proof of Theorem 2.4; there are (N − 1)!! = 1 × 3 × · · · × (N − 3) × (N − 1)

such matchings.

Our sample space Ω is the set of all ordered tuples (B1, B2, . . . , BK , πB1,B2,...,BK ) such

that Bk ∈ Pmk
(Ak) for each k = 1, . . . ,K, and πB1,B2,...,BK is a matching on I − ∪K

k=1Bk.

Then, Ω has ((N − 1)!!)
∏K

k=1

(Mk

mk

)

many elements in total. Let P0 be the internal counting

probability measure defined on the collection F0 of all the internal subsets of Ω. Let (Ω,F , P )

be the Loeb space of the internal probability space (Ω,F0, P0). Note that both (I,I0, λ0) and

(Ω,F0, P0) are atomless. Let (I × Ω,I � F , λ � P ) be the Loeb space of the internal product

(I ×Ω,I0 ⊗F0, λ0 ⊗P0), which is a Fubini extension of the usual product probability space by

Footnote 15.

Let J represent non-matching. Define a mapping π from I × Ω to I ∪ {J}. For i ∈ Ak

and ω = (B1, B2, . . . , BK , πB1,B2,...,BK ), if i ∈ Bk, then π(i, ω) = J (agent i is not matched);

if i /∈ Bk, then i ∈ I − ∪K
r=1Br, agent i is to be matched with agent πB1,B2,...,BK (i), and let

π(i, ω) = πB1,B2,...,BK (i). It is obvious that π−1
ω ({J}) = ∪K

r=1Br and that the restriction of πω

to I −∪K
r=1Br is a full matching on the set. Let gβ be the matched type process from I ×Ω to

S ∪ {J} under the type function β; that is, gβ(i, ω) = β(π(i, ω)) with β(J) = J .

When
∑K

r=1 pr(1 − qr) = 0, we know that N/M ' 0. For those i ∈ Ak with pk > 0, it

is clear that P0({ω ∈ Ω : πi(ω) = J}) = mk/Mk ' qk = 1, and thus λ � P (π(i, ω) 6= J) = 0,

which means that λ � P (gβ(i, ω) 6= J) = 0, and gβ
i (ω) = J for P -almost all ω ∈ Ω. Thus

Conditions (1) and (2) in Definition 2.5 are satisfied trivially, that is, one has a trivial random

partial matching that is independent in types.

For the rest of the proof, assume that
∑K

r=1 pr(1 − qr) > 0. Let g be the matched type

process from I × Ω to S ∪ {J}, defined by g(i, ω) = α(π(i, ω)), where α(J) = J . Since both α

and π are internal, the fact that I0 ⊗ F0 is the internal power set on I × Ω implies that g is

I0 ⊗F0-measurable, and thus I � F-measurable.

Fix an agent i ∈ Ak for some 1 ≤ k ≤ K. For any 1 ≤ l ≤ K, and for any Br ∈

Pmr(Ar), r = 1, 2, . . . ,K, let NB1,B2,...,BK

il be the number of full matchings on ∪K
r=1(Ar − Br)

such that agent i is matched to some agent in Al −Bl. It is obvious that NB1,B2,...,BK

il depends

only on the numbers of points in the sets Ar−Br, r = 1, . . . ,K, which are Mr−mr, r = 1, . . . ,K,
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respectively. Hence, NB1,B2,...,BK

il is independent of the particular choices of B1, B2, . . . , BK ,

and so can simply be denoted by Nil. Then, equation (9) implies that

Nil

(N − 1)!!
'

Ml − ml

N
. (17)

It can be checked that the internal cardinality of the event {gi = l} is

| {ω = (B1, B2, . . . , BK , πB1,B2,...,BK ) ∈ Ω : i ∈ Ak − Bk, π
B1,B2,...,BK

i (ω) ∈ (Al − Bl)} |

=

(

Mk − 1

mk

)





∏

r 6=k

(

Mr

mr

)



Nil. (18)

Hence equations (17) and (18) imply that

P0 (gi = l) =
Mk − mk

Mk

Nil

(N − 1)!!
' (1 − qk)

Ml − ml

N

= (1 − qk)

(

1 − ml

Ml

)

Ml

M

(N/M)
'

(1 − qk)pl(1 − ql)
∑K

r=1 pr(1 − qr)
. (19)

It is also easy to see that P0({ω ∈ Ω : gi(ω) = J}) = mk/Mk ' qk. This means that for i ∈ Ak,

P (gi = l) =
(1 − qk)pl(1 − ql)
∑K

r=1 pr(1 − qr)
,

and that P (gi = J) = qk. Hence, the distribution condition on gi is satisfied for each i ∈ I.

We need to show that the random partial matching π is independent in types. Fix

agents i, j ∈ I with i 6= j. For any 1 ≤ l, t ≤ K, and for any Br ∈ Pmr (Ar), r = 1, 2, . . . ,K, let

NB1,B2,...,BK

iljt be the number of full matchings on ∪K
r=1(Ar − Br) such that agents i and j are

matched to some agents respectively in Al − Bl and At − Bt. As in the case of NB1,B2,...,BK

il ,

NB1,B2,...,BK

iljt is independent of the particular choices of B1, B2, . . . , BK and can simply be

denoted by Niljt. By taking G = (Al − Bl) × (At − Bt), equation (14) implies that

Niljt

(N − 1)!!
'

Ml − ml

N

Mt − mt

N
. (20)

We first consider the case that both i and j belong to Ak for some k in {1, . . . ,K}. It is

easy to see that P0(gi = J, gj = J) = mk(mk − 1)/(Mk(Mk − 1)), and hence that

P (gi = J, gj = J) = P (gi = J)P (gj = J) = q2
k. (21)

As above, it can be checked that the internal cardinality of the event {gi = l, gj = J} is

| {ω = (B1, . . . , BK , πB1,...,BK ) ∈ Ω : i ∈ Ak − Bk, j ∈ Bk, π
B1,...,BK

i (ω) ∈ (Al − Bl)} |

=

(

Mk − 2

mk − 1

)





∏

r 6=k

(

Mr

mr

)



Nil. (22)
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Hence equations (17) and (22) imply that

P0 (gi = l, gj = J) =
mk(Mk − mk)

Mk(Mk − 1)

Nil

(N − 1)!!

' qk(1 − qk)
Ml − ml

N

'
qk(1 − qk)pl(1 − ql)

∑K
r=1 pr(1 − qr)

, (23)

which implies that

P (gi = l, gj = J) = P (gi = l)P (gj = J) . (24)

Similarly, the events (gi = J) and (gj = l) are independent.

The event {gi = l, gj = t} is actually the set of all the ω = (B1, . . . , BK , πB1,...,BK ) such

that both i and j are in Ak − Bk, and agents i and j are matched to some agents in Al − Bl

and At − Bt, respectively. Thus, the internal cardinality of {gi = l, gj = t} is

(

Mk − 2

mk

)





∏

r 6=k

(

Mr

mr

)



Niljt. (25)

Hence equations (20) and (25) imply that

P0 (gi = l, gj = t) =
(Mk − mk)(Mk − mk − 1)

Mk(Mk − 1)

Niljt

(N − 1)!!

' (1 − qk)
2 Ml − ml

N

Mt − mt

N

'
(1 − qk)

2pl(1 − ql)pt(1 − qt)
(

∑K
r=1 pr(1 − qr)

)2 , (26)

which implies that

P (gi = l, gj = t) = P (gi = l)P (gj = t) . (27)

Hence the random variables gi and gj are independent.

For the case that i ∈ Ak and j ∈ An with 1 ≤ k 6= n ≤ K, one can first observe that

P0 (gi = l, gj = J) =
(Mk − mk)mn

MkMn

Nil

(N − 1)!!

P0 (gi = l, gj = t) =
(Mk − mk)(Mn − mn)

MkMn

Niljt

(N − 1)!!
. (28)

In this case, one can use computations similar to those of the above two paragraphs to show

that the random variables gi and gj are independent. The details are omitted here.

We have proved the result for the type function α. We still need to prove it for β (and

for gβ = β(π)). Fix any agent i ∈ Ak, for some 1 ≤ k ≤ K. For any internal set A ∈ I0, and

for any Br ∈ Pmr (Ar), r = 1, 2, . . . ,K, let NB1,B2,...,BK

iA be the number of full matchings on
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∪K
r=1(Ar −Br) such that agent i is matched to some agent in A−∪K

r=1Br. Then, equation (9)

implies that

NB1,B2,...,BK

iA

(N − 1)!!
'

|A − ∪K
r=1Br|

N
. (29)

The internal event π−1
i (A) is

{

ω = (B1, B2, . . . , BK , πB1,B2,...,BK ) ∈ Ω : i ∈ Ak − Bk, π
B1,B2,...,BK

i (ω) ∈
(

A − ∪K
r=1Br

)

}

.

(30)

Hence equations (29) and (30) imply that

P0

(

π−1
i (A)

)

=
∑

Bk∈Pmk
(Ak\{i}), Bl∈Pml

(Al) for l 6=k

1
∏K

r=1

(Mr

mr

)

NB1,B2,...,BK

iA

(N − 1)!!

'
∑

Bk∈Pmk
(Ak\{i}), Bl∈Pml

(Al) for l 6=k

1
∏K

r=1

(Mr

mr

)

|A − ∪K
r=1Br|

N

≤
|A|

N

(Mk−1
mk

)

(

∏

r 6=k

(Mr

mr

)

)

∏K
r=1

(

Mr

mr

) =
Mk − mk

Mk

|A|

M

1

(N/M)

'
(1 − qk)λ0(A)

∑K
r=1 pr(1 − qr)

. (31)

Let

c = max
1≤k≤K

(1 − qk)
∑K

r=1 pr(1 − qr)
.

Then, for each i ∈ I and any A ∈ I0, P
(

π−1
i (A)

)

≤ c · λ(A). Thus, Keisler’s Fubini property

as in [11] and [14] also implies that (λ� P )
(

π−1(A)
)

≤ c ·λ(A). Let B = {i ∈ I : α(i) 6= β(i)}.

We know that λ(B) = 0, (λ � P )
(

π−1(B)
)

= P
(

π−1
i (B)

)

= 0 for each i ∈ I. Since g and gβ

agree on I × Ω − π−1(B), gβ must be I � F-measurable. For each i ∈ I, gi and gβ
i agree on

Ω−π−1
i (B), and hence the relevant distribution and independence conditions are also satisfied

by gβ .

Remark 4.1 The sample space Ω in the proof of Theorem 2.6 depends on the choice of the

internal type function α. In the proof of Theorem 3.1 in Section 6 below, it will be more

convenient to construct a sample space Ω that depends only on the agent space I, and not on

the type function α.

Let Ω̄ be the set of all internal bijections σ from I to I such that for each i ∈ I, σ(i) = i

or σ(σ(i)) = i, and F̄0 its internal power set. Let qk ∈ [0, 1] for each 1 ≤ k ≤ K. We can define

an internal one-to-one mapping ϕα from Ω to Ω̄ by letting ϕα(B1, B2, . . . , BK , πB1,B2,...,BK ) be

the internal bijection σ on I such that σ(i) = i for i ∈ ∪K
k=1Bk and σ(i) = πB1,B2,...,BK (i) for

i ∈ I − ∪K
k=1Bk. The mapping ϕα also induces an internal probability measure P̄α

0 on (Ω̄, F̄0).
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Define a mapping π̄ : (I×Ω̄) → (I∪J) by letting π̄(i, ω̄) = J if ω̄(i) = i, and π̄(i, ω̄) = ω̄(i)

if ω̄(i) 6= i. Extend α so that α(J) = J and define ḡα : (I × Ω̄) → (S ∪ {J}) by letting

ḡα(i, ω̄) = α(π̄(i, ω̄), ω̄).

Then it is obvious that π̄ is still an independent-in-types random partial matching π from

(I × Ω̄,I � F̄ , λ � P̄α) to I with q = (q1, . . . , qK) as the no-match probabilities.

5 Generalized Fubini and Ionescu-Tulcea theorems for Loeb transition prob-

abilities

For the proof of Theorem 3.1 to follow in Section 6, we need to work with a Loeb product tran-

sition probability system for a sequence of internal transition probabilities, based on the Loeb

space construction in [13]. We first prove a generalized Fubini theorem for a Loeb transition

probability in Section 5.1. Then, a generalized Ionescu-Tulcea theorem for an infinite sequence

of Loeb transition probabilities is shown in Section 5.2. Finally, a Fubini extension based on

Loeb product transition probability system is constructed in Section 5.3.

5.1 A generalized Fubini theorem for a Loeb transition probability

Let (I,I0, λ0) be a hyperfinite internal probability space with I0 the internal power set on

a hyperfinite set I, and Ω a hyperfinite internal set with F0 its internal power set. Let P0

be an internal function from I to the space of hyperfinite internal probability measures on

(Ω,F0), which is called an internal transition probability. For i ∈ I, denote the hyperfinite

internal probability measure P0(i) by P0i. Define a hyperfinite internal probability measure τ0

on (I × Ω,I0 ⊗ F0) by letting τ0({(i, ω)}) = λ0({i})P0i({ω}) for (i, ω) ∈ I × Ω. Let (I,I, λ),

(Ω,Fi, Pi), and (I × Ω,I � F , τ) be the Loeb spaces corresponding respectively to (I,I0, λ0),

(Ω,F0, P0i), and (I × Ω,I0 ⊗ F0, τ0). The collection {Pi : i ∈ I} of Loeb measures will be

called a Loeb transition probability, and denoted by P . The measure τ will be called the Loeb

product of the measure λ and the Loeb transition probability P . We shall also denote τ0 by

λ0 ⊗ P0 and τ by λ � P .

When P0i = P ′
0 for some hyperfinite internal probability measure P ′

0 on (Ω,F0), τ0 is

simply the internal product of λ0 and P ′
0, and τ the Loeb product measure λ � P ′, where P ′ is

the Loeb measure of P ′
0. A Fubini-type theorem for this special case was shown by Keisler in

[11], which is often referred to as Keisler’s Fubini Theorem. The following theorem presents a

Fubini-type theorem for the general case.

Theorem 5.1 Let f be a real-valued integrable function on (I×Ω, σ(I0⊗F0), τ). Then, (1) fi

is σ(F0)-measurable for each i ∈ I and integrable on (Ω, σ(F0), Pi) for λ-almost all i ∈ I; (2)
∫

Ω fi(ω) dPi(ω) is integrable on (I, σ(I0), λ); (3)
∫

I

∫

Ω fi(ω) dPi(ω) dλ(i) =
∫

I×Ω f(i, ω) dτ(i, ω).
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Proof. Let H be the class of functions g from I × Ω to R+ ∪ {+∞} that satisfy (1) for

every i ∈ I, gi(·) is σ(F0)-measurable; (2) the integral
∫

Ω gi(ω) dPi(ω) as a function from I

to R+ ∪ {+∞} is σ(I0)-measurable; (3)
∫

I

∫

Ω gi(ω) dPi(ω) dλ(i) =
∫

I×Ω g(i, ω) dτ(i, ω). It is

obvious that H is closed under non-negative linear combinations and monotone convergence.

Now, we consider E ∈ I0 ⊗ F0 and g = 1E . Then, for each i ∈ I, gi is the indicator

function of the internal set Ei = {ω ∈ Ω : (i, ω) ∈ E}, which is F0-measurable (and hence

σ(F0)-measurable). The integral
∫

Ω gi(ω) dPi(ω) = Pi(Ei) is the standard part ◦ (P0i(Ei)).

Since P0i(Ei) is I0-measurable as a function on I, Pi(Ei) is thus σ(I0)-measurable as a function

on I. Thus, the usual result on S-integrability (see, for example, Theorem 5.3.5, [14], p. 155)

implies that
∫

I

∫

Ω
gi(ω) dPi(ω) dλ(i) =

∫

I

◦P0i(Ei) dλ(i) = ◦

∫

I
P0i(Ei) dλ0(i) = ◦τ0(E) =

∫

I×Ω
g dτ.

Thus, g ∈ H, and hence H contains the algebra I0 ⊗F0.

Therefore H is a monotone class. Then Theorem 3 on page 16 of [3] implies that H must

contain all the non-negative σ(I0 ⊗F0)-measurable functions.20

Since f is integrable on (I ×Ω, σ(I0 ⊗F0), τ), so are both f+ and f−. Now the fact that
∫

I

∫

Ω f+
i (ω) dPi(ω) dλ(i) < ∞ implies that for λ-almost all i ∈ I,

∫

Ω f+
i (ω) dPi(ω) < ∞, and

thus the σ(F0)-measurable function f+
i is integrable. Similarly, the σ(I0)-measurable function

∫

Ω f+
i (ω) dPi(ω) is integrable since

∫

I

∫

Ω f+
i (ω) dPi(ω) dλ(i) < ∞. We have similar results for

f−. The rest is clear.

For any B ∈ σ(F0), apply Theorem 5.1 to f = 1I×B to obtain that Pi(B) is σ(I0)-

measurable for each i ∈ I. This means that P = {Pi : i ∈ I} is indeed a transition probability in

the usual sense (see [10]). One can define its usual product λ⊗P with λ by letting λ⊗P (E) =
∫

I Pi(Ei) dλ(i) for each E in the usual product σ-algebra σ(I0) ⊗ σ(F0). It is clear that

(I × Ω, σ(I0 ⊗F0), λ � P ) is an extension of (I × Ω, σ(I0) ⊗ σ(F0), λ ⊗ P ).

The following result extends Theorem 5.1 to integrable functions on (I × Ω,I � F , τ),

which is the completion of (I × Ω, σ(I0 ⊗F0), τ).

Proposition 5.2 Let f be a real-valued integrable function on (I ×Ω,I �F , τ). Then, (1) for

λ-almost all i ∈ I, fi is integrable on the Loeb space (Ω,Fi, Pi); (2)
∫

Ω fi(ω) dPi(ω) is integrable

on (I,I, λ); (3)
∫

I

∫

Ω fi(ω) dPi(ω) dλ(i) =
∫

I×Ω f(i, ω) dτ(i, ω).

Proof. First, let E ∈ I � F with τ(E) = 0. Then there is a set A ∈ σ(I0 ⊗ F0) such that

E ⊆ A and τ(A) = 0. By Theorem 5.1, for λ-almost all i ∈ I, Pi(Ai) = 0, which implies that

Pi(Ei) = 0.

20There is a typo in Theorem 3 on page 16 of [3], D should be an algebra (not a σ-algebra as stated).
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There is a real-valued σ(I0 ⊗ F0)-measurable function g on I × Ω such that the set

E = {(i, ω) ∈ I × Ω : f(i, ω) 6= g(i, ω)} has τ -measure zero. The above result implies that for

λ-almost all i ∈ I, fi is the same as gi. The rest is clear.

Let (I ′,I ′
0, λ

′
0) be a hyperfinite internal probability space with I ′

0 the internal power set

on a hyperfinite set I ′. One can define a new transition probability, {λ′
0 ⊗ P0i : i ∈ I}. Define

a hyperfinite internal probability measure τ1
0 on (I ′ × I × Ω,I ′

0 ⊗ I0 ⊗F0) by letting

τ1
0 ({(i′, i, ω)}) = λ0({i})(λ

′
0 ⊗ P0i)({(i

′, ω)}) = λ0({i})λ
′
0({i

′})P0i({ω})

for (i′, i, ω) ∈ I ′ × I × Ω. Then it is clear that τ1
0 is exactly the same as λ′

0 ⊗ τ0. Let λ′
� τ be

the Loeb measure of λ′
0 ⊗ τ0. By applying Theorem 5.1, we can obtain the following corollary.

Corollary 5.3 Let h be a real-valued integrable function on (I ′×I×Ω, σ(I ′
0⊗I0⊗F0), λ

′
�τ).

Then, the following results hold.

(1) hi is σ(I ′
0 ⊗F0)-measurable for each i ∈ I and integrable on (Ω, σ(I ′

0 ⊗F0), λ
′
� Pi)

for λ-almost all i ∈ I, where λ′
� Pi is the Loeb measure of λ′

0 ⊗ P0i.

(2)
∫

I′×Ω hi(i
′, ω) dλ′

� Pi(i
′, ω) is integrable on (I, σ(I0), λ).

(3)
∫

I

∫

I′×Ω hi(i
′, ω) d(λ′

� Pi)(i
′, ω) dλ(i) =

∫

I′×I×Ω h(i′, i, ω) d(λ′
� τ)(i′, i, ω).

One can also view {P0i : i ∈ I} as a transition probability from I ′ × I to Ω. Then the

following corollary is obvious.

Corollary 5.4 Let h be a real-valued integrable function on (I ′×I×Ω, σ(I ′
0⊗I0⊗F0), λ

′
�τ).

Then, the following results hold.

(1) h(i′,i) is σ(F0)-measurable for each (i′, i) ∈ I ′× I and integrable on (Ω, σ(F0), Pi) for

λ′
� λ-almost all (i′, i) ∈ I ′ × I, where λ′

� λ is the Loeb measure of λ′
0 ⊗ λ0.

(2)
∫

Ω h(i′,i)(ω) dPi(ω) is integrable on (I ′ × I, σ(I ′
0 ⊗ I0), λ

′
� λ).

(3)
∫

I′×I

∫

Ω h(i′,i)(ω) dPi(ω) d(λ′
� λ)(i′, i) =

∫

I′×I×Ω h(i′, i, ω) d(λ′
� τ)(i′, i, ω).

By applying Proposition 5.2, one can also extend the results in Corollaries 5.3 and 5.4

to integrable functions on the Loeb space of (I ′ × I × Ω,I ′
0 ⊗ I0 ⊗F0, τ

1
0 ).

5.2 A generalized Ionescu-Tulcea theorem for a Loeb product transition proba-

bility system

In Section 5.1, the subscript 0 is used to distinguish internal measures and algebras with their

corresponding Loeb measures and Loeb algebras. In this section, we need to work with infinitely

many internal measure spaces and the corresponding Loeb spaces. To avoid confusion with the

notation, we shall use Q with subscripts or supscripts to represent internal measures; when
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their corresponding Loeb measures are considered, we use P to replace Q. Internal algebras

are denoted by F with subscripts or supscripts, and their external versions by A with subscripts

or supscripts.

For each m ≥ 1, let Ωm be a hyperfinite set with its internal power set Fm. We shall use

Ωn, Ω∞, and Ω∞
n to denote

∏n
m=1 Ωm,

∏∞
m=1 Ωm, and

∏∞
m=n Ωm respectively; also {ωm}n

m=1,

{ωm}∞m=1, and {ωm}∞m=n will be denoted respectively by ωn, ω∞, and ω∞
n when there is no

confusion.

For each n ≥ 1, let Qn be an internal transition probability from Ωn−1 to (Ωn,Fn), that

is, for each ωn−1 ∈ Ωn−1, Qn(ωn−1) (also denoted by Qωn−1

n ) is a hyperfinite internal probability

measure on (Ωn,Fn). In particular, Q1 is simply a hyperfinite internal probability measure on

(Ω1,F1), and Q2 an internal transition probability from Ω1 to (Ω2,F2). Thus, Q1 ⊗Q2 defines

an internal probability measure on (Ω1×Ω2,F1⊗F2). By induction, Q1⊗Q2⊗· · ·⊗Qn defines

an internal probability measure on (Ωn,⊗n
m=1Fm).21 Denote Q1 ⊗ Q2 ⊗ · · · ⊗ Qn by Qn, and

⊗n
m=1Fm by Fn. Then Qn is the internal product of the internal transition probability Qn

with the internal probability measure Qn−1. Let Pn and Pn(ωn−1) (also denoted by Pωn−1

n ) be

the corresponding Loeb measures, which are defined respectively on σ(Fn) and σ(Fn). Using

the notation in Section 5.1, Pn is the Loeb product P1 � P2 � · · · � Pn of the Loeb transition

probabilities P1, P2, . . . , Pn.

Theorem 5.1 implies that for any set E ∈ σ(Fn),

Pn(E) =

∫

Ωn−1

Pωn−1

n (Eωn−1) dPn−1(ωn−1). (32)

That is, Pn is the product of the transition probability Pn with the probability measure Pn−1.

Thus, we can also denote Pn by Pn−1
� Pn, and furthermore by �

n
m=1Pm.

Let πn−1
n be the projection mapping from Ωn to Ωn−1; that is, πn−1

n (ω1, . . . , ωn) =

(ω1, . . . , ωn−1). Let F be any subset of Ωn−1 and E = F × Ωn. Then, Eωn−1 = Ωn when

ωn−1 ∈ F , and Eωn−1 = ∅ when ωn−1 /∈ F . If E ∈ σ(Fn), then Theorem 5.1 implies that

Pωn−1

n (Eωn−1) = 1F is σ(Fn−1)-measurable (that is, F ∈ σ(Fn−1)), and Pn(E) = Pn−1(F ).

On the other hand, if F ∈ σ(Fn−1), then it is obvious that E ∈ σ(Fn) and Pn(E) = Pn−1(F ).

This means that the measure space (Ωn−1, σ(Fn−1), Pn−1) is the projection of (Ωn, σ(Fn), Pn)

under πn−1
n . Similarly, let πk

n be the projection mapping from Ωn to Ωk for some k < n; then

(Ωk, σ(Fk), P k) is the projection of (Ωn, σ(Fn), Pn) under πk
n.

For a collection D of sets and a set F , we use D×F to denote the collection {D×F : D ∈

D} of sets when there is no confusion. Thus, σ(Fn)×Ω∞
n+1 denotes

{

En × Ω∞
n+1 : En ∈ σ(Fn)

}

.

Let E = ∪∞
n=1

[

σ(Fn) × Ω∞
n+1

]

, which is an algebra of sets in Ω∞. One can define a mea-

sure P∞ on this algebra by letting P∞(En × Ω∞
n+1) = Pn(En) for each En ∈ σ(Fn). The

21In fact, for each ωn ∈ Ωn, ⊗n
m=1Qm({(ω1, . . . , ωn)}) =

Qn

m=1
Qm(ω1, . . . , ωm−1)({ωm}).
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projection property stated in the above paragraph implies that P∞ is well-defined. Let

F∞ = ∪∞
n=1

[

Fn × Ω∞
n+1

]

. Then, it is clear that σ(F∞) = σ(E).

The point is how to extend P∞ to a countably additive probability measure on the σ-

algebra σ(F∞). This is possible by using a proof similar to that of Proposition 3.3 of [17].

The result is a version of the Ionescu-Tulcea theorem (see [10], page 93) for the Loeb product

transition probability system {P1 � P2 � · · · � Pn}
∞
n=1.

Theorem 5.5 There is a unique countably additive probability measure on σ(F∞) that extends

the set function P∞ on E; such a unique extension is still denoted by P∞ and by �
∞
m=1Pm.

Proof. Let {Cn}
∞
n=1 be a decreasing sequence of sets in F∞ with empty intersection. By the

construction of F∞, one can find a sequence of internal sets {An}
∞
n=1 and a non-decreasing

sequence {kn}
∞
n=1 of non-negative integers such that Cn = An × Ω∞

kn+1 and An ∈ Fkn . For

` ≤ n, let πkl

kn
be the mapping from Ωkn to Ωkl by projecting a tuple in Ωkn to its first k`

coordinates; then πkl

kn
(An) ⊆ A` because {Cn}

∞
n=1 is a decreasing sequence of sets. Take the

transfer {kn}n∈∗N of the sequence {kn}
∞
n=1, and the respective internal extensions {An}n∈∗N

and {Ωn}n∈∗N of the internal sequences {An}
∞
n=1 and {Ωn}n∈N. By spillover and ℵ1-saturation

(see [14]), one can obtain h ∈ ∗
N∞ such that for all n ≤ h, An ⊆ Ωkn and πkl

kn
(An) ⊆ A` for all

` ∈ ∗
N with l ≤ n, where πkl

kn
is defined in exactly the same way as in the case of finite n.

We claim that An = ∅ for all n ∈ ∗
N∞ with n ≤ h; if not, one can find such an n with

ωkn = (ω1, . . . , ωn) ∈ An. Then ωkl ∈ Al for any ` ∈ N. If kn ∈ ∗
N∞, then it is obvious that

{ωm}∞m=1 is in C` for all ` ∈ N, which contradicts the assumption that the intersection of all

the C` is empty. If kn ∈ N, one can choose ωm arbitrarily for any m > kn to obtain the same

contradiction. Hence the claim is proven.

By spillover, we know that for some n ∈ N, An = ∅, and so is Cn. Thus, we obtain

a trivial limit, limn→∞ P∞(Cn) = 0. This means that P∞ is indeed countably additive on

F∞. As in [13], the Caratheodory extension theorem implies that P∞ can be extended to the

σ-algebra σ(F∞) generated by F∞, and we are done.

The following result considers sectional measurability for sets in σ(F∞).

Proposition 5.6 Let G be a σ(F∞)-measurable subset of Ω∞. Then, for any {ωm}∞m=1 ∈ Ω∞,

the set Gω∞
n+1

= {ω′n ∈ Ωn : (ω′
1, . . . , ω

′
n, ωn+1, ωn+2, . . .) ∈ G} belongs to σ(Fn), while the set

Gωn =
{

ω′∞
n+1 ∈ Ω∞

n+1 : (ω1, . . . , ωn, ω′
n+1, ω

′
n+2, . . .) ∈ G

}

belongs to σ
(

∪∞
m=n+1

[

(⊗m
k=n+1Fk) × Ω∞

m+1

])

.
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Proof. The collection of those sets G in σ(F∞) with the properties is clearly a monotone class

of sets and contains the algebra F∞; and hence it is σ(F∞) itself by Theorem 1 on page 7 of

[3].

The following corollary follows from Proposition 5.6 immediately.

Corollary 5.7 Let πn be the projection mapping from Ω∞ to Ωn (that is , πn(ω∞) = ωn). Then

the measure space (Ωn, σ(Fn), Pn) is the projection of the measure space (Ω∞, σ(F∞), P∞)

under πn in the sense that for any F ⊆ Ωn, F ∈ σ(Fn) if and only if (πn)−1(F ) = F ×Ω∞
n+1 ∈

σ(F∞) with Pn(F ) = P∞((πn)−1(F )).

5.3 Fubini extensions based on a Loeb product transition probability system

Let (I,I0, λ0) be a hyperfinite internal probability space with I0 the internal power set on a

hyperfinite set I. We follow the notation and construction in Section 5.2. Denote (Ω0,F0, Q0) =

(I,I0, λ0) and repeat the process of constructing a countably additive measure �
∞
m=0Pm on

(

I × Ω∞, σ
(

∪∞
n=1(I0 ⊗Fn) × Ω∞

n+1

))

.

The following lemma is a restatement of Keisler’s Fubini Theorem to the particular

setting. Since the marginals of �
n
m=0Pm on I and Ωn are respectively λ and Pn, we can write

�
n
m=0Pm as λ � Pn.

Lemma 5.8 For any n ≥ 1, the space (I × Ωn, σ (I0 ⊗Fn) ,�n
m=0Pm) is a Fubini extension

over the usual product of (I, σ(I0), λ) and (Ωn, σ (Fn) , Pn).

The following is a Fubini-type result for the infinite product.

Proposition 5.9 The space
(

I × Ω∞, σ
(

∪∞
n=1(I0 ⊗Fn) × Ω∞

n+1

)

,�∞
m=0Pm

)

is a Fubini ex-

tension over the usual product of the probability spaces (I,I, λ) and (Ω∞, σ(F∞), P∞).

Proof. We only check that the Fubini-type property holds for any set E ∈ ∪∞
n=1(I0 ⊗ Fn) ×

Ω∞
n+1. The rest of the proof is essentially the same as that of Theorem 5.1.

It is clear that there exists a set F ∈ I0 ⊗ Fn such that E = F × Ω∞
n+1. By definition,

�
∞
m=0Pm(E) = �

n
m=0Pm(F ). By Lemma 5.8,

�
n
m=0Pm(F ) = λ � Pn(F ) =

∫

I
Pn(Fi) dλ(i) =

∫

Ωn

λ(Fωn) dPn(ωn).

On the other hand, Ei = Fi × Ω∞
n+1 and Eω∞ = Fωn . By the fact that P∞(Ei) = Pn(Fi), the

projection property in Corollary 5.7 implies that

�
n
m=0Pm(F ) =

∫

I
P∞(Fi) dλ(i) =

∫

Ω∞

λ(Fω∞) dP∞(ω∞).
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This means that the Fubini property does hold for sets in ∪∞
n=1(I0 ⊗Fn) × Ω∞

n+1.

For simplicity, we denote σ(I0), σ(Fn), σ(I0 ⊗ Fn), σ(Fn), σ (I0 ⊗Fn), σ(F∞), and

σ
(

∪∞
n=1(I0 ⊗Fn) × Ω∞

n+1

)

, respectively by I, An, I � An, An, I � An, A∞, and I � A∞.

We restate some of the above results using the new notation. Corollary 5.7 implies that

(Ωn,An, Pn) and (I × Ωn,I � An, λ � Pn) are the respective projections of (Ω∞,A∞, P∞)

and (I × Ω∞,I � A∞, λ � P∞). Since (I × Ωn,I � An, λ � Pn) is the Loeb product of two

Loeb probability spaces (I,I, λ) and (Ωn,An, Pn), it is a Fubini extension of the usual product

probability space. In addition, the Fubini property in Proposition 5.9 says that (I × Ω∞,I �

A∞, λ � P∞) is a Fubini extension of the usual product of the probability spaces (I,I, λ) and

(Ω∞,A∞, P∞).

6 Proof of Theorem 3.1

Let (p0, b, q, ν) be the given parameters for the dynamical system D. Let M be a fixed unlimited

hyperfinite natural number in ∗
N∞, I = {1, 2, ...,M}, I0 the internal power set on I, and λ0

the internal counting probability measure on I0. Let α0 : I → S = {1, 2, . . . ,K} be an internal

initial type function such that λ0(α
0 = k) ' pk for each k = 1, . . . ,K.22 What we need to do

is to construct a sequence of internal transition probabilities and a sequence of internal type

functions. The results in Sections 5.2 and 5.3 can then be applied to obtain a Loeb product

transition probability system. Since we need to consider random mutation, random partial

matching and random type changing at each time period, three internal measurable spaces

with internal transition probabilities will be constructed at each time period.

Adopt the notation used in Section 5.2. Suppose that the construction for the dynamical

system D has been done up to time period n − 1. Thus, {(Ωm,Fm, Qm)}3n−3
m=1 and {αl}n−1

l=0

have been constructed, where each Ωm is a hyperfinite internal set with its internal power set

Fm, Qm an internal transition probability from Ωm−1 to (Ωm,Fm), and αl an internal function

from I × Ω3l to the type space S.

We shall now consider the constructions for time n. We first work with the random

mutation step. For each 1 ≤ k ≤ K, ρk is a distribution on S with ρk(l) = bkl, the probability

for a type k agent to mutate to a type l agent. Let Ω3n−2 = SI (the space of all internal

functions from I to S) with its internal power set F3n−2.

For each i ∈ I, ω3n−3 ∈ Ω3n−3, let γω3n−3

i = ραn−1(i,ω3n−3). That is, if αn−1(i, ω3n−3) = k,

then γω3n−3

i = ρk. Define an internal probability measure Qω3n−3

3n−2 on (SI ,F3n−2) to be the inter-

nal product measure
∏

i∈I γω3n−3

i . Let hn :
(

I ×
∏3n−2

m=1 Ωm

)

→ S be such that hn
(

i, ω3n−2
)

=

ω3n−2(i).

22This is possible since λ is atomless.
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Next, we consider the step of random partial matching. Let (Ω3n−1,F3n−1) be the

internal sample measurable space (Ω̄, F̄0) in Remark 4.1.

For any given ω3n−2 ∈ Ω3n−2, the type function is hn
ω3n−2( · ), denoted by α for short. Let

Qω3n−2

3n−1 be the internal probability measure corresponding to the internal probability measure

P̄α
0 in Remark 4.1. Define a mapping πn : (I × Ω3n−1) → (I ∪ J) by letting πn(i, ω3n−1) =

π̄(i, ω3n−1); thus, πn(i, ω3n−1) = J if ω3n−1(i) = i, and πn(i, ω3n−1) = ω3n−1(i) if ω3n−1(i) 6= i.

Extend hn so that hn(J, ω3n−2) = J for any ω3n−2 ∈ Ω3n−2. Define gn : (I×Ω3n−1) → (S∪{J})

by letting

gn(i, ω3n−1) = hn(πn(i, ω3n−1), ω3n−2),

which means that gn(i, ω3n−1) = ḡα(i, ω3n−1).

Finally, we consider the step of random type changing for matched agents. Let Ω3n = SI

with its internal power set F3n; each point ω3n ∈ Ω3n is an internal function from I to S. For

any given ω3n−1 ∈ Ω3n−1, the space I of agents is divided into K2 + K classes: those in type k

who are not matched, or matched to some type-l agents. For 1 ≤ k, l ≤ K, νkl is a distribution

on S and νkl(r) the probability for a type-k agent to change to a type-r agent when the type-k

agent meets a type-l agent.

Define a new type function αn : (I × Ω3n) → S by letting αn(i, ω3n) = ω3n(i).

Fix ω3n−1 ∈ Ω3n−1. For each i ∈ I, (1) if ω3n−1(i) = i (i is not matched at time

n), let τω3n−1

i be the probability measure on the type space S that gives probability one to

the type hn(i, ω3n−2) and zero for the rest; (2) if ω3n−1(i) 6= i (i is matched at time n),

hn(i, ω3n−2) = k and hn(ω3n−1(i), ω
3n−2) = l, let τω3n−1

i be the distribution νkl on S. Define

an internal probability measure Qω3n−1

3n on SI to be the internal product measure
∏

i∈I τω3n−1

i .

By induction, we can construct a sequence {(Ωm,Fm, Qm)}∞m=1 of internal transition

probabilities and a sequence {αl}∞l=0 of type functions. By using the constructions in Sections

5.2 and 5.3 via an infinite product of Loeb transition probabilities, we can obtain a correspond-

ing probability space (I × Ω∞,I � A∞, λ � P∞).

From now on, we shall also use (Ω,F , P ) and (I×Ω,I�F , λ�P ) to denote (Ω∞,A∞, P∞)

and (I × Ω∞,I � A∞, λ � P∞) respectively. Note that all the functions, hn, πn, gn, αn, for

n = 1, 2, . . . , can be viewed as functions on I ×Ω, and hn, gn, αn are I�F-measurable for each

n ≥ 1.

We still need to check that our internal constructions above lead to a dynamical system

D with random mutation, partial matching and type changing that is Markov conditionally

independent in types. We assume that the conditions for random mutation, partial matching

and type changing as well as Markov conditional independence in types are satisfied up to time

n−1. As in the proof of Lemma 6 in [6], Lemma 5 in [6] implies that the random variables αn−1
i
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and αn−1
j are independent for i 6= j. It remains to check the conditions for random mutation,

partial matching and type changing as well as Markov conditional independence in types for

time n.

For the step of random mutation at time period n, we have for each agent i ∈ I, and

k, l ∈ S,

P (hn
i = l, αn−1

i = k)

= P 3n−2
(

{(ω3n−3, ω3n−2) ∈ Ω3n−2 : αn−1
i (ω3n−3) = k, hn(i, ω3n−3, ω3n−2) = ω3n−2(i) = l

}

)

= P 3n−2
(

{

ω3n−3 ∈ Ω3n−3 : αn−1
i (ω3n−3) = k

}

×
(

SI−{i} × {l}{i}
))

=

∫

{αn−1

i (ω3n−3)= k}
ρk(l) dP 3n−3(ω3n−3) = bklP (αn−1

i = k), (33)

which implies that equation (1) is satisfied.

When i 6= j ∈ I, it is obvious that for any l, r ∈ S, and any (a0
i , . . . , a

n−1
i ), (a0

j , . . . , a
n−1
j ) ∈

Sn, we have

P
(

hn
i = l, hn

j = r, (α0
i , . . . , α

n−1
i ) = (a0

i , . . . , a
n−1
i ), (α0

j , . . . , α
n−1
j ) = (a0

j , . . . , a
n−1
j )

)

= P 3n−2
(

{(ω3n−3, ω3n−2) ∈ Ω3n−2 : (α0
i , . . . , α

n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ),

(α0
j , . . . , α

n−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j ), ω3n−2(i) = l, ω3n−2(j) = r}

)

= P 3n−2
({

ω3n−3 ∈ Ω3n−3 : (α0
i , . . . , α

n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ),

(α0
j , . . . , α

n−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j )

}

×
(

I × SI−{i,j} × {l}{i} × {r}{j}
))

= P 3n−3
({

ω3n−3 ∈ Ω3n−3 : (α0
m, . . . , αn−1

m )(ω3n−3) = (a0
m, . . . , an−1

m ),m = i, j
})

·ρan−1

i
(l) · ρan−1

j
(r). (34)

Equations (33) and (34) imply that for any l, r ∈ S,

P
(

hn
i = l, hn

j = r | (α0
m, . . . , αn−1

m ),m = i, j
)

= P
(

hn
i = l |αn−1

i

)

P
(

hn
j = r |αn−1

j

)

.

Hence equation (5) in the definition of Markov conditional independence for random mutation

is satisfied.

Equation (34) together with the independence of αn−1
i and αn−1

j imply that hn
i ( · ) and

hn
j ( · ) are independent. As in equation (2), p n−1/2 is the expected cross-sectional type distri-

bution immediately after random mutation. The exact law of large numbers in [16] and [18]

(see Footnote 18 above) implies that for P 3n−2-almost all ω3n−2 ∈ Ω3n−2,

λ
({

i′ ∈ I : hn
ω3n−2(i

′) = l
})

= p
n−1/2
l (35)

for any l ∈ S.
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For the step of random partial matching, the definition of πn clearly shows that for each

ω ∈ Ω, the restriction of πn
ω( · ) to I − (πn

ω)−1 ({J}) is a full matching on that set. We need to

check that the function gn : (I ×Ω) → (I ∪{J}) satisfies the required distribution and Markov

conditional independence conditions.

For any given ω3n−2 ∈ Ω3n−2, take α = hn
ω3n−2(·) as in the construction Qω3n−2

3n−1 above.

Then, for each i ∈ I and c ∈ S ∪ {J},

Qω3n−2

3n−1

(

{ω3n−1 ∈ Ω3n−1 : gn(i, ω3n−1) = c}
)

= P̄α
0

(

{ω̄ ∈ Ω̄ : ḡα(i, ω̄) = c}
)

. (36)

Moreover, for each j ∈ I with j 6= i and d ∈ S ∪ {J},

Qω3n−2

3n−1

({

ω3n−1 ∈ Ω3n−1 : gn(i, ω3n−1) = c, gn(j, ω3n−1) = d
})

= P̄α
0

(

{ω̄ ∈ Ω̄ : ḡα(i, ω̄) = c, ḡα(j, ω̄) = d}
)

' P̄α
0 (ḡα

i = c) · P̄α
0

(

ḡα
j = d

)

. (37)

For each agent i ∈ I, k, l ∈ S, equation (36) implies that

P (gn
i = J, hn

i = k) = P 3n−1
(

{ω3n−1 ∈ Ω3n−1 : hn(i, ω3n−2) = k, gn(i, ω3n−1) = J}
)

=

∫

{hn(i,ω3n−2)= k}
qk dP 3n−2(ω3n−2) = qkP (hn

i = k). (38)

In addition, we obtain from equation (35) that

P (gn
i = l, hn

i = k) = P 3n−1
(

{ω3n−1 ∈ Ω3n−1 : hn(i, ω3n−2) = k, gn(i, ω3n−1) = l}
)

=

∫

{hn(i,ω3n−2)= k}
P̄ hn

ω3n−2

(

{ω̄ ∈ Ω̄ : ḡhn

ω3n−2 (i, ω̄) = l}
)

dP 3n−2(ω3n−2)

=

∫

{hn(i,ω3n−2)= k}

(1 − qk)(1 − ql)λ({i′ ∈ I : hn
ω3n−2(i

′) = l})
∑K

r=1(1 − qr)λ({i′ ∈ I : hn
ω3n−2(i′) = r)}

dP 3n−2(ω3n−2)

=

∫

{hn(i,ω3n−2)= k}

(1 − qk)(1 − ql)p
n−1/2
l

∑K
r=1(1 − qr)p

n−1/2
r

dP 3n−2(ω3n−2)

= P (hn
i = k) ·

(1 − qk)(1 − ql)p
n−1/2
l

∑K
r=1(1 − qr)p

n−1/2
r

. (39)

Hence, equations (38) and (39) imply that equation (3) holds.

Fix i 6= j ∈ I. Take any (a0
i , . . . , a

n−1
i ), (a0

j , . . . , a
n−1
j ) ∈ Sn, l, r ∈ S, and c, d ∈

S ∪ {J}. Let D be the set of all ω3n−2 ∈ Ω3n−2 such that hn
i (ω3n−2) = l, hn

j (ω3n−2) = r,

(α0
i , . . . , α

n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ), and (α0

j , . . . , α
n−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j ). Then,

equations (35) and (37) imply that

P
(

gn
i = c, gn

j = d, hn
i = l, hn

j = r, (α0
m, . . . , αn−1

m ) = (a0
m, . . . , an−1

m ),m = i, j
)
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=

∫

D
Pω3n−2

3n−1

(

{ω3n−1 ∈ Ω3n−1 : gn(i, ω3n−1) = c, gn(j, ω3n−1) = d}
)

dP 3n−2(ω3n−2)

=

∫

D
P̄ hn

ω3n−2

(

{ω̄ ∈ Ω̄ : ḡhn

ω3n−2 (i, ω̄) = c}
)

· P̄ hn

ω3n−2

(

{ω̄ ∈ Ω̄ : ḡhn

ω3n−2 (j, ω̄) = d}
)

dP 3n−2

= P 3n−2(D)P (gn
i = c |hn

i = l)P (gn
j = d |hn

j = r), (40)

which means that the Markov conditional independence condition as formulated in equation

(6) for random partial matching is satisfied.

Finally, we consider the step of random type changing for matched agents at time n.

For k ∈ S, let νkJ be the Dirac measure at k on S, i.e., νkJ(r) = δr
k for each r ∈ S. If

hn(i, ω3n−2) = k for k ∈ S and gn
i (ω3n−1) = c for c ∈ S ∪ {J}, then the measure τω3n−1

i in the

definition of Qω3n−1

3n on SI is simply νkc.

For each agent i ∈ I, and for any r, k ∈ S, and c ∈ S ∪ {J}, we have

P (αn
i = r, hn

i = k, gn
i = c)

= P 3n
({

(ω3n−1, ω3n) ∈ Ω3n : hn
i (ω3n−2) = k, gn

i (ω3n−1) = c, ω3n(i) = r
})

=

∫

{ω3n−1∈Ω3n−1: hn
i (ω3n−2)=k, gn

i (ω3n−1)=c}
νkc(r)dP 3n−1(ω3n−1)

= νkc(r)P (hn
i = k, gn

i = c), (41)

which implies that equation (4) is satisfied.

Fix i 6= j ∈ I. Take any (a0
i , . . . , a

n−1
i ), (a0

j , . . . , a
n−1
j ) ∈ Sn, k, l, r, t ∈ S, and c, d ∈

S ∪ {J}. Let E be the set of all ω3n−1 ∈ Ω3n−1 such that gn
i (ω3n−1) = c, gn

j (ω3n−1) = d,

hn
i (ω3n−2) = k, hn

j (ω3n−2) = l, (α0
i , . . . , α

n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ), and (α0

j , . . . , α
n−1
j )(ω3n−3) =

(a0
j , . . . , a

n−1
j ). Then, equation (41) implies that
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P
(

αn
i = r, αn

j = t, gn
i = c, gn

j = d, hn
i = k, hn

j = l, (α0
m, . . . , αn−1

m ) = (a0
m, . . . , an−1

m ),m = i, j
)

=

∫

E
Pω3n−1

3n ({ω3n ∈ Ω3n : ω3n(i) = r, ω3n(j) = t}) dP 3n−1(ω3n−1)

=

∫

E
νkc(r)νld(t)dP 3n−1(ω3n−1)

= P (E) · P (αn
i = r|hn

i = k, gn
i = c) · P (αn

j = t|hn
j = l, gn

j = d), (42)

which means that the Markov conditional independence condition as formulated in equation

(7) for match-induced random type changing is satisfied.

Therefore, we have shown that D is a dynamical system with random mutation, partial

matching and type changing that is Markov conditionally independent in types.

30



References

[1] R. M. Anderson, A nonstandard representation for Brownian motion and Ito integration, Israel
Journal of Mathematics 25 (1976), 15-46.

[2] L. L. Cavalli-Sforza, and W. F. Bodmer, The Genetics of Human Population, Freeman, San
Francisco, 1971.

[3] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales,
(3rd. edn.) Springer, New York, 1997.

[4] P. Diamond, A model of price adjustment, Journal of Economic Theory 3 (1971), 156-168.
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