
Equilibrium Foundations of
Continuous-Time Finance

Lecture Notes

1 Preface

This is a set of Lecture Notes for a five-hour tutorial given at the Institute of
Mathematical Sciences of the National University of Singapore in June 2005.
Much of the material is extracted from a much longer set of lecture notes I
developed for a forty-five hour Ph.D. class in continous-time finance in the
Haas School of Business at UC Berkeley. That class made extensive use of
Nielsen’s excellent text [14]. In my view, Nielsen gives the best combined
treatment of continuous-time Finance and the mathematics underlying it.
Other authors provide a much broader range of applications, but skimp on
the mathematics, or give elegant treatments of the mathematics but skimp
on the applications. Nielsen proves many of the main mathematical results,
and provides clear statements of the remaining ones, along with references
to their proofs. His mathematical treatment is impeccable.

The motivational material on Brownian motion, and particularly the con-
nection to random walks, comes largely from a wonderful set of lectures by
Shizuo Kakutani that I was fortunate to attend at Yale in 1974. Those
lectures played a critical role in the development of my nonstandard con-
struction of Brownian motion and Itô integration.

The class at Berkeley, like Nielsen’s text, focussed on a careful develop-
ment of the pricing and replication of derivative securities, such as options
(initiated by Black, Scholes and Merton), using the martingale method initi-
ated by Harrison and Kreps [7]). This is the central material of continuous-
time finance. In it, the stochastic process describing the evolution of prices
of securities is exogenously specified. Taking the securities price process as
given, the martingale method examines the relationship between the exoge-
nously specified prices of the underlying securities and the prices of derivative
securities. I strongly recommend that anyone interested in pursuing studies
in continuous-time Finance read Nielsen’s text.

The Singapore tutorial, by contrast, focussed on the equilibrium foun-
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dations of continuous-time finance. The endowments and utility functions
of the agents, and the dividends of the securities, are exogenously speci-
fied. The problem is to show that an equilibrium securities pricing process
exists, and to characterize its properties. The discrete-time version of this
problem has been solved, and was described in Felix Kubler’s tutorial lec-
tures. The continuous-time problem is very hard, and remains an area of
active research. We describe a strategy for obtaining existence results using
nonstandard analysis, and the results obtained to date using this strategy.

2 The Random Walk Model

The random walk model is a simple model of the evolution of a stock price.
The increments in the random walk process are additive, while we normally
think that changes in a stock price function multiplicatively. For this reason,
we think of the random walk model as representing the natural logarithm of
the stock price; equivalently, the stock price is the exponential of the random
walk.

In the random walk model, information accrues in small discrete steps.
Consider the time interval [0, T ]. For n ∈ N, divide the time interval into
nT subintervals, each of length 1

n
. At time 0, the random walk process starts

out at 0. At the beginning of each interval, toss a coin; if it comes out heads,
the random walk process increases by 1√

n
over the course of the interval; if

the coin comes out tails, the random walk process decreases by 1√
n

over the
course of the interval.

Formally, the random walk model is specified as follows. The event space
is Ω = {−1, 1}nT . Thus, every ω ∈ Ω is a vector of +1s and −1s. Observe
that Ω is finite, indeed |Ω| = 2nT . The collection of measurable events is F ,

the collection of all subsets of Ω. The probability measure is P (A) = |A|
|Ω| =

|A|
2nT ; thus, we assign equal probability 1

2nT to every ω ∈ Ω. We consider two
closely-related versions of the random walk process:

Xn(ω, t) =
�nt�∑
k=1

ωk√
n

+
(nt− �nt�)ω�nt�+1√

n

X̂n(ω, t) =
�nt�∑
k=1

ωk√
n
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When dealing with a fixed n, we will typically omit the subscript n and write
the random walk process as X(ω, t) or X̂(ω, t).

Each ω ∈ Ω corresponds one of the possible paths the random walk
process might follow. X(ω, ·) denotes the function from [0, T ] to R defined
by X(ω, ·)(t) = X(ω, t); this is the sample path of the random walk process
corresponding to ω. At time 0, we don’t know which ω will occur, and thus
we don’t know which path X(ω, ·) the random walk will follow; we only know
that one of the possible paths will occur. When we get to time T , we have
been able to observe the full path of the random walk, and thus we know
precisely which ω occurred.

The second term in the definition of Xn is a linear interpolation term
which makes the paths Xn(ω, ·) into continuous functions; since the paths
of Brownian motion are continuous functions, this has the mathematical
advantage of puttingXn and Brownian motion into the same space. However,
Xn has the disadvantage that for every small ε > 0, the evolution of the path
Xn(ω, ·) over the interval

[
k
n
, k+1

n

)
is completely known at the time k

n
+ ε.

The paths X̂n(ω, ·) of X̂n are step functions, constant across time intervals

of the form
[

k
n
, k+1

n

)
and discontinuous at the times k

n
.

Suppose t ∈ [0, T ]. The information revealed up to time t is ω1, ω2, . . . , ω�nt�.
Thus, the collection of measurable events at time t is

Ft = {A ∈ F : ω ∈ A, ω′
k = ωk for k ≤ nt⇒ ω′ ∈ A}

X̂n is adapted to the filtration {Ft}, i.e. X̂n(·, t) is Ft-measurable for all t; Xn

is not adapted, because ωk+1 is revealed by Xn

(
ω, k

n
+ ε

)
for every positive

ε.
The random walk has the following qualitative properties:

1. Approximate Normality: Fix t = k
n
. Let M(ω, t) be the number of +1s

in the first k coin tosses. M(ω, t) has the binomial distribution b
(
k, 1

2

)
.

X(ω, t) =
M(ω, t) − (k − (M(ω, t)))√

n

=
2
(
M(ω, t) − k

2

)
√
n
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Since the expected value E(M(·, t)) = k
2
, E(X(·, t)) = 0. Since the

variance Var(M(·, t)) = k
(

1
2

) (
1 − 1

2

)
= k

4
, Var(X(·, t)) =

4× k
4

(
√

n)
2 = k

n
=

t. By the Central Limit Theorem, the distribution of X(·, t) is very
nearly N(0, t), normal with mean zero and variance t, hence standard
deviation

√
t.

2. Independent Increments: Suppose t1 < t2 < · · · < tm. Then

{X̂(·, t2) − X̂(·, t1), . . . X̂(·, tm) − X̂(·, tm−1)}

are independent random variables because they’re determined by dis-
joint sets of coin tosses

{ω�nt1�+1, . . . , ω�nt2�}, . . . , {ω�ntm−1�+1, . . . , ω�ntm�}

The same is true of the increments of X, provided we restrict the times
to the form ti = ki

n
.

3. Tightness: This is technical and you don’t need a full understanding.
The random walk paths are obviously continuous, since they are given
by functions that are linear on each of the intervals

[
k
n
, k+1

n

]
. However,

as n increases, each of these linear functions, which has slope
√
n,

becomes steeper. Roughly speaking, tightness says that the random
walk paths nonetheless have continuous limits, with probability one.
Technically, the condition is

∀ε>0 ∃δ>0 ∀n P ({ω : ∃s,t |s− t| < δ, |Xn(ω, t) −Xn(ω, s)| > ε}) < ε

4. Variation of Paths: Given a function f : [0, T ] → R, the variation of f
is

sup
m∈N

sup
0=t0<t1<···<tm=T

m∑
k=1

|f(tk) − f(tk−1)|

f is said to be of bounded variation if the variation of f is finite. For
all ω, the variation of the path X(ω, ·) is nT

(
1√
n

)
=

√
nT → ∞ as

n → ∞. In other words, all of the random walk paths are of variation
tending to infinity as n→ ∞.
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5. Quadratic Variation: By analogy with the variation, it would be natural
to try to define quadratic variation pathwise: given a function f :
[0, T ] → R, we could define the quadratic variation of f to be

sup
m∈N

sup
0=t0<t1<···<tm=T

m∑
k=1

(f(tk) − f(tk−1))
2

For all ω, if we take tk = k
n
,
∑m

k=1 (f(tk) − f(tk−1))
2 = nT

(
1

(
√

n)2

)
= T .

As you will see in Problem Set 1, problems arise if we attempt to
define the quadratic variation one path at a time, in particular if we
are allowed to choose the partition 0 = t0 < t1 < · · · < tm = T as a
function of ω. Thus, the quadratic variation needs to be defined taking
the whole process into account, not one path at a time.

3 The Brownian Motion Model

The Brownian Motion Model is the limit of the random walk model as n→
∞. This can be made precise in a number of ways.1

Let (Ω,F , P ) be a probability space, T a time set, with either a finite
time horizon (i.e. T = [0, T ] for some T ∈ R) infinite time horizon (i.e.
T = [0,∞)).

AK-dimensional stochastic process is X : Ω×T → RK such that X(·, t) :
Ω → RK is measurable in ω for all t ∈ T . X(ω, ·) is the function from T to
RK defined by X(ω, ·)(t) = X(ω, t). X(ω, ·) is called a sample path of the
process; it is one of the (usually infinitely) many possible paths the process
could follow.

You will need to distinguish three different measures floating around:

1One of the natural ways is Donsker’s Theorem. Let Xn(ω, t) denote the random walk
model of Section 2 for a specific n ∈ N. View Xn(ω, ·) as a random variable taking
values in C([0, T ]), the space of continuous functions from [0, T ] into R, with the metric
d(f, g) = supt∈[0,T ] |f(t)− g(t)|. Donsker’s Theorem asserts that Brownian motion B(ω, t)
is the limit in distribution of Xn as n → ∞. The notion of convergence in distribution of
random variables taking values in C([0, T ]) is the following: for every bounded continous
function F : C([0, T ]) → R, E(F (xn(ω, ·))) → E(F (B(ω, ·))). It is not hard to see that
this is a generalization of the definition of convergence in distribution for random variables
taking values in R. For details, see Billingsley [3]. An alternative is to use nonstandard
analysis to show that B(ω, t) can be constructed directly from a so-called “hyperfinite”
random walk, as in Anderson [1].
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1. P , the probability measure on Ω.

2. λ, Lebesgue measure on T .

3. P⊗λ, the product measure on Ω × T generated by P and λ.

For more information, see sections Appendices A.2 and B.2 of Nielsen.

Definition 3.1 AK-dimensional standard Brownian motion is aK-dimensional
stochastic process B such that2

1. B(ω, 0) = 0 almost surely (i.e. P ({ω : B(ω, 0) = 0}) = 1)

2. Continuity: B(ω, ·) is continuous almost surely. If Brownian motion is
constructed as a limit of the random walk, this property comes from
the tightness property of the random walk.

3. Independent Increments: If 0 ≤ t0 < t1 < · · · < tm ∈ T ,

{B(·, t1) −B(·, t0), . . . , B(·, tm) − B(·, tm−1)}

is an independent family of random variables. If Brownian motion is
constructed as a limit of the random walk, this property comes from
the independent increments property of the random walk.

4. Normality: If 0 ≤ s ≤ t, B(·, t) − B(·, s) is normal with mean 0 ∈ RK

and covariance matrix (t− s)I, where I is the K ×K identity matrix.
If Brownian motion is constructed as a limit of the random walk, this
property comes from the approximate normality of the random walk.

Theorem 3.2 There is a probability space on which a K-dimensional stan-
dard Brownian motion exists.

Example 3.3 Time Change: Given a K-dimensional standard Brownian
motion B, let Z(ω, t) = B(ω, σ2t). Thus, Z is obtained from B by speeding
up time by a factor of σ2. It is easy to see that Z satisfies all the properties of
a standard Brownian motion, except that the covariance matrix of B(·, t) −

2There is some redundancy among the conditions: continuity and independent incre-
ments imply normality (though not the specific mean and covariances given here), while
independent increments and normality imply continuity.
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B(·, s) is σ2(t− s)I when s < t. If we let Ẑ(ω, t) = Z(ω,t)
σ

, then Ẑ satisfies all
the properties of standard Brownian motion. Thus, a constant time change
of a standard Brownian motion is a scalar multiple of a (different) standard
Brownian motion on the same probability space.

Theorem 3.4 The sample paths of standard Brownian motion have the fol-
lowing qualitative properties:

1. Almost Sure Unbounded Variation3:

P ({ω : ∃s<t B(ω, ·) is of bounded variation on [s, t]}) = 0

2. Almost Sure Nowhere Differentiability4:

P ({ω : ∃t∈T B(ω, ·) is differentiable at t}) = 0

3. Iterated Logarithm Laws

(a) Long Run:

P

({
ω : lim sup

t→∞

B(ω, t)√
2t ln ln t

= 1

})
= 1

(b) Short Run:5 For all t ∈ T

P

⎛
⎝
⎧⎨
⎩ω : lim sup

s↘t

B(ω, s) − B(ω, t)√
2(s− t) ln | ln(s− t)|

= 1

⎫⎬
⎭
⎞
⎠ = 1

Remark 3.5 The Iterated Logarithm Laws are key to understanding the
qualitative short-run and long-run behavior of Brownian motion. We will
model stock prices by processes like e(µ−σ2/2)t+σB(ω,t). Consider first the short

3This property can be derived from the variation of the random walk, but the argument
is a bit subtle, as the variation is not continuous in C([0, T ]).

4This property shows that, although Brownian motion paths are continuous, they are
only barely continuous. A slightly weaker property (Brownian motion paths are almost
surely not continuously differentiable on any open interval) follows immediately from al-
most sure unbounded variation.

5In Problem Set 1, you are asked to derive this from the Iterated Logarithm Law in
the Long Run.
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run. If s is close to t, then
√
s− t is much bigger than s− t. ln | ln s− t| goes

to infinity as s→ t, but the growth rate is very slow. The Iterated Logarithm
Law tells us that at times s arbitrarily close to t, B(ω, s)−B(ω, t) will nearly

hit both the upper and lower envelopes ±
√

2(s− t) ln | ln(s− t)| infinitely
often. In particular, in the short run, only the the volatility matters; the
drift term e(µ−σ2/2)t is completely unimportant. On the other hand, in the
long run, as t → ∞,

√
t → ∞ much slower than t; ln ln t → ∞, but very

slowly. We will see that E(Z(·, t)) = eµt. This explains why we choose to
write µ − σ2/2, rather than incorporate the −σ2/2 into µ. In the long run,
if µ > 0, the volatility is overwhelmed in importance by the drift term eµt.

You will see, in Problem Set 1, that the Quadratic Variation of the Random
Walk cannot be defined pathwise; if the partition is allowed to depend in an
arbitrary way on the path, the Quadratic Variation need not converge as n→
∞. For the same reason, the Quadratic Variation of Brownian Motion is not
defined pathwise. The following theorem says the the Quadratic Variation
of Brownian Motion over every interval [s, t] with s < t is t− s:

Theorem 3.6 Let B be a standard 1-dimensional Brownian Motion. Con-
sider a sequence of partitions

s = tn0 < tn1 < · · · < tnmn
= t

indexed by n with

max
{∣∣∣tnk − tnk−1

∣∣∣ : 1 ≤ k ≤ mn

}
→ 0

Then
mn∑
k=1

(
B (ω, tnk) −B

(
ω, tnk−1

))2
→ t− s a.s.

as n→ ∞.

The theorem follows from the Strong Law of Large Numbers, using the fact
that B (·, tnk) −B

(
ω, tnk−1

)
is distributed as N

(
0, tnk − tnk−1

)
, so

E
((
B (·, tnk) −B

(
·, tnk−1

))2
)

= tnk − tnk−1
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Proposition 3.7 If B is standard Brownian motion, B(ω,t)
t

→ 0 almost
surely, i.e.

P

({
ω : lim

t→∞

B(ω, t)

t
= 0

})
= 1

Proof: Notice that from the definition of standard Brownian motion,

Var

(
B(·, t)
t

)
=

VarB(·, t)
t2

=
t

t2
→ 0

so B(·,t)
t

converges to zero in distribution. However, convergence almost surely
is stronger than convergence in distribution. Thus, we apply the Iterated
Logarithm Law in the Long Run.

lim sup
t→∞

B(ω, t)

t
≤ lim sup

t→∞

B(ω, t)√
2t ln ln t

× lim sup
t→∞

√
2t ln ln t

t
= 1 × 0 = 0

almost surely. Since −B is standard Brownian motion,

lim inf
B(ω, t)

t
= − lim sup

t→∞
−B(ω, t)

t
= 0

almost surely. Therefore, lim supt→∞
B(ω,t)

t
= 0 almost surely.

4 Information Structures

Recall that in the random walk, we defined Ft to be the collection of events
definable in terms ofcoin tosses that had occurred up to time �nt�

n
; it simply

represents the information available at time t. Equivalently, Ft is the σ-
algebra determined by X̂ up to time t, or by X up to time �nt�

n
. We need

to extend this definition to continuous-time processes where the probability
space is infinite.

Definition 4.1 A filtration is a family (Ft)t∈T of σ-algebras Ft ⊂ F such
that Fs ⊂ Ft whenever s ≤ t. A filtration is augmented (sometimes called
complete) if

C ⊂ B,P (B) = 0 ⇒ ∀t∈T C ∈ Ft

A stochastic process Z is adapted to (Ft)t∈T if Z(·, t) is Ft-measurable for
all t ∈ T . Every stochastic process Z generates a filtration: Ft is, roughly
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speaking, the σ-algebra of events revealed by Z up to and including time t.
More formally, Ft is the smallest σ-algebra containing

{{ω : Z(·, s) ∈ (a, b)}, s ≤ t, a, b ∈ R}

Every stochastic process Z is adapted to the filtration it generates. X̂ is
adapted to the filtration we defined in the random walk model, but X is not
adapted to that filtration.

Remark 4.2 Ft is interpreted as the information which has been revealed by
time t. Suppose Z is a trading strategy, i.e. Z(ω, t) specified how many shares
of each stock an individual will hold at (ω, t). Then Z must be adapted;
the individual can’t make decisions based on information that hasn’t yet
been revealed. There is another reason to insist that trading strategies must
be adapted. If we allowed trading strategies that are not adapted, there
would be arbitrage. An example of a non-adapted trading strategy would
be “buy the stock today if its price will be higher tomorrow, but sell it
short today if its price will be lower tomorrow.” Its clear that this strategy
guarantees a profit, and the profit can be made arbitrarily large by increasing
the number of shares that are bought or sold short; thus, if nonadapted
trading strategies were allowed, individuals would take actions that would
force the price today to change to eliminate the arbitrage, and this price
change would reveal the information on which the individuals were basing
their trades, enlarging the filtration. Notice, however, that requiring that
trading strategies be adapted imposes a fundamental limitation, because it
does not allow us to study situations with asymmetric information. In reality,
the information possessed varies considerably from one individual to another.
Market microstructure focusses on how agents that are better informed than
others use that information, and how the information is incorporated into
prices as a result. The continuous-time formulation makes it difficult or
impossible to address those kinds of questions; in effect, it is assumed that
all agents see the same information at any given time.

Definition 4.3 Let (Ω,F , P ) be a probability space. A stochastic process
Z is measurable if it is measurable with respect to the product σ-algebra on
Ω⊗T . Z is integrable if Z(·, t) is integrable for all t ∈ T . Suppose Y is a
random variable which is integrable and G ⊂ F . The conditional expectation
of Y with respect to G is a random variable W = E(Y |G) such that W is
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G-measurable, and
∫
GWdP (ω) =

∫
G Y dP (ω) for all G ∈ G. The existence of

the conditional expectation is proven using the Radon-Nikodym Theorem;
any two conditional expectations agree almost surely.

Remark 4.4 When Ω is finite, as in the random walk model, any σ-algebra
G must be the collection of all unions of elements of a partition of Ω. For
example, given t < T , we can define the partition of Ω determined by
ω1, ω2, . . . , ω�nt�. The partition sets are sets of the form

{ω′ ∈ Ω : ω′
k = ωk (1 ≤ k ≤ nt)}

Define ω′ ∼t ω if ω′
k = ωk for k ≤ nt. This partition generates the σ-

algebra Ft in the sense that Ft consists precisely of all unions of partition
sets. E(W |Ft) is computed by taking the average value of W over each of
the partition sets:

E(W |Ft)(ω) =

∑
{ω′:ω′∼tω}W (ω)

|{ω′ : ω′ ∼t ω}|

Definition 4.5 Z is a martingale with respect to a filtration (Ft)t∈T if

1. Z is integrable

2. Z is adapted to (Ft)t∈T

3. For all s, t ∈ T with s ≤ t

E (Z(·, t)|FS) = Z(·, s)

almost surely.

Example 4.6 If we let T = [0, T ], the random walk X̂n(ω, t) is a martingale
with respect to (Ft)t∈T . To see this, compute

E(X̂n(·, t)|Fs)(ω0)

=
∑

ω∼sω0

X̂n(ω, t)

2n(t−s)

= X̂n(ω0, s) +
∑

ω∼sω0

nt∑
k=ns+1

ωk

2n(t−s)
√
n
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= X̂n(ω0, s) +
nt∑

k=ns+1

∑
ω∼sω0

ωk

2n(t−s)
√
n

= X̂n(ω0, s) +
nt∑

k=ns+1

0

2n(t−s)
√
n

= X̂n(ω0, s)

since each ωk is 1 exactly half the time and −1 exactly half the time. Note
that Xn is not a martingale on [0, T ]; it is not adapted to the filtration
{Ft}t∈[0,T ], and it is not a martingale with respect to the filtration it gener-

ates. If we restrict the time set to the set of points
{
0, 1

n
, . . . , T

}
, Xn is a

martingale on this restricted time set.

Example 4.7 If B is standard Brownian motion, then B is a martingale
with respect to the filtration it generates. This follows from the fact that
the increment B(·, t)−B(·, s) has mean zero and is independent of Fs, while
B(·, s) is measurable with respect to Fs:

E (B(·, t)|Fs) (ω0)

= E (B(ω0, s) +B(·, t) − B(·, s)|Fs) (ω0)

= B(ω0, s) + E (B(·, t) − B(·, s)|Fs) (ω0)

= B(ω0, s) + 0

5 Stochastic Integrals and Capital Gains

Stochastic integrals are essential to defining the capital gains generated by
a trading strategy. In this section, we motivate the stochastic integral by
considering the random walk model.

As we have seen, the most common model for stock prices is the exponen-
tial of a generalized Brownian motion. Since we’re just trying to motivate the
stochastic integral, we pretend that the stock price is given by the random
walk process Xn, rather than eXn or eB. In particular, we assume there is
only one stock. Let T = {0, 1/n, . . . , nT}.

Suppose an individual uses the trading strategy ∆̄(ω, t). In other words,
∆̄ is a stochastic process which tells the individual how many shares to hold
at time t, when the state is ω. We require that ∆̄ be adapted with respect
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to the filtration (Ft)t∈T . This will be true if and only if ∆̄(ω, t) depends
only on ω1, . . . , ω�nt�. We assume that ∆̄(ω, t) is constant on intervals of the

form
[

k
n
, k+1

n

)
; thus, the individual changes his/her portfolio holdings only

at times t ∈ T ; this assumption does not alter the set of possible portfolio
returns available to the individual.

What is the capital gain generated by the trading strategy ∆̄(ω, t)? The
capital gain between time k/n and k+1

n
is

∆̄

(
ω,
k

n

)(
X

(
ω,
k + 1

n

)
−X

(
ω,
k

n

))

so the capital gains process up to time t ∈ T is

G(ω, t) =
nt−1∑
k=0

∆̄

(
ω,
k

n

)(
X

(
ω,
k + 1

n

)
−X

(
ω,
k

n

))

=
nt−1∑
k=0

∆̄

(
ω,
k

n

)
ωk+1√
n

This is called a Riemann-Stieltjes integral with respect to the integrator
X(ω, ·); it is formed by taking values of the integrand ∆̄ and multiplying by
changes in the value of the integrator X.

Riemann-Stieltjes integrals are normally defined provided that the inte-
grand is continuous and the integrator is of bounded variation; the integrand
∆̄ is not continuous, but it is a step function, and the Riemann-Stieltjes in-
tegral is also defined in this case. The definition of

∫ b
a f(t)dg(t) begins with

partitions: Suppose a = t0 < t1 < · · · < tn = b, then the Riemann-Stieltjes
sum with respect to this partition is

n−1∑
i=0

f(ti)(g(ti+1) − g(ti))

The Riemann-Stieltjes integral is defined as the limit of the Riemann-Stieltjes
sums as the partition gets finer and finer, provided the limit exists. Note that
in defining the Riemann-Stieltjes integral with respect to the random walk,
we need to consider partitions finer than the time points k

n
at which the

random walk coins are tossed. The Riemann-Stieltjes integral makes perfect
sense in the random walk model because the integrators (the paths of the
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random walk) are of bounded variation. It is true that the variation of the
paths goes to infinity as n grows, but for each fixed n, every random walk
path is piecewise linear, hence of bounded variation.

However, the paths of Brownian motion are almost surely not of bounded
variation, so one cannot define the capital gain simply by taking a Riemann-
Stieltjes integral. Itô finessed this problem by approximating the integrand
by simple functions (functions which are piecewise constant over time). The
Stieltjes integral makes sense if the integand is a simple function, even if the
integrator is not of bounded variation. The properties of Brownian motion
allowed Itô to extend this Stieltjes integral from adapted simple stochas-
tic processes to adapted square-integrable stochastic processes. In the next
section, we will give Itô’s definition of the stochastic integral.6

6 Formal Definition of the Stochastic Integral

We begin with some preliminary material.
Suppose (A,A, µ) is a measure space. We have three main examples in

mind:

• (Ω,F , P ), the probability space representing the uncertainty

• (T , C, λ), the Lebesgue measure space on the time set T

• (Ω⊗T ,F⊗C, P⊗λ), the product of the space of uncertainty and time.

Definition 6.1

L1(A) = {f : A→ R, f measurable,
∫

A
|f |dµ <∞}

L2(A) = {f : A→ R, f measurable,
∫

A
f 2dµ <∞}

We identify two elements f, g of L1(A) or L2(A) if f = g except on a set of
µ measure zero. Note that if A = Ω, L2 is the set of random variables with

6An alternative approach is to use nonstandard analysis and construct Brownian motion
as a hyperfinite random walk. The Itô integral with respect to the Brownian motion can
be recovered from the Stieltjes integral with respect to the hyperfinite random walk; see
Anderson [1] for details.
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finite variances, and L1 is the set of random variables with finite means. If
A = Ω⊗T , L1(A) and L2(A) are sets of stochastic processes. By Fubini’s
Theorem, if Z is a measurable process, then

∫
Ω⊗T

Z2(ω, t)d(P × λ)

=
∫
T

(∫
Ω
Z2(ω, t)dP

)
dλ

=
∫
Ω

(∫
T
Z2(ω, t)dλ

)
dP

L1(A) and L2(A) are Banach spaces under the norms ‖f‖1 =
∫
A |f |dµ on

L1(A) and ‖f‖2 = (
∫
A f

2dµ)
1/2

on L2(A). In other words, if we let d1(f, g) =
‖f − g‖1 and d2(f, g) = ‖f − g‖2 be the metrics induced by these norms,
then (L1(A), d1) and (L2(A), d2) are complete metric spaces. A complete
metric space is one with the property that every Cauchy sequence converges
to an element of the metric space. Thus, if we have a sequence of functions
fn ∈ L2(A) and fn is Cauchy, i.e.

∀ε>0 ∃N ∀m,n>N‖fm − fn‖2 < ε

then
∃f∈L2(A) ‖fn − f‖2 → 0

The analogous property is true for L1(A).
We say that fn converges to f in probability if, for every ε > 0,

P ({ω : |fn(ω) − f(ω)| > ε}) → 0

We now turn to the definition of the Itô Integral. The physical interpre-
tation of the Itô Integral arises from diffusion processes. The change dW of a
Wiener process gives a standard diffusion, occurring at a constant rate. The
integrand b specifies how fast the diffusion is occurring at a particular time
s and state ω; for a smoke particle being bombarded by air molecules, the
rate is a function of the temperature and pressure of the air, and the mass
of the smoke particle. In finance, dW represents the volatility of the stock
price, while the integrand b represents the portfolio holding. The class L2

in the following definition is the set of stochastic processes which can be Itô
integrated.
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Definition 6.2 Fix a filtration (Ft)t∈T and a K-dimensional Wiener process
W with respect to (Ft)t∈T . Let L2 denote the set of adapted, measurable
processes b : Ω⊗T → Rm (where Rm may denote R1, RK , or RN×K) such
that ∫ t

0
‖b(ω, s)‖2ds <∞

almost surely.7 Let H2 = L2 ∩ L2(Ω⊗T ).

The definition of the Itô proceeds in stages, starting first with simple func-
tions, then extending to H2, and finally extending to L2.

Step 1: First suppose K = 1, b : Ω × T → R, and T ∈ T . Fix
0 = t0 < t1 < · · · < tn = T . Assume that b ∈ H2, and b is simple8, i.e.

b(ω, s) = b(ω, tk) for all s ∈ [tk, tk+1)

Define ∫ T

0
bdW (ω) =

n−1∑
k=0

b(ω, tk)(W (ω, tk+1) −W (ω, tk))

Observe that this is a Stieltjes integral; it makes sense, even though W (ω, ·)
is not of bounded variation, because b is simple.

Lemma 6.3 (Itô Isometry) If b ∈ H2 and b is simple, then

∫
Ω

(∫ T

0
bdW

)2

dP =
∫
Ω

∫ T

0
|b(ω, s)|2 ds dP

In other words, ∥∥∥∥∥
∫ T

0
bdW

∥∥∥∥∥
2

= ‖b‖2

where the norm on the left side is the norm in L2(Ω) and the norm on the
right side is the norm in L2(Ω × [0, T ]).

7‖b(ω, s)‖ denotes the Euclidean length of the scalar, vector, or matrix b(ω, s). For
example, if b(ω, s) is an N × K matrix, ‖b(ω, s)‖2 =

∑
ij (bij(ω, s))2.

8Our convention is different from that of Nielsen; his simple functions are left-
continuous, while ours are right-continuous.
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Proof:

∫
Ω

(∫ T

0
b dW

)2

dP

=
∫
Ω

(
n−1∑
k=0

b(ω, tk) (W (ω, tk+1) −W (ω, tk))

)2

dP

=
∫
Ω

[
n−1∑
k=0

b2(ω, tk) (W (ω, tk+1) −W (ω, tk))
2

+ 2
∑
j<k

b(ω, tj)b(ω, tk) (W (ω, tj+1) −W (ω, tj)) (W (ω, tk+1) −W (ω, tk))

⎤
⎦ dP

=
n−1∑
k=0

(∫
Ω
b2(ω, tk) dP

)(∫
Ω

(W (ω, tk+1) −W (ω, tk))
2 dP

)
(1)

+2
∑
j<k

(∫
Ω
b(ω, tj)b(ω, tk) (W (ω, tj+1) −W (ω, tj)) dP

)(∫
Ω

(W (ω, tk+1) −W (ω, tk)) dP
)

=
n−1∑
k=0

((∫
Ω
b2(ω, tk) dP

)
(tk+1 − tk)

)
+ 0 (2)

=
∫
Ω

n−1∑
k=0

b2(ω, tk)(tk+1 − tk)) dP

=
∫
Ω

∫ T

0
b2(ω, t) dt dP

=
∫
Ω×[0,T ]

∫ T

0
b2 d(P⊗λ)

Equation (1) follows because b(·, tj), b(·, tk) and W (·, tj+1) −W (·, tj)are in-
dependent of W (·, tk+1) −W (·, tk), while Equation (2) follows from the fact
that W (·, tk+1) −W (·, tk) has mean zero and variance tk+1 − tk.

Step 2: Extend the Itô Integral to H2. If b ∈ H2, fix n and let tk = k
n
,

then define

bn(ω, t) = n
∫ tk

tk−1

b(ω, s) ds if t ∈ [tk, tk+1)

For each time interval [tk, tk+1), bn(ω, t) is the average of b(ω, ·) over the pre-
vious interval [tk−1, tk); this ensures that bn is simple and adapted. Lusin’s
Theorem (which states, roughly speaking, that measurable functions are con-
tinuous functions on the complement of a set of arbitrarily small measure)
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then can be used to show that ‖b − bn‖2 → 0, so the sequence bn is Cauchy
in L2(Ω × [0, T ]). Thus, given ε > 0, there exists N such that if m,n > N ,
‖bm − bn‖2 < ε. But by the Itô Isometry, if m,n > N∥∥∥∥∥

∫ T

0
bm dW −

∫ T

0
bn dW

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ T

0
(bm − bn) dW

∥∥∥∥∥
2

= ‖bm − bn‖2

< ε

so the sequence
∫ T
0 bm dW is a Cauchy sequence in L2(Ω), hence converges to

a unique limit; we define
∫ T
0 b dW to be this limit.

Step 3: Now suppose b ∈ L2, so
∫ T
0 |b(ω, s)|2 ds <∞ almost surely in ω.

Let

bn(ω, s) =

⎧⎪⎨
⎪⎩

n if b(ω, s) > n
b(ω, s) if − n ≤ b(ω, s) ≤ n
−n if b(ω, s) < −n

Then bn ∈ H2 and that
∫ T
0 |bn−b|2 ds→ 0 almost surely (specifically, for each

ω such that b(ω, ·) ∈ L2([0, T ])). One can show that
∫ T
0 bm dW converges in

probability;
∫ T
0 b dW is defined to be the limit.

Step 4: If W is K-dimensional, and b(ω, s) ∈ RK , define

∫ T

0
b dW =

K∑
k=1

∫ T

0
bk dWk

Notice that if we think of W as the price process of K stocks and b as the
portfolio strategy, then

∫ T
0 b dW is the capital gain from the portfolio, the

sum of the capital gains on the individual stocks.
If W is K-dimensional, and b(ω, s) ∈ RN×K , define

(∫ T

0
b dW

)
j

=
K∑

k=1

∫ T

0
bjk dWk

Think of there being N stocks, each of whose price movements is determined
by the components of the underlying Wiener process. bjk give the coefficient
of stock j on the kth component of the Wiener process and

∫
b dW gives the
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movement of the N -dimensional vector of stock prices. Note that if b is a
K-dimensional vector process, the stochastic integral is a scalar process; if
b is an N × K matrix process, the stochastic integral is an N -dimensional
vector process.

The stochastic integral is better behaved mathematically for integrands
b ∈ H2 than for integrands in L2. However, H2 is not closed under the
manipulations we need to do in Finance, while L2 is; hence, we need to
consider integrands in L2.

We have the following facts concerning the Itô Integral for integrands
b ∈ L2:

• Our definition of
∫ T
0 b dW was given for a single T , and is defined only

up to a set of probability zero. Since the set of probability zero can be
different for different choices of T , the paths of

∫ T
0 b dW could be badly

behaved. Fortunately, it is possible to choose a continuous version of
the the integral, i.e. we may assume that except for a set of ω of
probability zero,

∫ t
0 b(ω, s) dW (ω, s) is continuous in t.

• Linearity:

γ
∫ t

0
a dW + δ

∫ t

0
b dW =

∫ t

0
(γa+ δb) dW

• Time consistency: If 0 ≤ s ≤ t, then

∫ s

0
b dW =

∫ t

0
(1ω×[0,s]b) dW

where 1B denotes the indicator function of the set B.

• The Itô Integral is adapted, i.e.
∫ t
0 b dW is an adapted process. This is

easily seen to be true for simple processes in H2, and it is inherited as
the integral is defined by limits.

• If Y is a Fs-measurable random variable,

∫ t

s
(Y b) dW = Y

∫ t

s
b dW

This would be trivial if the Itô were defined pathwise, but as we have
seen, it is not. However, one can verify the property for simple processes
in H2, and verify it is preserved when one takes limits.
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The following proposition provides important additional properties of the
Itô Integral when the integrand is in H2.

Proposition 6.4 Let W be a K-dimensional Wiener process.

1. If b : Ω × T → RK and b ∈ H2, then
∫ t
0 b dW is a martingale.9

2. If b, β : Ω × T → RK, and b, β ∈ H2, then

Cov
(∫ t

s
b dW,

∫ t

s
β dW

∣∣∣∣Fs

)
= E

((∫ t

s
b dW

)(∫ t

s
β dW

)∣∣∣∣Fs

)

= E
(∫ t

s
b · β du

∣∣∣∣Fs

)

=
∫ t

s
E (b(u) · β(u)|Fs) du

3. If b : Ω × T → RN×K, and b ∈ H2, then

Cov
(∫ t

s
b dW,

∫ t

s
b dW

∣∣∣∣Fs

)
= E

((∫ t

s
b dW

)(∫ t

s
b dW

)T
∣∣∣∣∣Fs

)

= E
(∫ t

s
bbT du

∣∣∣∣Fs

)

=
∫ t

s
E
(
b(u)b(u)T

∣∣∣Fs

)
du

Thus, bbT is called the instantaneous covariance matrix of the stochastic
integral.

Corollary 6.5 If b, β : Ω × T → RK, and b, β ∈ H2, and 0 ≤ s ≤ t ≤ u,
then

Cov
(∫ t

s
b dW,

∫ u

t
β dW

∣∣∣∣Fs

)
= 0

and

Cov
(∫ t

s
b dW,

∫ u

t
β dW

)
= 0

9If b ∈ L2, it is not necessarily the case that
∫

b dW is a martingale; indeed, there is
no guarantee that

∫ t

0 b dW ∈ L1(Ω), so the integrals in the definition of a martingale may
not even be defined.
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The previous Corollary shows that increments of stochastic integrals over
disjoint time intervals are uncorrelated. As the following example shows,
they are not generally independent.

Example 6.6 Let W be a 1-dimensional standard Wiener process, and

b(ω, t) =

{
1 if W (ω, s) < 1 for all s < t
0 otherwise

Then Z(ω, t) =
∫ t
0 b(ω, s)dW (ω, s) follows the path W (ω, ·) up until the first

time t at which W (ω, t) = 1, at which point it stops. More formally, define
τ(ω) = min{t : X(ω, t) = 1}; τ(ω) is defined almost surely because X(ω, ·)
is continuous almost surely. Then

Z(ω, t) = W (ω, t ∧ τ(ω))

where t ∧ s denotes min{t, s}. Notice that the increments of Z are not
independent. Indeed, if 0 < s < t and Z(ω, s) = Z(ω, s) − Z(ω, 0) = 1, then
the conditional probability that Z(ω, t) − Z(ω, s) = 0 is one. On the other
hand, if Z(ω, s) = Z(ω, s) − Z(ω, 0) < 1, the conditional probability that
Z(ω, t) − Z(ω, s) = 0 is zero.

Example 6.7 You found in the Problem Set that∫ T

0
X̂n dXn =

1

2

(
X2

n(ω, T )− T
)

A slightly more elaborate argument shows that if W is a one-dimensional
Wiener process, ∫ T

0
W dW =

1

2

(
W 2(ω, T )− T

)
Remember that the approximations to the integrand W used in defining the
integral are always adapted. Because the increments in the Wiener process
are normally distributed, whereas the increments in the random walk are
always ±1/

√
n, the argument needs to rely on the Law of Large Numbers.

Theorem 6.8 (Martingale Representation Theorem) Let W be a K-
dimensional standard Brownian motion. If Z is a martingale with respect to
the filtration generated by W , then there exists b ∈ L2 such that

Z(ω, t) = Z(ω, 0) +
∫ t

0
bdW (ω, s)

If Z(·, T ) ∈ L2, then b ∈ H2 on Ω × [0, T ].
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Remark 6.9 This is a truly remarkable result.

1. It is hard to give a discrete intuition for it because, in essence, it is a
theorem about the filtration generated by a Brownian motion. Note
that the theorem implies that Z has a continuous version, so every
martingale with respect to the filtration generated by a Brownian mo-
tion is continuous. There is something about the filtration that forces
the release of new information to be done in a continuous way. You
cannot capture sudden events (whether anticipated, such as the press
release which follows each meeting of the Federal Reserve Open Market
Committee changes the discount rate, or unanticipated, such as a large
corporation announcing that it is retracting the last several years of its
audited income statements) in a stock price model based on Brownian
motion. It should be emphasized that the theorem assumes that Z is
a martingale with respect to the filtration generated by W ; it is not
enough that Z be a martingale with respect to the filtration associated
with a Wiener process, since that filtration may be larger than the
filtration generated by the Wiener process.

2. It is very useful for Finance. Since Z is an Itô process, we can do
Itô Calculus on Z. The theorem is essential in proving the Complete
Markets Theorem, where it allows us to extract a trading strategy
whose value process is a given martingale.

7 Itô Calculus

We want to study stock price processes of the form eZ(ω,t) where Z is a
generalized Brownian motion. In particular, we need to compute∫ T

0
∆̄(ω, t) deZ(ω,t)

the capital gain generated by a trading strategy ∆̄. Itô’s Lemma gives us the
key to defining the stochastic integral with respect to processes like eZ(ω,t).

Fix a K-dimensional standard Wiener process W .

Definition 7.1 An N -dimensional Itô process is a stochastic process of the
form

Z(ω, t) = Z(ω, 0) +
∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s)dW (ω, s) (3)
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where a ∈ L1 is an N × 1 vector-valued process and b ∈ L2 is an N × K
matrix-valued process. Note that a and b are allowed to depend on both ω
and t. Itô processes are continuous and adapted. Every generalized Wiener
process is an Itô process. a is called the drift, b the dispersion, and bbT the in-
stantaneous covariance matrix of Z. The following symbolic representations
are all shorthand for Equation (3):

Z(t) = X0 +
∫ t

0
a ds+

∫ t

0
b dW

dZ(t) = a(t) dt+ b(t) dW (t)

dZ = a dt+ b dW

If D ⊂ RN is and f : D → R is C2, let

fx(x) = �f |x =

(
∂f

∂x1
, . . . ,

∂f

∂xN

)

denote the gradiant of f , viewed as a row vector, and let

fxx(x) = Hf |x =

(
∂2f(x)

∂xi∂xj

)

denote the Hessian matrix of f .

Theorem 7.2 (Itô’s Lemma) Let D ⊂ RN be an open set, and Z an N-
dimensional Itô process

Z(t) = Z(0) +
∫ t

0
a ds+

∫ t

0
b dW

such that
P ({ω : Z(ω, t) ∈ D for all t ∈ [0, T ]}) = 1

and f : D → Ris C2. Then f(Z) is an Itô process, specifically f(Z(t)) =

f(Z(0)) +
∫ t

0

[
fx(Z)a+

1

2
tr
(
bTfxx(Z)b

)]
ds+

∫ t

0
fx(Z)b dW (4)

Remark 7.3 By analogy with the Fundamental Theorem of Calculus, the
terms involving fx(Z) are expected, but the term involving tr

(
bT fxx(Z)b

)
is

at first sight surprising. Note that

tr(bTfxx(Z)b) =
N∑

i,j=1

K∑
k=1

∂2f

∂xi∂xj

(Z)bikbjk
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bik is the coefficient of Xi on Wk, so bikbjk is the product of the coefficients
of Xi and Xj on the same component k of the Wiener process W . Since

∂2f

∂xi∂xj

(Z)bikbjk

is integrated with respect to time t, the formula is saying, in effect that
(dWk)

2 = dt, but this is just reasserting that the quadratic variation of
a Wiener process grows linearly with time. The term arises because the
quadratic variation of the Wiener process is not zero, and hence the sec-
ond order terms in the Taylor expansion of f matter. There are no terms
corresponding to bikbj� with k �= 
, so the formula is saying, in effect, that
(dWk)(dW�) = 0 if k �= 
. Itô’s Lemma is often summarized by saying

(dWk)(dW�) = δk�dt

where

δk� =

{
1 if k = 

0 if k �= 


Example 7.4 [Black-Scholes Stock Price] The stock price in the Black-
Scholes model is

S(t) = S(0)e(µ−σ2/2)t+σW (t)

Let

Z(t) = lnS(t)

= lnS(0) +

(
µ− σ2

2

)
t+ σW (t)

= lnS(0) +
∫ t

0

(
µ− σ2

2

)
ds+

∫ t

0
σ dW (s)

so Z is an Itô process, and

dZ =

(
µ− σ2

2

)
ds+ σ dW

S(t) = eZ(t)

dS = deZ
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=

[
eZ

(
µ− σ2

2

)
+
σ2

2
eZ

]
dt+ eZσ dW

= eZµ dt + eZσ dW

= Sµ dt + Sσ dW

so
dS

S
= µ dt + σ dW

dS
S

is the proportional change in S, so the proportional change in S has
drift µ and instantaneous variance σ. This provides another explanation of
why we write S = S(0)e(µ−σ2/2)t+σW (t); the −σ2/2 is needed to cancel out a
σ2/2 that comes from Itô’s Lemma, resulting in instantaneous drift µ in the
proportional change of S.

Plausibility Argument for Itô’s Lemma: Here, we give a conceptually
simple, but admittedly notationally messy, calculation verifying Itô’s Lemma
for Stieltjes integrals of simple integrands integrated with respect to a ran-
dom walk. The intuition behind the standard proof of Itô’s Lemma is very
close to this argument, but complications arise because the Itô Integral is
defined for general integrands by approximation, and because the relation
(∆Wj)(∆Wk) = δjkdt is not true over finite time intervals. However, it is
easy to see this relation holds for the random walk, The argument given
here can be turned into a rigorous proof of Itô’s Lemma using nonstandard
analysis (Anderson [1]). Let

Y (t) = Y (0) +
∫ t

0
a ds+

∫ T

0
b dX

where X is a 2-dimensional n-step random walk. In other words, Ω =
{−1, 1}nT × {−1, 1}nT , ω = (ω�k : 
 = 1, 2, k = 1, . . . , nT ), N = 2 and
K = 2. Suppose also that a and b are simple processes which are measurable
in the filtration generated by the random walk; for simplicity, we assume here
that a and b are uniformly bounded as n → ∞. O(h) denotes a quantity
which is a bounded multiple of h as h → 0, while o(h) denotes a quantity
which goes to zero faster than h as h → h. For example, Taylor’s Theorem
says that if g : R → R is a C2 function,

g(x+ h) = g(x) + g′(x)h+
1

2
g′′(x)h2 + o(h2)
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Let

∆Y

(
ω,
k

n

)
= Y

(
ω,
k + 1

n

)
−
(
ω,
k

n

)

=

⎛
⎝ a1(ω,k/n)

n
+

b11(ω,k/n)ω1(k+1)+b12(ω,k/n)ω2(k+1)√
n

a2(ω,k/n)
n

+
b21(ω,k/n)ω1(k+1)+b22(ω,k/n)ω2(k+1)√

n

⎞
⎠

Thus,

f(Y (ω, T )) − f(Y (ω, 0))

=
nT−1∑
k=0

(
f

(
Y

(
ω,
k + 1

n

))
− f

(
Y

(
ω,
k

n

)))

=
nT−1∑
k=0

�f |Y (ω,k/n) · ∆Y
(
ω,
k

n

)
+

1

2

nT−1∑
k=0

(
∆Y

(
ω,
k

n

))T

Hf |Y (ω,k/n)∆Y

(
ω,
k

n

)

+no
(

1

n

)

nT−1∑
k=0

�f |Y (ω,k/n)∆Y

(
ω,
k

n

)

=
nT−1∑
k=0

∂f

∂x1

∣∣∣∣∣
Y (ω,k/n)

(
a1(ω, k/n)

n
+
b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√

n

)

+
nT−1∑
k=0

∂f

∂x2

∣∣∣∣∣
Y (ω,k/n)

(
a2(ω, k/n)

n
+
b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√

n

)

=
∫ T

0

∂f

∂x1

∣∣∣∣∣
Y (ω,t)

a1(ω, t) dt+
∫ T

0

∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b11(ω, t) dX1(ω, t)

+
∫ T

0

∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b12(ω, t) dX2(ω, t) +
∫ T

0

∂f

∂x2

∣∣∣∣∣
Y (ω,t)

a2(ω, t) dt

+
∫ T

0

∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b21(ω, t) dX1(ω, t) +
∫ T

0

∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b22(ω, t) dX2(ω, t)

=
∫ T

0
�f |Y (ω,t) a(ω, t) dt
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+
∫ T

0

⎛
⎝ ∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b11(ω, t) +
∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b21(ω, t)

⎞
⎠ dX1(ω, t)

+
∫ T

0

⎛
⎝ ∂f

∂x1

∣∣∣∣∣
Y (ω,t)

b12(ω, t) +
∂f

∂x2

∣∣∣∣∣
Y (ω,t)

b22(ω, t)

⎞
⎠ dX2(ω, t)

=
∫ T

0
�f |Y (ω,t) a(ω, t) dt+

∫ T

0
�f |Y (ω,t) b(ω, t) dX(ω, t)

Since ω1k and ω2k are independent, the product ω1kω2k equals +1 with prob-
ability 1/2 and −1 with probability 1/2, so we can form a random walk

X̄

(
ω,
k

n

)
=

k∑
j=1

ω1jω2j√
n

X̄ is a standard random walk, which in the limit is standard Brownian mo-
tion.

1

2

nT−1∑
k=0

(
∆Y

(
ω,
k

n

))T

Hf |Y (ω,k/n)∆Y

(
ω,
k

n

)

=
1

2

nT−1∑
k=0

(
∆Y1

(
ω,
k

n

)
,∆Y2

(
ω,
k

n

))⎛⎜⎝
∂2f
∂x2

1

∣∣∣
Y (ω,t)

∂2f
∂x1∂x2

∣∣∣
Y (ω,t)

∂2f
∂x1∂x2

∣∣∣
Y (ω,t)

∂2f
∂x2

2

∣∣∣
Y (ω,t)

⎞
⎟⎠
⎛
⎝ ∆Y1

(
ω, k

n

)
∆Y2

(
ω, k

n

)
⎞
⎠

=
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
∆Y1

(
ω,
k

n

))2

+
∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
∆Y2

(
ω,
k

n

))2

+2
∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(
∆Y1

(
ω,
k

n

))(
∆Y2

(
ω,
k

n

))⎞⎠

=
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a1(ω, k/n)

n
+
b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√

n

)2

+
∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a2(ω, k/n)

n
+
b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√

n

)2

+2
∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(
a1(ω, k/n)

n
+
b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√

n

)

×
(
a2(ω, k/n)

n
+
b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√

n

))

27



1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a1(ω, k/n)

n
+
b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√

n

)2

=
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
O(1)

n2
+
O(1)

n3/2

+
(b11(ω, k/n)ω1(k+1))

2 + (b12(ω, k/n)ω2(k+1))
2 + 2b11(ω, k/n)b12(ω, k/n)ω1(k+1)ω2(k+1)

n

)

= O
(

1

n1/2

)
+

1√
n

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)b12(ω, k/n)ω1(k+1)ω2(k+1)√
n

+
1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)2 + b12(ω, k/n)2

n

= O
(

1

n1/2

)
+

1√
n

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)b12(ω, k/n)dX̄

+
1

2

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
b11(ω, t)

2 + b12(ω, t)
2
)
dt

= O

(
1√
n

)
+

1

2

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
b11(ω, t)

2 + b12(ω, t)
2
)
dt

because the stochastic integral with respect to X̄ is finite almost surely.
Similarly,

1

2

nT−1∑
k=0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

(
a2(ω, k/n)

n
+
b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√

n

)2

= O

(
1√
n

)
+

1

2

∫ T

0

∂2f

∂x2
2

∣∣∣∣∣
Y (ω,t)

(
b21(ω, t)

2 + b22(ω, t)
2
)
dt

Finally,

1

2

nT−1∑
k=0

2
∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

((
a1(ω, k/n)

n
+
b11(ω, k/n)ω1(k+1) + b12(ω, k/n)ω2(k+1)√

n

)

×
(
a2(ω, k/n)

n
+
b21(ω, k/n)ω1(k+1) + b22(ω, k/n)ω2(k+1)√

n

)

=
nT−1∑
k=0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(
O
(

1

n3/2

)
+
b11(ω, k/n)b21(ω, k/n)(ω1(k+1))

2

n
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+
b12(ω, k/n)b22(ω, k/n)(ω2(k+1))

2

n

+
(b11(ω, k/n)b22(ω, k/n) + b12(ω, k/n)b21(ω, k/n))ω1(k+1)ω2(k+1)

n

)

= O

(
1√
n

)
+

nT−1∑
k=0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

b11(ω, k/n)b21(ω, k/n) + b12(ω, k/n)b22(ω, k/n)

n

+
1√
n

nT−1∑
k=0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, k/n)b22(ω, k/n) + b12(ω, k/n)b21(ω, k/n))ω1(k+1)ω2(k+1)√
n

= O

(
1√
n

)
+
∫ T

0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b21(ω, t) + b12(ω, t)b22(ω, t)) dt

+
1√
n

∫ T

0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b22(ω, t) + b12(ω, t)b21(ω, t)) dX̄

= O

(
1√
n

)
+
∫ T

0

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b21(ω, t) + b12(ω, t)b22(ω, t)) dt

Combining the above calculations, and taking the limit as n→ ∞, we have

f(Y (ω, T )) = f(Y (ω, 0))

+
∫ T

0
�f |Y (ω,t) a(ω, t) dt+

∫ T

0
�f |Y (ω,t) b(ω, t) dX(ω, t)

+
1

2

∫ T

0

∂2f

∂x2
1

∣∣∣∣∣
Y (ω,t)

b11(ω, t)
2 + b12(ω, t)

2 dt

+
1

2

∫ T

0

∂2f

∂x2
2

∣∣∣∣∣
Y (ω,t)

b21(ω, t)
2 + b22(ω, t)

2 dt

+
1

2

∫ T

0
2

∂2f

∂x1∂x2

∣∣∣∣∣
Y (ω,t)

(b11(ω, t)b21(ω, t) + b12(ω, t)b22(ω, t)) dt

=
∫ T

0

(
�f |Y (ω,t) a(ω, t) +

1

2
tr(b(ω, t)T (Hf |Y (ω,t))b(ω, t))

)
dt

+
∫ T

0
�f |Y (ω,t) b(ω, t) dW (ω, t)

Proposition 7.5 (Uniqueness of Coefficients of Itô Processes) Let a, α ∈
L1 be N-dimensional, b, β ∈ L2 be N ×K-dimensional, and X0, Y0 ∈ L2 be
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N-dimensional. If

X0 +
∫ t

0
a ds+

∫ t

0
b dW = Y0 +

∫ t

0
α ds+

∫ t

0
β dW

for all t, almost surely in ω, then

X0(ω) = Y0(ω) P almost surely

a(ω, t) = α(ω, t) λ⊗P almost everywhere

b(ω, t) = β(ω, t) λ⊗P almost everywhere

Proof: If b, β ∈ H2, this follows immediately from the Itô Isometry. Since
we need the result when b, β ∈ L2, we use Itô’s Lemma. It is sufficient to
consider the case N = 1. Let

Z(ω, t) = X0 +
∫ t

0
a ds+

∫ t

0
b dW −

(
Y0 +

∫ t

0
α ds+

∫ t

0
β dW

)

= X0 − Y0 +
∫ t

0
(a− α) ds+

∫ t

0
(b− β) dW

= X0 − Y0 +
∫ t

0
γ ds+

∫ t

0
δ dW

where γ = a − α and δ = b − β. Z(ω, ·) = 0 almost surely, so X0(ω) −
Y0(ω) = Z(ω, 0) = 0 almost surely. We show γ = 0 and δ = 0 λ⊗P -almost
everywhere.

0 = eZ(ω,t) − 1

= eZ(ω,0) +
∫ t

0

[
e0γ +

1

2
e0δT δ

]
ds+

∫ t

0
e0δ dW − 1

=
∫ t

0

[
γ +

1

2
δT δ

]
ds+

∫ t

0
δ dW

=
∫ t

0
γ ds+

∫ t

0
δ dW +

1

2

∫ t

0
δT δ ds

= Z(ω, t) − Z(ω, 0) +
1

2

∫ t

0
δT δ ds

=
1

2

∫ t

0
δT δ ds

which implies that δ = 0 (P⊗λ-almost everywhere), so
∫ t
0 δ dW = 0 for all t,

so
∫ t
0 γ ds = 0 for all t, so γ = 0 (P⊗λ-almost everywhere).
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Corollary 7.6 (Proposition 2.7) If the Itô process

X(t) = X(0) +
∫ t

0
a ds+

∫ t

0
b dW

is a martingale with respect to the filtration generated by W , then a = 0
P⊗λ-almost everywhere.

Remark 7.7 [Caution] The converse is true if b ∈ H2, but it is not generally
true if b ∈ L2.

8 Integrals with respect to Itô Processes

Our basic model for a stock price will be geometric Brownian motion, which
is an Itô Process but not a Wiener process. In order to compute the capital
gain generated by a portfolio strategy, we need to be able to take Itô integrals
with respect to Itô processes. Let

Z(t) = Z0 +
∫ t

0
a ds+

∫ t

0
b dW

where
Z0 is F0-measurable Z0(ω) ∈ RN

a ∈ L1 a(ω, t) is N × 1
b ∈ L2 b(ω, t) is N ×K

Suppose that we replace the K-dimensional standard Wiener process W with
the random walk Xn, and assume that a, b and γ are simple and adapted
with respect to the random walk filtration. To simplify notation, we take
K = 1. Then if Z = Z0 +

∫
a ds+

∫
b dXn,

Z
(
ω,
j

n

)
=

j−1∑
k=0

a
(
ω, k

n

)
n

+
j−1∑
k=0

b
(
ω, k

n

)
ωk+1√
n

so

∆Z

(
ω,
k

n

)
= Z

(
ω,
k + 1

n

)
− Z

(
ω,
k

n

)

=
a
(
ω, k

n

)
n

+
b
(
ω, k

n

)
ωk+1√
n
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∫ T

0
γdZ =

nT∑
k=0

γ

(
ω,
k

n

)
∆Z

(
ω,
k

n

)

=
nT∑
k=0

γ

(
ω,
k

n

)⎛⎝a
(
ω, k

n

)
n

+
b
(
ω, k

n

)
ωk+1√

n

⎞
⎠

=
nT∑
k=0

γ
(
ω, k

n

)
a
(
ω, k

n

)
n

+
nT∑
k=0

γ
(
ω, k

n

)
b
(
ω, k

n

)
ωk+1√

n

=
∫ T

0
γ(ω, s)a(ω, s) ds+

∫ T

0
γ(ω, s)b(ω, s) dXn

=
∫ T

0
γa ds+

∫ T

0
γb dXn

Now, return to the situation in which W is a K-dimensional standard Wiener
process. We see that we want

∫ t

0
γ dZ =

∫ t

0
γa ds+

∫ t

0
γb dW

In order for this to make sense, we need to know that γa is integrable with
respect to time and γb is Itô integrable with respect to W . This motivates
the following definition:

Definition 8.1 Suppose

Z(t) = Z(0) +
∫ t

0
a ds+

∫ t

0
b dW

whereW is a standardK-dimensional Wiener process, a ∈ L1 isN -dimensional
and b ∈ L2 is N ×K-dimensional. Let

L(Z) = {γ : γ is adapted, measurable, M ×N, γa ∈ L1, γb ∈ L2}

If γ ∈ L(Z), define

∫ t

0
γ dZ =

∫ t

0
γa ds+

∫ t

0
γb dW

Remark 8.2 γ may be in L(Z) even if it is not in L(Zi) for some i. This has
economic significance. It may be that that the Itô coefficients of the securities
price process become linearly dependent at some node (ω, t). Near such a
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point, it is possible to construct trading strategies with large holdings of the
securities but little risk. For example, if Z1 and Z2 are perfectly correlated
at time t0, they will be nearly perfectly correlated at times near t0, so a large
long position in Z1 and a large short position in Z2 entails little risk. The
realization of the capital gains in the two securities can well be infinite in
each security, but of opposite sign. When the capital gains are computed
considering the whole position in the pair of securities, the infinities cancel
out and generate a well-defined finite capital gain. Such trading strategies
can well be optimal in this situation.

9 Securities and Trading Strategies

We assume there are N + 1 long-lived securities indexed n = 0, . . . , N ; often
but not always, the zeroth security is a Money-Market Account, which is
instantaneously riskless. The security price process is an Itô Process

S̄(t) = S̄(0) +
∫ t

0
µ̄ ds+

∫ t

0
σ̄ dW

where W is a K-dimensional standard Wiener process, µ̄ ∈ L1 is (N +1)×1,
and σ̄ ∈ L2 is (N + 1) ×K.

A trading strategy is an adapted, measurable 1 × (N + 1) process ∆̄;
∆̄n(ω, t) denotes the holding of security n at node (ω, t). The value process
is

∆̄S̄ = ∆̄0S̄0 + · · ·+ ∆̄N S̄N

The set of trading strategies for which the capital gain process is well-defined
is

L(S) = {∆̄ : ∆̄µ̄ ∈ L1 and ∆̄σ̄ ∈ L2}
The Cumulative Gain Process of ∆̄ with respect to S̄ is

G(∆̄; S̄)(t) = ∆̄(0)S̄(0) +
∫ t

0
∆̄ dS̄

= ∆̄(0)S̄(0) +
∫ t

0
∆̄µ̄ ds+

∫ t

0
∆̄σ̄ dW

Implicitly, this definition assumes the securities pay no dividends.
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∆̄ is self-financing if it satisfies the budget constraint

∆̄S̄ = G(∆̄; S̄)

i.e.

∆̄(t)S̄(t) = ∆̄(0)S̄(0) +
∫ t

0
∆̄ dS̄

almost surely, for all t. In other words, after ∆̄(0)S̄(0) is invested to buy
the initial portfolio ∆̄(0), no additional money goes in to buy stocks and
no money is withdrawn. Writing the self-financing condition in differential
form,

d(∆̄S̄) = ∆̄ dS̄

i.e. the instantaneous rate of change of the value process is the security
holding times the instantaneous rate of change of the security prices. Heuris-
tically, this is saying that

S̄ d∆̄ = 0

i.e. the instantaneous change in the portfolio is orthogonal to the vector of
securities prices, which just says the value of shares bought equals the value
of shares sold. This is heuristic, rather than precise, because the trading
strategy ∆̄ is not required to be an Itô Process, so we may not be able to
assign formal meaning to d∆̄.

It is important to understand that self-financing is a property of the
trading strategy and not of the value process. The following is a simpler
(but perhaps fairly stupid) example. Suppose there are two assets

S̄0(t) = S̄0(0)er0t and S̄1(t) = S̄1(0)er1t

with r1 > r0. The buy-and-hold strategy

∆̄ = (0, 1)

(hold one unit of S2 no matter what) is self-financing and yields the value
process

∆̄(t)S̄(t) = S̄1(0)er1t

The strategy

∆̄′ =

(
S1(0)e(r1−r0)t

S0(0)
, 0

)
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has the same value process

∆̄′(t)S̄(t) = S̄0(0)er0t S̄1(0)e(r1−r0)t

S̄0(0)
= S̄1(0)er1t

but it is not self-financing; money is constantly going in to increase the
holding of security zero and this is not balanced by any sale of security one.

A numeraire for S̄ is a self-financing trading strategy b̄ such that b̄S̄ = 1
for all t, almost surely. S is said to be normalized if there is a numeraire for
S. Consider the following examples:

1. Suppose N = 0 and S̄0 is a money-market account. The only self-
financing trading strategies are buy-and-hold strategies; b̄(t) = b̄(0).
If b is a numeraire, then S̄0(t) must be a constant, independent of t;
any increase in value due to interest is incorporated into the units of
account in which the security price is measured. Said another way, the
currency is not dollars but units of the security, and each unit of the
security buys more real goods as time passes.

2. Assuming no new shares are issued or redeemed, and no mergers occur,
one self-financing strategy is buy and hold all the shares outstanding.
If this is a numeraire, then ∆̄S̄ = 1 means that prices are deflating at
the rate of growth of the market porfolio.

3. At each node (ω, t) we can multiply all the security prices by an ar-
bitrary scalar α(ω, t) without changing the opportunities to make a
self-financed change of portfolio at time t. As long as we also multiply
the price of real goods by the same scalar, nothing has changed; the
set of goods that can be bought with the value of the portfolio is un-
changed. If we multiply security prices at each node by an arbitrary
scalar α(ω, t), the Itô integrals needed to define capital gains may no
longer be defined. A surprising fact is that, if the needed stochastic
integrals are defined, they compute the capital gains correctly, and the
set of self-financing portfolios is invariant to these price changes.

10 Nonstandard Analysis

Nonstandard analysis is a a treatment of real analysis (and other areas in
mathematics) using the intuitive concept of an infinitesimal. It has had
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extensive applications in probability theory. The Loeb measure construction
[13] is a way of taking a so-called hyperfinite probability space (a space with
infinitely many points, but which behaves formally exactly like a discrete
probability space) and constructing a measure-theoretic probability space in
the usual standard sense. Anderson [1] showed that a hyperfinite random
walk (which behaves formally exactly like a finite random walk) becomes a
standard Brownian motion when it is viewed on the Loeb probability space.
He also showed that Itô integrals in the standard world can be calculated by
computing Stieltjes integrals on the hyperfinite random walk; in other words,
the capital gain generated by a trading strategy can be computed in exactly
the same way it is calculated in a finite discrete model. Keisler [8] showed
that this methodology can be used to solve stochastic differential equations,
and gave the first proofs of several new standard theorems concerning them.
Yeneng Sun of the National University of Singapore is a leading expert in the
use of nonstandard analysis in measure theory and mathematical economics,
including finance.

Nonstandard analysis permits us to analyze the existence of equilibria in
continuous-time finance models starting from discrete-time finance models.
Because time does not permit us to develop the techniques of nonstandard
analysis, our treatment of the existence question in continuous time will be
described in the hyperfinite world, where everything behaves formally exactly
as in the familiar discrete world. We will, however, describe the regularity
conditions that must be satisfied by the hyperfinite equilibria to permit us
to extract equilibria in the continuous-time model.

11 Raimondo’s Single-Agent Model

This section is taken from Raimondo [15]. Raimondo’s single-agent model is
defined as follows:

1. Trade and consumption occur over a compact time interval [0, T ], en-
dowed with a measure λ which agrees with Lebesgue measure on [0, T )
and such that λ({T}) = 1.

2. The information structure is represented by a filtration {Ft : t ∈ [0, T ]}
on a probability space (Ω,F , µ). There is a standard d-dimensional
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Brownian motion β = (β1, . . . , βd) such that βi is independent of βj if
i �= j and such that the variance of βi(t, ·) is t and βi(t, ·) = E(βi(T, ·)|Ft).

3. There is exactly one representative agent. The endowment of the agent
satisfies

e(ω, t) = 1 for all (ω, t) ∈ Ω × [0, T )

The endowment e(ω, T ) in period T satisfies

e(ω, T ) = ρ(β1(ω, T ), . . . , βd(ω, T ))

where ρ : Rd → R is continuous and satisfies

0 ≤ ρ(x) ≤ r + er|x|

for some r ∈ R+. The endowment in period t ∈ [0, T ) is interpreted
as a rate of flow of endowment, while the endowment in period T
is interpreted as a stock or lump. Given a measurable consumption
function c : Ω × [0, T ] → R, the utility function of the agent is

U(c) = Eµ

[∫ T

0
ϕ1(ct)dt+ ϕ2(cT )

]

where the twice differentiable functions ϕi : R++ → R (i = 1, 2) satisfy

⎧⎪⎨
⎪⎩
ϕ′

i(c) > 0 for i = 1, 2
ϕ′′

i (c) < 0 for i = 1, 2
ϕi(z) is bounded below

Examples of utility functions satisfying the conditions on ϕi are the
CARA utilities ϕi(z) = γeαz for α, γ < 0 and the CRRA utilities
ϕi(z) = γxα (0 < α < 1, γ > 0). The assumption that ϕi is bounded
below is used at only point in the proof; we conjecture that it can be
weakened to ϕ′

2(z) = O
(

1
zr

)
as z → 0 for some r ∈ R. If so, the

CRRA utility function ϕi(z) = γ ln z (γ > 0) and the CARA utility
ϕi(z) = γxα (α < 0, γ < 0) would be covered by the theorem.
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4. There are J + 1 tradable assets, with 0 ≤ J ≤ d: J stocks A1, . . . , AJ

which pay off10

Aj(ω, t) =

{
0 if t �= T
eβj(ω,T ) if t = T

and a bond B which pays off

B(ω, t) =

{
0 if t �= T
1 if t = T.

Observe that the payoffs of different stocks are independent. The agent
is initially endowed with security holdings z(ω, 0) = ((1, . . . , 1), 0): one
unit of each stock and zero units of the bond. If J = 0 (i.e. there are
no stocks in the model), we assume that ρ(x) ≥ eα·x for some α ∈ Rd;
this will ensure that the income in the terminal period T is not too
small.

5. There is a short-sale constraint, i.e. there is some M > 0 such that the
agent is not permitted to hold less than −M units of either the stock
or the bond.

6. In order to define the budget set of an agent, we need to have a way
of calculating the capital gain the agent receives from a given trading
strategy. In other words, we need to impose conditions on prices and
strategies that ensure that the stochastic integral of a trading strategy
with respect to a price process is defined. The essential requirements
are that the trading strategy at time t not depend on information which
has not been revealed by time t, and the trading strategy times the
variation in the price yields a finite integral. Specifically,

(a) A stochastic process X is said to be adapted if, for all t, X(t, ·) is
measurable with respect to Ft.

10The functional form Aj(ω, T ) = eβj(ω,T ) is not essential. All but one portion of
the proof works if Aj(ω, T ) is an arbitrary continuous function of βj(ω, T ) satisfying an
exponential growth condition, and that one part works for a large class of functions of βj ,
but we have not identified the exact class. Of course, changing the payoff will alter the
pricing formula.
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(b) A security price process is a pair of stochastic processes p =
(pA, pB), where pA = (pA1, . . . , pAJ

), and pAj
and pB are con-

tinuous square-integrable martingales with respect to {Ft}. pAj

and pB are priced cum dividend at time T . A consumption price
process is a stochastic process pC(ω, t).

(c) Given a security price process p, a trading strategy is a pair
(zA, zB) : Ω × [0, T ] → [−M,∞) × [−M,∞)d such that zA and
zB are adapted and zAj

∈ L2(Ω × [0, T ],P, qAj
), zB ∈ L2(Ω ×

[0, T ],P, qB).

7. Given a security price process p and a consumption price process pC ,
the budget set is the set of all consumption plans c which satisfy the
budget constraint

1 · pA(0) +
∫ t

0
zdp+

∫ t

0
pC(ω, s)(e(ω, s)− c(ω, s))ds = p(ω, t) · z(ω, t)

for almost all ω and all t < T

1J · pA(0) +
∫ T

0
zdp +

∫ T

0
pC(ω, s)(e(ω, s)− c(ω, s))ds

+(e(ω, T ) + zA(ω, T )eβ(ω,T ) + zB(ω, T )− c(ω, T ))pC(ω, T )

= p(ω, T ) · z(ω, T ) for almost all ω

for some trading strategy z. We follow standard notation in writing
1 = (1, . . . , 1) and

∫
zdp =

J∑
j=1

∫
zAj

dpAj
+
∫
zBdpB

Observe that it is implicit in the definition that pC(ω, ·)(e(ω, ·)−c(ω, ·)) ∈
L1([0, T ]).

8. Given a price process p, the demand of the agent is a consumption
plan and a trading strategy which satisfy the budget constraint and
such that the consumption plan maximizes utility over the budget set.

9. An equilibrium for the economy is a price process p, a trading strategy
z and a consumption plan c which lies in the demand set so that the
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securities and goods markets clear, i.e. for almost all ω

zA(ω, t) = 1 for all t ∈ [0, T ]

zB(ω, t) = 0 for all t ∈ [0, T ]

c(ω, t) = 1 for all t ∈ [0, T )

c(ω, T ) = e(ω, T ) + 1J · eβ(ω,T )

where eβ(ω,t) denotes the vector(
eβ1(ω,t), . . . , eβd(ω,t)

)

and 1J = (1, . . . , 1, 0, . . . , 0) ∈ Rd is the vector with J 1’s followed by
d− J 0’s.

Theorem 11.1 (Raimondo) There is a standard probability space (Ω,F , µ),
a filtration Ft, and a d-dimensional Brownian motion β = (β1, . . . , βd) such
that the continuous time finance model just described has an equilibrium. At
equilibrium, the short-sale constraint is not binding. The pricing process is
given by

pAj
(ω, t) = eβj(ω,t)

∫∞
−∞ ϕ′

2 (F (t, ω, x)) e
√

T−txjdΦ(x)
pB(ω, t) =

∫∞
−∞ ϕ′

2 (F (t, ω, x))dΦ(x)
pC(ω, t) = ϕ′

1(1) for t < T
pC(ω, T ) = ϕ′

2 (F (T, ω, 0))
pAj

(ω,t)

pB(ω,t)
= eβj(ω,t)

∫∞
−∞ ϕ′

2(F (t,ω,x))e
√

T−txj dΦ(x)∫∞
−∞ ϕ′

2(F (t,ω,x))dΦ(x)

(5)

where

F (t, ω, x) = ρ
(
β(ω, t) +

√
T − tx

)
+ 1J ·

(
eβ(ω,t)+

√
T−tx

)
and Φ is the cumulative distribution function of the standard d-dimensional
normal.

Outline of Proof: Construct a hyperfinite economy as follows:

1. Choose n ∈ *N \ N. For t ∈ [0, T ], define t̂ = [nt]
n

; in particular,

T̂ = [nT ]
n

. Define a hyperfinite random walk β̂ on this hyperfinite time

axis. and hyperfinite probability space Ω̂.
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2. Let Ω be the (complete) Loeb measure generated by Ω̂ (Loeb [13]) and
β(ω, t) = ◦β(ω, t̂). β is a standard Brownian motion on Ω (Anderson
[1].)

3. For all ω ∈ Ω̂, define ê(ω, t) = e(ω, t) = 1 for all t ∈ T , t < T̂ and
ê(ω, T̂ ) = *ρ(β(ω, T̂ )).

4. For all ω ∈ Ω̂, define Â(ω, t) = A(ω, t) = B̂(ω, t) = B(ω, t) = 0 for

all t < T̂ , and Â(ω, T̂ ) = eβ̂(ω,T̂ ) (i.e. Âj(ω, T̂ ) = eβ̂j(ω,T̂ ), i = 1, . . .m)

A(ω, T ) = eβ(ω,T ), B̂(ω, T̂ ) = B(ω, T ) = 1. Note that A(ω, T ) =
◦Â(ω, T̂ ) for µ-almost all ω.

5. Given an internal consumption plan ĉ, the agent’s utility is

Û(ĉ) = Eµ̂

⎛
⎝
⎛
⎝∆T

∑
s∈T ,s<T̂

*ϕ1(ĉ(ω, t))

⎞
⎠+ *ϕ2(ĉ(ω, T̂ ))

⎞
⎠

6. Existence of equilibrium follows immediately from Radner [16]. Note
that the short-sale constraint is not binding.

7. The market clearing conditions on ĉ guarantee that consumption is
positive in every period. Since the security payoffs are nonnegative
for all (ω, t) and strictly positive for (ω, T ) for all ω, the absence of
arbitrage guarantees that pA(ω, t) � 0 and pB(ω, t) > 0 for all (ω, t).

8. The pricing formulas for the hyperfinite model (analogous to those for
the continuous-time model) come from the first order conditions, as
discussed in Felix Kubler’s lectures.

9. Use the growth condition on security dividends to show that the divi-
dends in the hyperfinite model are SL1 (analogous to uniform integra-
bility for sequences of finite economies). Therefore, the expectations
defining prices in the hyperfinite model are infinitely close to the cor-
responding expectations in the continuous-time model (Anderson [1]).

10. Verify that the hyerfinite prices are almost surely S-continuous, hence
the induced prices in the continuous model are almost surely continu-
ous.
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11. Verify that the hyperfinite prices are SL2 (analogous to uniformly L2 for
sequences of finite economies) martingales. This implies the prices in
the continuous-time economy are square-integrable martingales. (This
is much harder in the multi-agent model).

12. Using results of Anderson [1] and Lindström [10] on stochastic integra-
tion, show that the induced consumptions in the continuous-time model
are in the budget set using the single agent’s buy-and-hold strategy
(This is much harder in the multi-agent model).

13. If the prices and consumptions do not form an equilibrium for the
continuous-time model, there must be a continuous-time trading strat-
egy which finances a consumption plan that delivers strictly higher
utility.

14. “Lift” the continuous-time consumption and trading strategy to a hy-
perfinite consumption and trading strategy. Show that the lifted trad-
ing strategy is in the hyperfinite budget set, and delivers strictly higher
utility than the hyperfinite equilibrium consumption, contradiction.

12 Multiple-Agent Economies with Endoge-

nously Dynamically Complete Markets

This section is based on Anderson and Raimondo [2].

1. Trade and consumption occur over a compact time interval [0, T ], en-
dowed with a measure ν which agrees with Lebesgue measure on [0, T )
and such that ν({T}) = 1.

2. The information structure is represented by a filtration {Ft : t ∈ [0, T ]}
on a probability space (Ω,F , ν). A stochastic process X(t, ω) is said to
be adapted if, for all t, X(t, ·) is measurable with respect to Ft.

3. There is a standard K-dimensional Brownian motion β = (β1, . . . , βK)
such that βk(t, ·) = E(βk(T, ·)|Ft).
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4. There are I agents i = 1, . . . , I. The endowment of the agent i is a
process

ei(t, ω) =

{
fi(β(t, ω), t) if t ∈ [0, T )
Fi(β(T, ω)) if t = T

where fi : RK × [0, T ] → R++ and Fi : RK → R++ are analytic
functions (i.e. at every point in their stated domain, they can be rep-
resented locally by power series). Let e(t, ω) =

∑I
i=1 ei(t, ω) denote the

aggregate endowment.

5. There are J + 1 = K + 1 tradable securities (indexed by j = 0, . . . , J)
which pay dividends

Aj(t, ω) =

{
gj(β(t, ω), t) if t ∈ [0, T )
Gj(β(T, ω)) if t = T

where gj : RK × [0, T ] → R+ and Gj : RK → R++ are analytic
functions. The net supply of security j is ηj ∈ {0, 1}; thus, securities
may be in net supply zero or net supply one. We assume that the
social endowment plus security dividends (of the stocks in net supply
one) are uniformly bounded below, and that the security dividends
satisfy a mild growth condition:

∃m>0 e(t, ω) +
J∑

j=0

ηjAj(t, ω) ≥ m

∃r>0 e(t, ω) +
J∑

j=0

Aj(t, ω) ≤ r + er|β(t,ω)|

Let RT : RK → RK be defined by

RT (β) =
(G1(β), . . . , GJ(β))

G0(β)

Since G0(β) �= 0 for all β, RT is an analytic function.
We asssume the following Nondegeneracy Condition: for some β ∈ RK ,
the Jacobian matrix of RT has rank K.
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6. Agent i is initially endowed with deterministic security holdings eiA =
(eiA0 , . . . , eiAJ

) ∈ RJ+1
+ satisfying

I∑
i=1

eiAj
= ηj

Note that the initial holdings are independent of the state ω. Moreover,
the initial security holdings are required to be nonnegative; without this
restriction, there might be an agent who cannot make good on his/her
initial short position, and hence no equilibrium would exist.

7. Given a measurable consumption function ci : [0, T ] × Ω → R++, the
utility function of the agent is

Ui(c) = Eν

[∫ T

0
hi(ci(t, ·), β(t, ·), t)dt+Hi(ci(T, ·), β(T, ·))

]

where the functions hi : R+ × RK × [0, T ] → R ∪ {−∞} and Hi :
R++ × RK → R ∪ {−∞} are analytic on R++ × RK × [0, T ] and
R++×RK respectively (i.e. at each point, they are represented locally
by a power series) and satisfy

limc→0+

∂hi

∂c
= ∞ uniformly in (β, t)

limc→0+

∂Hi

∂c
= ∞ uniformly in β

limc→∞
∂hi

∂c
= 0 uniformly in (β, t)

limc→∞
∂Hi

∂c
= 0 uniformly in β

limc→0+ hi(c, β, t) = hi(0, β, t) uniformly in (β, t)
limc→0+ Hi(c, β) = Hi(0, β) uniformly in β
∂hi

∂c

∣∣∣
(c,β,t)

> 0 for c ∈ R++

∂2hi

∂c2

∣∣∣
(c,β,t)

< 0 for c ∈ R++

∀c>0∃M∈R∀(β,t)
∂hi

∂c

∣∣∣
(c,β,t)

≤ M

∀c>0∃M∈R∀β
∂Hi

∂c

∣∣∣
(c,β)

≤ M

Note that these conditions are satisfied by all state-independent utility
functions in the CARA and CRRA classes. Note also that we allow
quite general state-dependence of the utility function, as long as the
state-dependence enters through the Brownian motions that represent
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the uncertainty in the economy. If the state-dependence were not mea-
surable in the Brownian motions, there would be no hope of obtain-
ing effective dynamic completeness with securities whose dividends are
measurable with respect to the Brownian filtration.

8. In order to define the budget set of an agent, we need to have a way
of calculating the capital gain the agent receives from a given trading
strategy. In other words, we need to impose conditions on prices and
strategies that ensure that the stochastic integral of a trading strategy
with respect to a price process is defined. The essential requirements
are that the trading strategy at time t not depend on information which
has not been revealed by time t, and the trading strategy times the
variation in the price yields a finite integral. Specifically,

(a) A consumption price process is an Itô process pC(t, ω).

(b) A securities price process is an Itô process pA = (pA0 , . . . , pAJ
) :

Ω× [0, T ] → RJ+1 such that the associated cumulative gains pro-
cess

γj(t, ω) = pAj
(t, ω) +

∫ t

0
pC(s, ω)Aj(s, ω) ds

is a continuous square-integrable Itô martingale. Securities are
priced cum dividend at time T .

(c) Given a securities price process pA, a trading strategy for agent i
is an Itô process zi where

i. zi : [0, K) × Ω → RJ+1

ii. zi(t, ·) is Ft-measurable for all t ∈ [0, T )

iii. zi is measurable in [0, K) × Ω

iv. zi ∈ H2(γ).11

9. Given a securities price process pA and a consumption price process pC ,
the budget set for agent i is the set of all consumption plans ci such

11If σ is the instantaneous volatility matrix of γ (the matrix of Itô coefficients of γ with
respect to the Brownian motion), then zi ∈ H2(γ) means that zi ·γ ∈ L2([0, T )×Ω). This
implies that zi is Itô integrable with respect to γ = (γ0, . . . , γJ). It also rules out arbitrage
strategies like the doubling strategy of Harrison and Kreps [7].
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that there exists a trading strategy so that ci and ti satisfy the budget
constraint

p(t, ω) · zi(t, ω)

= eiA(ω) · pA(0, ω) +
∫ t

0
zi dγ +

∫ t

0
pC(s, ω)(ei(s, ω) − ci(s, ω))ds

for almost all ω and all t ∈ [0, T )

0 = eiA(0, ω) · pA(0, ω) +
∫ T

0
zi dγ +

∫ T

0
pC(s, ω)(ei(s, ω) − ci(s, ω))ds

+(ei(T, ω) − ci(T, ω))pC(T, ω))

for almost all ω

10. Given a price process p, the demand of the agent is a consumption
plan and a trading strategy which satisfy the budget constraint and
such that the consumption plan maximizes utility over the budget set.

11. An equilibrium for the economy is a securities price process pA, a con-
sumption price process pC , a trading strategy z and a consumption
plan c which lies in the demand set so that the securities and goods
markets clear, i.e. for almost all ω

I∑
i=1

ziAj
(t, ω) = ηj for j = 0, . . . , J and almost all (t, ω)

I∑
i=1

ci(t, ω) =
I∑

i=1

ei(t, ω) +
J∑

j=0

ηjAj(t, ω) for almost all (t, ω)

Theorem 12.1 The continuous-time finance model just described has an
equilibrium. The equilibrium securities prices and consumption prices are
given by analytic functions of (β(t, ω), t) for t ∈ [0, T ), and as analytic func-
tions of β(T, ω) for t = T . There is an analytic function of (β(t, ω), t) such
that the equilibrium trading strategies equal this function except on a closed
set of measure zero in [0, T ) × Ω. The equilibrium prices are effectively dy-
namically complete: any integrable function which is adapted to the Brownian
filtration can be replicated by a trading strategy. The equilibrium consump-
tions are Pareto optimal.
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Outline of Proof:

1. As in Raimondo’s single agent model, let the time axis be T = {0,∆T, 2∆T, . . . , T̂}.

2. If we used the usual nonstandard construction of Brownian motion,
each node would have 2K successor nodes, ruling out dynamic com-
pleteness if K > 1. So instead, construct a random walk β̂ in RK such
that each node has K + 1 successor nodes and

E(β̂(t+ ∆T, ·)|(t, ω0)) = β̂(t, ω0)

E((∆β̂i(t, ω))(∆β̂j(t, ω)) =
δij
∆T

Show that β(t, ω) = ◦β̂(t̂, ω) is a standard Brownian motion (this is
not quite covered in the earlier papers in nonstandard probability).

3. Use the analytic functions to induce endowments, utility functions, and
security payoffs in the hyperfinite economy.

4. An equilibrium for the economy is a security price process p̂, a consump-
tion price process p̂C , trading strategies ẑi and consumption plans ĉi
which lies in the demand sets of the agents so that the securities and
goods markets clear, i.e. for all t ∈ T and all ω ∈ Ω̂

I∑
i=1

ẑi(t, ω) = (η0, . . . , ηJ)

I∑
i=1

ĉi(t, ω) =
I∑

i=1

êi(t, ω) +
J∑

j=0

ηjÂj(ω, t)

5. Use the Duffie-Shafer Theorem [4, 5] to perturb the endowments and
security dividends by at most (∆T )2 to ensure the existence of a Pareto
optimal equilibrium with dynamically complete securities prices. Note
that this does not rule out the possibility that the determinant which
determines dynamic completeness is infinitesimal; since such nodes will
become Hart points in the continuous-time model, we will need to show
that the set of nodes where the prices are “infinitesimal Hart points”
has Loeb measure zero.
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6. Since the marginal utility of consumption is infinite at zero, and the
aggregate consumption is strictly positive at each node, the equilibrium
consumptions of all agents are strictly positive at each node. Let ∆ be
the open I − 1-dimensional simplex in RI

++. Pareto optimality implies
that there exists λ = (λ1, . . . , λI) ∈ *∆ such that at each node (t, ω),
there is a positive constant µ(t, ω) such that

λ1*
∂h1

∂c
(ĉi(t, ω), β̂(t, ω), t) = · · · = λI*

∂hI

∂c
(ĉI(t, ω), β̂(t, ω), t) = µ(t, ω) for t < T̂

λ1*
∂H1

∂c
(ĉi(T̂ , ω), β̂(t, ω)) = · · · = λI*

∂HI

∂c
(ĉI(T̂ , ω), β̂(t, ω)) = µ(T̂ , ω)

Let ĉ(t, ω) =
∑I

i=1 ĉi(t, ω). By the analytic implicit function theorem,
there exist standard analytic functions such that

µ(t, ω) = *π̂((λ1, · · · , λI), ĉ(t, ω), β̂(t, ω), t) for t < T̂

µ(T̂ , ω) = *Π̂((λ1, · · · , λI), ĉ(T̂ , ω), β̂(T̂ , ω))

ĉi(t, ω) = *ψ̂i((λ1, · · · , λI), ĉ(t, ω), β̂(t, ω), t) for t < T̂

ĉi(T̂ , ω) = *Ψ̂i((λ1, · · · , λI), ĉ(T̂ , ω), β̂(T̂ , ω))

7. p̂C(t, ω) = µ(t, ω) are the Arrow-Debreu prices of consumption. Since
total supply (from endowments and dividends) is uniformly bounded
below, aggregate consumption is uniformly bounded below, so pC is
uniformly bounded above by a standard number.

8. The first order conditions imply that the securities prices p̂Aj
and the

total gains processes γ̂j are given by the nonstandard extensions of

standard analytic functions evaluated at λ̂, β̂, and the perturbed en-
dowments and dividends.

9. Let

R̂(t, ω) =
(p̂A1(t, ω), . . . p̂AJ

(t, ω))

p̂A0(t, ω)

There is a standard analytic function ρ such that

p̂A(t, ω) = *ρ(λ, β̂(t, ω), t) +O(∆T )

R̂(t, ω) =
*ρ1,...,J(λ, β̂(t, ω), t)

ρ0(λ, β̂(t, ω), t)
+O(∆T )
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The condition for markets to be dynamically complete in the continuous-
time model will be that the Jacobian matrix of R (the analogue in the
continuous-time model of R̂) with respect to the Brownian motion is
nonsingular.

10. Let γ̂j(t0, ω0) be the total gains process of security j. It is clear that
each γ̂j is a hypermartingale. It is SL2 from the growth condition on
dividends.

11. Now, we extract the equilibrium prices and trading strategies for the
Loeb measure economy generated by the hyperfinite economy.

pC(t, ω) = ◦p̂C

(
t̂, ω

)
pA(t, ω) = ◦p̂A

(
t̂, ω

)
γ(t, ω) = ◦γ̂

(
t̂, ω

)
Then pC(t, ω) and pA(t, ω) are standard analytic functions of (β(t, ω), t)
for t < T and of β(T, ω) for t = T . The O((∆T )2) perturbations wash
out. The parameter λ is replaced by ◦λ and disappears as a variable.

R(t, ω) =
(pA1

(t,ω),...,pAJ
(t,ω))

pA0
(t,ω)

is analytic because pA0 is never zero.

12. Since the Jacobian matrix ∂RT

∂β

∣∣∣
β

is nonsingular at some β0, det
(

∂RT

∂β

∣∣∣
β0

)
�=

0, so det
(

∂R
∂β

∣∣∣
β)

)
�= 0. By continuity, there is an open set of (β, t)

in RK × [0, T ] on which det
(

∂R
∂β

∣∣∣
(β,t)

)
�= 0. But the determinant

of a matrix is a polynomial function of the entries of the matrix,

so det
(

∂R
∂β

∣∣∣
(β,t)

)
is an analytic function of (β, t) ∈ RK × [0, T ]. If

det
(

∂R
∂β

∣∣∣
(β,t)

)
= 0 on a set of positive measure, it must be identically

zero. We conclude that B = {(β, t) ∈ RK × [0, T ] : det
(

∂R
∂β

∣∣∣
(β,t)

)
= 0}

is a null set.

13. Since the distribution of β is absolutely continuous with respect to
Lebesgue measure, {(t, ω) : (β(t, ω), t) ∈ B} is a null set. Therefore,
the securities price process pA is essentially dynamically complete ([14],
Theorem 5.6).
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14. Since c(t, ω) and ψi(c, β, t) are analytic functions for t ∈ [0, T ), each
ci(t, ω) is an analytic function of (β(t, ω), t). Since c(T, ω) and Ψ(c, β)
are analytic functions, each ci(T, ω) is an analytic function of β(T, ω).

15. Since γ(t, ω) is an analytic function of (β(t, ω), t), Itô’s Lemma implies
it is an Itô process. The fact that pC is uniformly bounded and the
growth condition on the endowments and dividends implies that the
Itô coefficients of γ lie in H2.

16. The hyperfinite equilibrium trading strategies ẑi satisfy a linear equa-
tion, where the coefficients of the linear equation are given by standard
analytic functions of (β̂(t, ω), t). Therefore, except at the infinitesi-
mal Hart points (which we found are contained in st−1(B), where B
is a closed set of measure zero), ẑi is a standard analytic function of
(β̂(t, ω), t). In particular, it does not chatter. Define zi(t, ω) = ◦ẑi(t, ω).

17. As in Raimondo’s Single Agent Model, show that the prices, consump-
tions and trading strategies form an equilibrium.

18. Since everything is expressed as analytic functions of (β(t, ω), t), we can
move the prices, consumptions and trading strategies to the original
model and verify they form an equilibrium there.
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Problems

1. Consider a one-dimensional random walk process like the random walk
process X discussed in the tutorial, except that every step is of the
form ±σ√

n
rather than ±1√

n
. What is the limit of this random walk as

n→ ∞ (you may argue informally)? Show that the limit is a standard
one-dimensional Brownian motion with a time change.

2. Let X be the one-dimensional random walk discussed in class. We
noted in the tutorial that, with respect to the partition tk = k

n
, the

quadratic variation

nT−1∑
k=0

(X(ω, tk+1) −X(ω, tk))
2 = T

for all ω.

(a) Show that if tk = 2k
n

for k = 1, . . . , �nT
2
�, then

�nT
2

�−1∑
k=0

(X(ω, tk+1) −X(ω, tk))
2 → T

in probability as n→ ∞.

(b) Show that, if one is allowed to choose tk as a function of ω (k =
1, . . . , m(n, ω)), then one can find a choice of tk(ω) such that

m(n,ω)∑
k=0

(X(ω, tk+1(ω)) −X(ω, tk(ω)))2 → 3T

2

in probability as n→ ∞.

(c) Conjecture what assumption is needed on the tk(ω) to ensure that

m(n,ω)∑
k=0

(X(ω, tk+1(ω)) −X(ω, tk(ω)))2 → T

in probability as n→ ∞.
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