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Chapter 1

Introduction

“If we take the Keynesian construction seriously, that is, as of a world

with a past as well as a future and in which contracts are made in terms

of money, no equilibrium may exist...... From all this, as well as from our

existence discussions, we conclude that the Keynesian revolution cannot

be understood if proper account is not taken of the powerful influence

exerted by the future and the past on the present and by the large mod-

ifications that must be introduced into both value theory and stability

analysis, if the requisite future markets are missing.”

Kenneth Arrow and Frank Hahn, General Competitive Analysis, 1971.

The Arrow-Debreu model of an economy seems to describe a static world without

time or uncertainty. Hicks (1939), in his ‘Value and Capital’ already criticized the

steady-state analysis of Walras as a highly deceptive way of analyzing the inter-

temporal economy we live in. Arrow and Debreu, it seems, merely formalized the

highly deceptive model developed by Walras. However, as Chapter 7 of Debreu’s

‘Theory of Value’ shows a simple redefinition of a commodity allows one to obtain

a theory of time and uncertainty which is formally identical to the static general

equilibrium theory.

Modeling time in the Walrasian tradition seems fairly straightforward. Even be-

fore Arrow and Debreu’s work, Irving Fisher (1930) wrote about the theory of interest

and developed (a somewhat imprecise) dynamic general equilibrium model. The main

idea is that a tomato in summer is a different good than a tomato in winter. A com-

modity is not only identified by its physical characteristics (i.e. a tomato) but also

by the date. The relative price between goods today and goods tomorrow is the in-
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6 CHAPTER 1. INTRODUCTION

terest rate. Fisher’s model becomes interesting if one makes additional assumptions

on preferences and if one examines models with infinite time horizon.

As early as 1953 Arrow found a brilliant way to incorporate uncertainty into the

model. He introduced ‘states of the world’ as a complete description of a date-event.

A contract for the transfer of a commodity specifies now, in addition to its physical

properties, its location and its date, an event of occurrence (state of the world) of

which the transfer is conditional (so a tomato when it rains tomorrow is a different

good than a tomato when the sun shines). Once uncertainty and time is incorporated

into the model one has to ask, however, if it is realistic to assume that at time zero

there are markets for all commodities and agents buy their consumption bundles for

the (possibly infinite) future. Instead, Arrow suggested that agents trade financial

assets instead. This was the birth of modern asset pricing.

In 1978 Lucas published a paper on asset pricing that proved highly influential in

macro-economics mainly because it provided a simple way to bring the basic general

equilibrium model to data. In his model, there is only one agent. This has the advan-

tage of tractability, but obviously is not satisfactory from the point of view of general

equilibrium analysis. In the late 70’s and early 80’s economists then understood how

to generalize his model to several agents.

I will introduce the general equilibrium model with incomplete asset markets (GEI

model). In this model households have access to financial markets but cannot write

contracts for state contingent consumption directly. The number of securities is taken

to be exogenous.

I discuss the Lucas asset pricing model and then a model with heterogeneous

agents but finite time horizon. Finally, I will describe how to generalize this model

to infinite horizon.



Chapter 2

Time, uncertainty and assets

We examine an economy over t = 0, . . . , T ≤ ∞ with uncertainty over the state of

nature in periods t = 1, . . . , T.

We assume that uncertainty can be modeled as an event tree Σ. We denote a

generic node of the event tree as σ ∈ Σ. There is a unique root node σ0 which does

not have a predecessor. Each other node σ ∈ Σ has a unique direct predecessor σ−.

Each non-terminal node σ has one or several (but finitely many) direct successors

which we collect in a set =(σ). A terminal node has no successors, i.e. =(σ) is empty

if σ is a terminal node. We write σ �Σ σ′ if σ is a (no necessarily direct) successor of

σ′ in the tree Σ (and σ �Σ σ′ if we want to allow for the possibility that σ = σ′.

Figure 2.1 shows a simple event tree for a 3 period model (T=2)

Let M denote the total number of states, that is the number of nodes in the event

tree. We collect all nodes at time t, i.e. all nodes which have t predecessors in a set

Nt.

2.1 Stationary trees

It is often useful to restrict the nature of uncertainty a little bit beyond this very

general formulation and to assume that each non-terminal node has the same number

of successor nodes (as is the case in Figure 2.1) and that all terminal nodes are in

NT . We call an event tree which satisfies these two requirements a ‘stationary tree’.

In Chapter 3 we will go even further and assume stationarity of all exogenous vari-

ables. This will enable us to represent an infinite economy with finitely many utility
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8 CHAPTER 2. TIME, UNCERTAINTY AND ASSETS
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Figure 2.1: Example of an event tree Σ with T = 2

functions and real parameters. For this the following notation will be particularly

useful.

We assume that in each period t one of S possible shocks st ∈ S realizes. With

this assumption we can associate with each node in a stationary event tree a history

of shocks. For a typical node σ which occurs at time t, we often write

σ = st = (s0, s1, ..., st)

If a node st is followed by a shock s̄ we write (sts̄) for the new node.

With this notation we can refer to each node simply as a series of shocks, for

example sT = (122) is a node in the tree in Figure 2.1. In a slight abuse of notation

we will write st−1 for st’s predecessor and st+1 for a generic direct successor. I will

try to avoid the use of ‘state’ in a multiple period setting and will instead use ‘shock’

on one hand and date-event or node on the other. The term ’state’ will be reserved

to the collection of endogenous variables sufficient for the maximization problem of

an agent in a recursive economy.
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2.1.1 Infinite event trees: Paths versus nodes

In Chapters 3 and 5 of these notes we assume that T = ∞. This raises some technical

issues. For example, what is an appropriate commodity space for this economy ? Are

there countably many commodities or uncountably many ? One way to look at this,

is to realize that there will be uncountably many paths: Suppose for simplicity that

S = 10 – then we will be able to associate with each paths a real number in the

interval [0, 1). If we take this interpretation, we will have to require that everything

we says holds almost surely (since there can always be one path with has probability

zero and about which we do not care). In the next section I will explain how this

view fits nicely into probability theory.

On the other hand, looking at the economy as an infinite event tree, we realize

that the number of nodes is countable. Each node in the tree Σ is a finite history of

shocks and we can therefore just enumerate all nodes.

st = (s0, . . . , st).

In these notes I will take the latter interpretation since it is somewhat more

convenient. The set of nodes Σ remains countable and in this interpretation the

commodity space is `∞ - the space of all bounded functions from Σ.

In parts of the notes we will assume that st is a stochastic process that follows a

Markov chain. However, for now this is irrelevant, the only point is that a date-event

(or node) in the event tree can be associated with a finite history of exogenous shocks.

2.2 A view from probability theory

In finance (and sometimes in Macro) uncertainty is often modeled using concepts

from probability theory. The underlying idea is that there are some true probabilities

for the states of the world. For a finite event tree these concepts are equivalent to

our notation (as mentioned above for an infinite horizon model it makes a difference

because the set of paths in not countable in this model). The advantage of the finance

formulation is that it can easily be extended to continuous shocks (i.e. the shocks

can be normally distributed) and to continuous time. Since models with continuous

shocks or time are not well understood at this point (certainly not by me) there is

no advantage to using the finance notation in these notes. Throughout the notes I

will stick to the math econ formulation, but it is worth pointing out the differences
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(for a good introduction into the finance formulation see e.g. Duffie (2001) – this is

in general a good reference for dynamic asset pricing).

There is an underlying probability space (Ω,F , P), where F denotes the tribe (also

called σ-algebra or σ-field depending on the context) of subsets of the set of possible

states of the world Ω. P denotes the probability measure that assigns to any event

A ∈ F a probability P(A).

At each date T a tribe Ft ⊂ F denotes the set of events corresponding to the

information available at date t. We assume Ft ⊂ Fs whenever s > t. The filtration

F = {F0, . . . ,FT} represents how information is revealed through time. If FT = F
we can take each ω ∈ Ω to be a sample path of the event tree. In the example in

Figure 2.1 the set Ω has 9 elements altogether, if we number them (say from top to

bottom) 1, ..., 9, we can write F0 = {Ω, ∅} and

F1 = {Ω, ∅, {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 7, 8, 9}, {4, 5, 6, 7, 8, 9}}

We can then identify a node of the event tree by a date and a state of the world,

ωt. For two different states ω and ω′ we must have that ωt and ω′t denote the same

node of the event tree if and only if there is no A ∈ Ft such that ω ∈ A and

ω′ /∈ A. Endowments, dividends, individual consumption etc. then have to be adapted

processes, i.e. some x(ωt) is Ft measurable.

This notation is only really useful if one wants to examine continuous shocks or

continuous time. For this, it is important to understand that with finitely many

periods the two notations describe exactly the same things.

2.3 Physical commodities and financial assets

We assume that at each node of the event tree there is a single perishable commodity

available for consumption. Generalizing the analysis to multiple commodities changes

nothing in the basic results (just makes notation even more cumbersome).

We assume that there are no markets for contingent claims, i.e. the agents face a

separate budget constraint at every node σ.

In order to transfer wealth between time periods and states of nature, agents have

to hold a portfolio of assets. At each node σ ∈ Σ there are J assets j ∈ J , each

asset j ∈ J generates payoff at all direct successors (aj(ζ))ζ∈=(σ). Assuming that

the number of assets is the same at all nodes is without loss of generality since aj(ζ)

could be zero for all successors ζ. The crucial assumption is that assets pay off in
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both assets and the single commodity, i.e. aj(σ) ∈ RJ+1 for all σ ∈ Σ. We assume

that aj0(σ) is the payoff in node σ commodity (and sometime write dj(σ) to refer to

this payoff as a dividend) while ãj = (aj1, . . . , ajJ) is the payoffs in node σ assets.

The price of assets at node σ is denoted by q(σ), a row vector. We collect payoffs of

all assets at σ in a J + 1× J matrix

A(σ) = (a1(σ), . . . , aJ(σ)).

An agent must trade in assets in order to transfer wealth across time and states.

At each non-terminal node σ agent h chooses a portfolio θh(σ) ∈ RJ . At each node

except the root node the agent receives dividend payments from the assets he has

bought at the previous node, (1, q(σ))A(σ)θh(σ−).

We will refer to a process of portfolio-holdings (θ(σ))σ∈Σ as a ’trading strategy’.

Later on we impose restrictions on admissible trading strategies, but for now it is just

an arbitrary map for Σ to portfolios.

It will be useful to associate with a trading strategy (θ(σ))σ∈Σ a so-called ‘gain-

process’:

Dθ(σ) = (1, q(σ))A(σ)θ(σ−)− θ(σ)q(σ) (2.1)

We denote the initial portfolio of an agent by θ(s−1). Later on we will allow assets

to be in unit net supply or in zero net supply and we will require that the initial

portfolios of agents add up to the asset’s net supply.

2.3.1 Trees, stocks and bonds

We want to examine two special cases of assets. Trees (or stocks) are infinitely lived

assets which pay non-negative dividends d(σ) at all date events σ. One period assets,

for example one period bonds, just pay dividends, but not in other assets.

In finance and macroeconomics it is often assumed that there are only long-lived

assets such as stocks and a single bond. In these models, stocks pay dividends each

period and are traded each period. Note that a stock is a special case of our more

general asset structure: Asset 1 is a stock if for all (non-terminal) nodes σ, a1(σ) =

(d1(σ), 1, 0, . . . , 0) where d1(σ) is simply the dividend process of the stock. A stock is

therefore just an asset that pays some dividends and one unit of the new stock next

period. So called short-lived (or one period) assets on the other hand pay only in

commodities and not in other assets.
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2.3.2 The absence of arbitrage

As it is well known, if utility-functions are increasing the agents problem to maxi-

mize utility over the budget set can only have a solution if there are no arbitrage

opportunities in the price system.

Definition 1 Prices and payoffs (q(σ), A(σ))σ∈Σ preclude arbitrage if there is no trading

strategy (θ(σ))σ∈σ with θ(s−1) = 0 such that Dθ(σ) ≥ 0 for all σ ∈ Σ and Dθ(σ) 6= 0

for at least one σ ∈ Σ.

What the definition rules out is that it is possible to get adopt a portfolio strategy

over the tree that ensures positive payoffs in some states, while never paying anything.

We will see later that there might be limited arbitrage opportunities in the presence

of transaction costs or trading constraints. However, for now we assume that there

are no trading constraints and security-prices must satisfy the absence of arbitrage.

One can show that the absence of arbitrage is equivalent to the existence of a

strictly positive pricing vector.

Theorem 1 Prices and payoffs (q(σ), A(σ))σ∈Σ preclude arbitrage if and only if there

exists a strictly positive state-price process (α(σ))σ∈Σ such that for all non-terminal σ ∈ Σ,

q(σ) =
1

α(σ)

∑
ζ∈=(σ)

α(ζ)(1, q(ζ))A(ζ) (2.2)

Note that, if T is finite, one can obtain an expression for asset prices as a linear

function of all future dividends (i.e. commodity payoffs) by substituting out all future

prices in Equation 2.2. For example, the price at node σ0 of a stock with dividend

process (dj(σ))σ∈Σ is simply

qj(σ0) =
∑
σ∈Σ

α(σ)dj(σ).

If T is infinite, we can generally only get an inequality in equation (2.2) since we

cannot rule out bubbles. It is beyond the scope of this class to get into details

there. A very good reference is K.X.D. Huang and J. Werner ‘Valuation bubbles and

sequential bubbles’ which is published in Economic Theory.

The theorem can be proved using a separating hyperplane argument. The fol-

lowing lemma follows pretty easily from the separating hyperplane theorem (see for

example Duffie (2001))
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Lemma 1 Suppose M and K are closed convex cones in Rn that intersect precisely at

zero. If K is not a linear subspace, then there is a nonzero linear functional F such that

F (x) < F (y) for each x ∈ M and each nonzero y ∈ K.

If we define a set M ⊂ RM as M = {(Dθ(σ))σ∈Σ : θ is a trading strategy} the

absence of arbitrage means that M∩RM
+ = {0}. It is clear that if there exist strictly

positive supporting prices, then there cannot be a positive element in M because if it

were we could multiply it by the state prices and obtain a contradiction (by definition

of a trading strategy we would get that both −x and +x must be strictly positive

for some x). Conversely, the above implies that there exists a linear function F that

separates RM
+ and M. The functional must be strictly positive because for all x ∈ RM

+

we have F (x) > 0. Furthermore for any Dθ ∈M, F (Dθ) ≤ 0, but since M is a linear

subspace this must imply that F (Dθ) = 0. For any asset j traded at node σ, we can

pick a trading strategy to be θj(σ) = 1 and θj′(ζ) = 0 for all ζ 6= σ and j′ 6= j and

get Equation (2.2). This proves the theorem.

The absence of arbitrage has a nice geometric interpretation. Given J assets at

some node σ the set of arbitrage free prices is the interior of a cone with origin at

zero. The cone is spanned by the extreme vectors of the assets’ payoffs in commodities

across assets for given states.
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Chapter 3

Lucas asset pricing

“Dynamics studies sequences of vectors of random variables indexed by

time, called time series.”

Lars Ljungquist and Thomas Sargent, Recursive Macroeconomic Theory.

In this chapter I will present my version of Lucas’ famous asset pricing model.

I will present some basic dynamic programming and I will talk about the equity

premium puzzle.

3.1 The basic Lucas model

The easiest model arises if one assumes that there is only one consumer in the econ-

omy. Since there are no firms either, there is no trade, the single consumer eats

aggregate endowments and one can easily say something about the equilibrium asset

prices. The only available assets in the economy are trees (Lucas-trees) and a bond.

Lucas (1978) was the first to write down this model, his contribution (in my view)

was to make uncertainty tractable by assuming that all exogenous variables follow a

Markov chain.

3.1.1 Markov uncertainty

The event tree is generated by a Markov chain (st) with finite1 support S = {1, ..., S}.
Each node of the event tree can be associated with a finite history of shocks σ = st =

1In Lucas’ original model it is assumed that this is an AR(1) process with log-normal innovation.
This assumption has the advantage that it is easier to take the model to data. However, in models
with heterogeneous agents things become incredibly complicated if we do not assume finite support.
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16 CHAPTER 3. LUCAS ASSET PRICING

(s0, ..., st). The Markov chain follows a transition π.

There is a single agent with time-separable expected utility

U(c) = E0

∞∑
t=0

βtu(c(st)),

where the expectation is taken under the Markov-chain probabilities.

We will assume throughout that 0 < β < 1 and that u : R++ → R is strictly

increasing, strictly concave, C2 and satisfies the Inada condition u′(c) →∞ as c → 0.

The agent has individual endowments e(st) ≥ 0 which are time-invariant functions

of the shock alone, i.e. e(st) = ē(st). Each assets’ dividends are time-invariant

functions of the shock alone A(st) = Ā(st).

The agent is endowed with an initial portfolio of assets θ(s−1).

3.2 Equilibrium, necessary first order conditions

and asset prices

Before defining a competitive equilibrium in this economy, we need to discuss the

agent’s maximization problem.

3.2.1 The individual’s problem

We assume that the single agent takes prices as given2 and chooses portfolios and

consumption to maximize his utility

At each node the faces the budget constraint

c(st)− e(st) ≤ (1, q(st))A(st)θ(st−1)− q(st)θ(st).

We collect the set of all non-negative consumption processes and portfolio pro-

cesses which satisfy these constraints at all nodes in a budget set B(q).

The agent chooses consumption and portfolios at all nodes, (c, θ) to solve

U(c) subject to (c, θ) ∈ B(q) (3.1)

I will give references below which show how one can approximate the original model by finitely many
shocks.

2One could think of this as a continuum of identical agents, this might make it easier to assume
price-taking...
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Unfortunately, this maximization problem will almost never have a solution be-

cause we have not ruled out Ponzi schemes yet. Given any candidate solution to (3.1)

which yields finite utility, one can always improve by consuming one unit more today,

borrowing that unit and rolling over the debt until infinity. Of course, this might

involve infinite debt at infinity. So in order to rule out Ponzi-schemes, we need to

impose additional restrictions on the agent’s choices. There are several possible

ways to do this, see Levine and Zame (1996) or Magill and Quinzii (1996) for a dis-

cussion. For now I want to impose as an additional constraint, the so-called implicit

debt constraint

inf
σ∈Σ

q(σ)θ(σ) > −∞ (3.2)

This constraint implies that along all paths of the event tree, the agent can never get

so much into debt that he cannot pay it off in finite time (maintaining non-negative

consumption).

3.2.2 Equilibrium

A competitive equilibrium in this economy consists of processes for asset prices and

individual choices (q(σ), c(σ), θ(σ))σ∈Σ such that the agent solves (3.1) subject to

(3.2) and markets clear, i.e. at all σ ∈ Σ,

θ(σ) = θ(s−1), c(σ) = e(σ) + θ(s−1) · d(σ)

Note that we define market clearing relative to the agent’s initial endowments

in the assets. In Lucas’ model, the trees are in unit net supply and the agent’s

consumption in fact consists entirely of the fruits (dividends) of the tree. On the

other hand, one could consider a model where all assets are in zero net supply and

the agent only eats his individual endowments.

3.2.3 Equilibrium prices

The following condition, called Euler-equation in macroeconomics, is a necessary

condition for an interior (finite) optimum

−q(st)u′(c(st)) +
∑

s

π(s|st)(1, q(s
t))A(st)u′(c(st+1)) = 0 (3.3)

To see this, suppose (c∗, θ∗) is a solution to (3.1), (3.2) with strictly positive

consumption. For any portfolio θ, because c∗ is positive, there must exist an α > 0
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such that c∗(st)−αq ·θ > 0 and c∗(st+1)+α(1, q(st+1))A(st+1) ·θ > 0 for all st+1 � st.

define

g(α) = u(c∗(st)− αq · θ) + β
∑

s

π(s|st)u(c∗(st+1 + α(1, q(st+1))A(st+1)))

By optimality of c∗, g′(α) = 0 at α = 0. This implies (3.3).

In equilibrium, by market clearing we must have that the agent consumption

equals endowments plus dividends, that is they only depend on the current shock s

! Using the Euler equations of the first agent we can compute the price function of

any asset (knowing the consumption of the agent). Taking advantage of the time

invariant consumption, we define (probability deflated) prices by ps = u′(c(s)). Here

it helps that the shock space is finite. In Lucas original model, asset prices where

the solution to a linear Fredholm integral equation. However, note that one way to

solve linear Fredholm equations is by quadrature based methods which discretize the

continuous state space (see Tauchen and Hussey (1991)).

For a long-lived asset (tree) j the Euler equations for agent 1 are:

qj(st)pst = βE
{
pst+1(qj(st+1) + dj(st+1)|st

}
These equations are a system of S linear equations in S unknowns. In the following,

we will use a circle, ◦, to denote element-wise multiplication of vectors. Specifically,

if x, y ∈ RS then

x ◦ y =


x1y1

x2y2

...

xSyS

 ∈ RS

We denote the identity matrix of size S by IS.

The solution for asset prices is therefore

qj ◦ p = [IS − βΠ]−1βΠ(p ◦ dj).

For a short-lived asset j the Euler equations for agent 1 are:

qj(st)pst = βE
{
pst+1dj(st+1)|st

}
To summarize, in this model, if an equilibrium exists, the equilibrium prices follow

directly from the agent’s marginal utilities and aggregate consumption. With this

observation (still believing that equilibrium exists, which basically means here that
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the first order conditions are also sufficient) one can easily bring the model to data.

One can for example assume that there is a single tree which one identifies with

the aggregate stock market and a bond and one can then check what preferences one

needs to satisfy (3.3). This leads to the equity premium puzzle of Mehra and Prescott

(1985). I do not have time to go into this here, but Kocherlakota (1996) is a good

reference.

3.3 Sufficient conditions

Under which additional assumptions can we show that (3.3) are also sufficient con-

ditions for optimality ? If we can establish this, then it is clear that an equilibrium

exists and equilibrium prices are simply determined as described in the section above.

The following lemma helps.

Lemma 2 Assume that Bernoulli utility u(.) is bounded above. Suppose asset prices are

bounded, i.e. supσ q(σ) < ∞. A process (c̄(σ), θ̄(σ)), with supσ q · θ̄(σ) < ∞ and with

supσ u′(c(σ)) < ∞ solves an agent h’s optimization problem (3.1),(3.2) if for all st the

Euler equation holds, i.e.

−q(st)u′(c̄(st)) +
∑

s

π(s|st)(1, q(s
t+1))A(st+1)u

′(c̄(st+1)) = 0

Proof. Let (c(σ), θ(σ)) be an arbitrary budget feasible process, satisfying (3.2). Note

that concavity of u implies that for all σ,

u(c̄(σ))− u(c(σ)) ≥ u′(c̄(σ))(c̄(σ)− c(σ)).

Since consumption in 0 only differs by the value of the new portfolio, we have that

u(c̄0) ≥ u(c0) + u′(c̄0)q(s0)(θ(s0)− θ̄(s0)).

For any T, by induction and concavity we will show that

E
∞∑

t=0

βtuh(c̄(s
t)) ≥ E

∑T
t=0 βtuh(c(s

t)) + E
∑∞

t=T+1 βtuh(c̄(s
t)) +

βT E
(
u′(c̄(st))q(st)(θ(st)− θ̄(st))

)
We have already shown that the inequality holds for T = 0. To understand the induc-

tion step, use the first order conditions to substitute β
∑

s π(s|st)(1, q(s
t+1))A(st+1)

for u′(c̄(st)q(st). The budget constraint and the law of iterated expectations then

imply the induction step.
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Since u is bounded above the second term on the right hand side will converge

to zero as T → ∞. The third term will converge to zero (or something positive),

because consumption is bounded below and asset prices are bounded at equilibria we

look at. �



Chapter 4

GEI over multiple periods

In this chapter we want to modify the previous model, assume that the time horizon

is finite but that there are heterogeneous agents in the economy. In contrast to the

analysis in Chapters 3 and 5 we will not rely on any Markov-structure of the tree

here and we do not need to assume that agents have time-separable expected utility.

4.1 An exchange economy

We consider a T periods economy where finitely many households make consumption

decisions over the entire time horizon and trade financial securities to share risk. We

take as given an event tree Σ which we assume to be finite in this chapter. Let M

denote the number of nodes in the tree.

Households

There are H agents – agent h ∈ H is characterized by an initial endowment process

eh = (eh(σ))σ∈Σ ∈ RM
++ and his or her preferences. These are represented by a utility

function over consumption processes, c = (c(σ))σ∈Ξ ∈ RM
++, uh : RM

+ → R. While

we usually assume that agents have time-separable expected utility with beliefs being

derived from π, most of the analysis in this chapter does actually not need any other

assumption than concavity and monotonicity of uh.

Assets

Without loss of generality we assume in this chapter of the notes that all assets are

in zero net supply. By altering individual endowments appropriately, we can always

21
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reformulate the model into having assets in unit net supply. For example, if there

is an asset in unit net supply which pays dividends d(σ) at state σ and is initially

owned by agent 1 the model is equivalent to a model where this asset is in zero net

supply and agent 1’s endowments are ē1 with ē1(σ) = e1(σ) + d(σ). If a stock is in

unit net supply, it simply means that for all σ ∈ Σ we have to subtract the stock’s

dividends from the initial owners individual endowments.

4.1.1 Walrasian equilibrium

The definition of a Walrasian equilibrium is standard - a collection of Debreu prices

ρ ∈ ∆M−1 and a consumption allocation (ch)h∈H such that markets clear and all

agents maximize their utility.

Even more so than in a two period model, it is clear in this model what it makes

little sense to assume that in the beginning of all times agent trade node-contingent

commodities and that markets never reopen after this. Instead we want to assume

that agents trade in financial markets.

4.1.2 Arrow equilibria and dynamic completeness

It is clear that given endowments and utility functions a Walrasian equilibrium exists.

We can decentralize this equilibrium if we assume that there exists an Arrow security

for each node of the event tree. However, in general, one would think that one needs

much fewer securities than that. In particular, if at any node of the tree one had one

Arrow security for each direct successor markets would be complete. Nevertheless

at the root node there are only markets for the Arrow securities which pay at direct

successors.

Following Kreps(1982) we call a model dynamically complete if the markets can be

completed through trading over time, i.e. for each consumption process (c(σ)σ∈Σ) ∈
RM

+ there exists a trading strategy θ such that c(σ) = Dθ(σ) for all σ 6= σ0.

This is equivalent to saying that the dimension of the marketed subspace M is

M .

For example, if we had a binomial event tree, i.e. each non-terminal node has

exactly two successors and we have two assets which pay positive dividends at each

node chances are that trading these two assets at each node suffices to achieve the

complete markets allocation. If assets only pay in commodities this is straightforward

- all we need is that the payoffs are linearly independent.
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However, if assets pay both in other assets and in commodities there might be

a problem. If for example at some σ a1(ζ) = (d, 1, 0) and a2(ζ) = (d, 0, 1) for both

ζ ∈ =(σ), we will not have complete markets if q1(ζ) = q2(ζ) at both ζ ∈ =(σ).

Therefore the definition of dynamically complete markets depends on the price

system q as well as on payoffs (a(σ)). Given a stochastic finance economy E one

cannot tell (without looking at the equilibrium prices) if markets are complete or not.

We will return to this issue below after we formally defined an equilibrium.

4.1.3 Equilibrium

We assume that agents maximize their utility functions over their budget set. Like

before, since portfolio-choices uniquely determine consumption choices we can sub-

stitute for the consumption process and obtain an indirect utility function. The first

order conditions for agents’ optimality are the following equations which must hold

for each non-terminal nodes σ ∈ Σ,

−qDc(σ)u
h(c) +

∑
ζ∈=(σ)

(1, q(ζ))A(σ)Dc(ζ)u
h(c) = 0

For inexplicable reasons macroeconomists call these equations Euler-equations - we

will do so as well.

If utility is strictly increasing this first order condition implies directly possible

state prices α ∈ RM
++. If markets are complete these state prices will coincide with

the Debreu equilibrium prices.

GEI Equilibrium

Just like before equilibrium is characterized by market clearing and agents’ optimality.

Definition 2 A GEI equilibrium for a ‘Stochastic Finance Economy’ is defined as a col-

lection of consumption processes (c̄h)h=1,...,H , portfolio holdings (θ̄h)h=1,...,H and an asset

price process q̄ that satisfy the following conditions:

(1) For all agents h = 1, . . . , H :

(c̄h, θ̄h) ∈ arg max
c,θ

uh(c) s.t. (c, θ) ∈ Bh(q)

(2)
∑

h∈H θ̄h(σ) = 0 at all nodes σ ∈ Σ.
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By Walras’ law, market-clearing
∑

h∈H θ̄h = 0 in the financial markets also implies

market-clearing in all spot markets, that is,
∑

h∈H(c̄h − eh) = 0.

As before we can show that if at each node, there is an Arrow security for each

direct successor node, a GEI equilibrium is equivalent to a Walrasian equilibrium.

For general asset structures, the equivalence only holds if in equilibrium markets turn

out to be dynamically complete. We will show now that this might cause existence

problems.

4.1.4 Conditions for complete markets

As mentioned above, whether markets are complete or not might depend on the actual

GEI equilibrium whenever the payoff of assets depend on prices (which is the case if

we have stocks, for example).

Markets are dynamically complete, if and only if for all non-terminal nodes σ ∈ Σ

there are S assets with linearly independent payoffs (in numéraire commodity terms)

at direct successor nodes. I.e. if a given node σ has S direct successors which we

denote by (σ1), (σ2), . . . , (σS), it must hold that

rank

 (1, q(σ1))A(σ1)
...

(1, q(σS))A(σS)

 = S

In order to understand this, note that markets are complete if and only if for each

node (except the root node) σ there exists a trading strategy θσ such that Dθσ
(σ) = 1

and Dθσ
(σ′) = 0 for all σ′ 6= σ, σ′ 6= σ0. But if the above rank condition is satisfied a

trading strategy like this can be easily constructed as follows:

θσ(σ′) = 0 unless σ � σ′

Suppose a given σ′ has S direct successors. If (σ′s) is a predecessor of σ or if it is σ

itself (i.e. if σ′ = σ−) then let

θσ(σ′) =

 (1, q(σ′1))A(σ′1)
...

(1, q(σ′S))A(σ′S)


−1

ιs

where ιs is the s’th unit vector in RS (i.e. 0 everywhere except in the s’th component).

If we construct this strategy recursively, we can guarantee that it pays one unit at node
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σ, while at all intermediate nodes it pays zero. At the root node, σ0 one obviously

has to give up some consumption in order to finance this strategy.

As mentioned above, if assets only pay in commodities, it can be easily checked if

markets are complete or not. But if there are long-lived assets in the economy, this

is going to depend on the specific GEI equilibrium we consider. Unfortunately, the

GEI equilibrium allocation will certainly depend on whether markets are complete or

not. This loop might cause existence problems.

4.2 Existence of GEI equilibrium

The following example shows that equilibria might fail to exist in this model.

The example is constructed to be extremely simple. Examples of non-existence

can also be constructed for stationary trees and longer time horizons.

Suppose there are three periods t = 0, 1, 2.

0 "
"
"
"
"
"
"
"
"
"
"
"
"
""

b
b
b
b
b
b
b
b
b
b
b
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bb

1
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There are two possible states at t = 1 which we denote by 1 and 2 and each of

these states has exactly one successor (i.e. all uncertainty is resolved at t = 1). We
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denote the period t = 2 nodes by 3 ( 1’s successor) and 4 (2’s successor)1. There are

two assets at each node. The first asset pays 1 unit of the good at all direct successors

and zero in all other assets and the second asset pays 1 unit of the first asset at 1 and

2 and zero otherwise (in particular zero commodities). i.e.

a1(σ) = (1, 0, 0) for all σ and a2(σ) = (0, 1, 0) for σ = 1, 2.

There are two agents who have Cobb-Douglas utility functions

u1(c) = log(c0) + log(c1) + log(c2) + 1/2(log(c3) + log(c4))

u2(c) = log(c0) + log(c1) + log(c2) + log(c3) + log(c4)

The individual endowments are given by

e1(0, 1, 2, 3, 4) = (1.5, 2, 1, 1.5, 1.5) and e2(0, 1, 2, 3, 4) = (1.5, 1, 2, 1.5, 1.5).

The following argument shows that there cannot be an equilibrium: If q1(1) 6=
q1(2) markets will be dynamically complete and the resulting equilibrium can be

implemented as an Arrow-Debreu equilibrium In this case, by the first welfare theorem

and efficiency c1(3) = c1(4) and c1(1) = c1(2) But then, by the agents’ Euler equations

q1(1) = q1(2). But then the two assets at 0 are collinear and markets cannot be

complete – a contradiction.

On the other hand, if q1(1) = q1(2), the Euler equation, together with market

clearing, imply that

1/2
c1(1)

c1(3)
= 1/2

c1(2)

c1(4)
=

3− c1(1)

3− c1(3)
=

3− c1(2)

3− c1(4)

But

1/2
c1(1)

c1(3)
=

3− c1(1)

3− c1(3)
implies c1(3) = 3

c1(1)

6− c1(1)

and

1/2
c1(2)

c1(4)
=

3− c1(2)

3− c2(4)
implies c1(4) = 3

c1(2)

6− c1(2)
.

Therefore 1/2c1(1)/c1(3) = 1/2c1(2)/c1(4) must imply that c1(1) = c1(2) and that

c1(3) = c1(4).

1Since the tree is not stationary, we deviate from our notation, associating a node with a history
of shocks.
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However, this consumption cannot be achieved (cannot be in the budget con-

straint) if there is only one asset in period 0 which pays the same dividends in both

states 1 and 2. Therefore an equilibrium cannot exist.

The example also shows that whether markets are complete or not depends on

endogenous variables.

4.2.1 Restoring existence: Generic existence ?

Economists realized quite early that the examples of non-existence like the one above

are not robust. If we change individual endowments a tiny little bit and equilib-

rium suddenly exists. In the 1980’s several papers showed that GEI equilibria exist

‘generically’ in endowments, i.e. examples of non-existence can never be robust.

Geanakoplos (1990) provides a number of good references for these proofs. While

these results are not uninteresting and provided some new insights it seems to me

that it is not worth introducing a large mathematical machinery necessary for these

proofs.

However, I do want to point out that the above example of non-existence is clearly

not robust to a small perturbation in asset payoffs. If one perturbs the payoffs of any

asset in commodities by arbitrarily small ε, a GEI equilibrium exist and markets

are dynamically complete in equilibrium. This argument relies critically on the fact

that in the perturbed economy/equilibrium markets turn out to be complete. When

markets are still incomplete in the perturbed economy (e.g. fewer assets than states)

the general existence proof is quite involved.

Unfortunately the entire complicated argument of generic existence breaks down

if there are non-linear payoff structures. I want to illustrate this in the following

example.

Options

Assume that in the above example, asset 2 would not always pay in asset 1 but would

actually be an option. call option on asset 1, i.e. at Consider the following variation:

We have the same endowments as above but this time utility functions are given by

u1(c) = log(c0) + log(c1) + log(c2) + 1/2 log(c3) + log(c4)

u2(c) = log(c0) + log(c1) + log(c2) + log(c3) + 1/2 log(c4)
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Assume that asset 1 payoff in the second period is as before but that in period 1 it

pays one unit of asset 1, i.e. a1(1) = a1(2) = (0, 1, 0) and that asset 2 is a put-option,

with a strike-price depending on the state (this is just to keep the example simple - it

will be easy to see that we can construct examples where this is not necessary). We

model a put option by assuming that asset two only pays in commodities, but that

the amount commodities paid depends on the price of asset 1. Let

d2(1) = max(0, K1 − q1(1)) and d2(2) = max(0, K2 − q1(2))

with K1 = 0.7 and K2 = 0.71 . The claim is that there exist no equilibrium for a set

of endowments and dividends with positive measure. To see this, consider first the

complete markets outcome: By symmetry, we must have that c1(1) = c1(2) = 1.5.

By the same argument as above, market clearing implies that c1(3) = 3c1(1)
6−c1(1)

= 1.

Therefore the Euler-equation implies that q1(1) = 0.75. By symmetry q1(1) = q1(2) =

0.75. Sadly, with this price, the option will pay zero in both states and markets are

not dynamically complete. This will be true for a set of dividends and endowments

of positive measure. On the other hand, with the option paying zero in both states,

by symmetry θ1
2(0) = θ2

2(0) = 0 and θ1
1(0) = θ1

2(0) = 0. Therefore the price of the

bond in t = 1 must satisfy

q1(1) = 1/2
2− q1(1)θ1

2(1)

1.5 + θ1
2(1)

=
1 + q1(1)θ1

2(1)

1.5− θ1
2(1)

It is easy to see that θ = 0 is the unique solution to this. Therefore q1(1) = 2/3.

By symmetry q1(2) = 2/3. But now (and robustly so) the option is in the money

and markets are dynamically complete. There exits no equilibrium for an open set of

endowments and asset payoffs.

There is no good solution to this problem (in the 80’s a lot of people came up

with quite obscure assumptions to rule this out but I will not go into this). It seems

to me that the only solution is to assume either short-sale constraints or transaction

costs. In these cases, the set of possible θ will be compact and standard arguments

show that equilibria always exist.

4.2.2 Restoring existence II: Radner

The most obvious way to ensure that demand for assets remains continuous is to

restrict agents to choose portfolios from a compact set. If we assume that |θ| < K
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for some constant K, agents’ best responses will be continuous by construction. A

bit more interesting it to assume that agents face short sale constraints only in assets

which pay off in other assets. The option in the above example can be interpreted as

such an asset since it pays off in the stock. Since we can restrict portfolios of short

lived assets a priori by the absence of arbitrage this should be sufficient to obtain

existence. I will go through a proof in some detail now. This has already been noted

by Radner (1972). I will present a modified version of his argument.

A formal existence proof

We make some formal assumptions

Assumption 1

1. For each agent h we have

(a) The utility function uh is strictly increasing and strictly concave

(b) Individual endowments are strictly positive, eh ∈ RM
++

(c) All asset payoffs are non-negative, i.e. A(σ) ≥ 0 for all σ ∈ Σ.

2. Assets’ payoffs are non-negative, aj(σ) > 0 for all σ ∈ Σ. Whenever an asset pays

off in other assets all agents face constraints on short selling the asset, i.e. there

exists some number K > 0 such that

ãj(σ) > 0 ⇒ θh
j (σ−) ≥ −K

Under this assumption a GEI equilibrium always exists. In order to prove this

it is useful to choose a different price normalization than before in this chapter. We

denote by p(σ) the price of the commodity at node σ and normalize∑
j∈J

qj(σ) + p(σ) = 1 for all σ ∈ Σ.

We restrict attention to normalized prices with p(σt) ≥ ε > 0; and we impose an

upper bound κ > 0, on trades in assets by individuals. We then have the following

lemma which you will prove as an exercise.
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Lemma 3 For each κ > 0 and each ε > 0, for each individual h the best response

correspondence, subject to the bounds,

φh(q, p) = arg max
(c,θ)∈Bh(p,q)

uh(c) s.t. |θj(σ)| ≤ κ for all j, σ

is uhc, non-empty and convex valued for all (q, p) with p(σ) ≥ ε > 0 for all σ ∈ Σ.

We introduce a price player for each node. With the lemma it then follows from

a standard fixed point argument that there exist for every individual, ch
ε,κ, θ

h
ε,κ, and

prices of commodities and assets pε,κ and qε,κ, such that individuals optimize, subject

to the additional bound on net trades, while, at every date-event,

(pε,κ(σ), qε,κ(σt)) ∈ arg max{p(σ)
∑
h∈H

(ch
ε,k(σ)− eh(σ)) + q(σ)

∑
h∈H

θh
ε,k(σ) : p(σ) ≥ ε}.

By the budget constraints, whenever
∑

h∈H θh
ε,κ(σ−) ≥ 0, we must have

pε,κ(σ)
∑
h∈H

(ch
ε,κ(σ)− eh(σ)) + qε,κ(σ)

∑
h∈H

θh
ε,κ(σ) ≤ 0.

By strict monotonicity of utility and since
∑

h∈H θh
ε,κ(σ0) = 0, we must have that the

equation holds with equality and by the optimality of the price player we must have

for all σ ∈ Σ, ∑
h∈H

(ch
ε,κ(σ)− eh(σ)) = 0

∑
h∈H

θh
ε,κ(σ) = 0

For fixed k, demands and prices for commodities and assets lie in a compact

set, and, as a consequence, as ε → 0, they converge, up to a subsequence. Strict

monotonicity implies that the price of the commodity remain positive: at the limit,

pk(σ) > 0, at all date-events. Since for all terminal σ̄, q(σ̄) = 0 we have pk(σ̄) = 1. If

prices of assets at intermediate nodes are positive, monotonicity and market clearing

implies that a sufficient small price of the commodity will lead to at least one agent’s

demand for this commodity to explode. The limit, as ε → 0 is therefore a GEI

equilibrium with constraints on all asset trades.

Since the argument works for any finite τ > 0, if we would impose any short sale

constraints on all assets, we would be done. However, we want to allow for unlimited

short-sales in short-lived assets. So it remains to be shown that as κ →∞ equilibrium

portfolio holdings remain bounded. By assumption (and market clearing) holdings of

assets which pay in other assets are bounded below by K and above by (H − 1)K.

Since consumption is bounded demand for one period assets is bounded if (and only
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if) the prices of these assets do not allow for arbitrage (this can be proved as an

exercise.)

But if there is an arbitrage opportunity, markets for commodities cannot clear:

For sufficiently large κ each agent will hold an arbitrage portfolio. By market clearing

this is impossible. Therefore, for sufficiently large κ prices will preclude arbitrage and

eventually the constraints on trades in short lived assets can no longer be binding.

From this proof, it should also be clear why we need short-sale constraints on assets

that pay in other assets. Since their payoffs (in terms of the numéraire commodity)

are exogenous, it is impossible to derive a bound for individuals’ holdings in these

assets.

4.3 What does the representative agent represent?

In macroeconomics and finance, researchers often consider dynamic general equilib-

rium models in which there is a single agent. This obviously simplifies solving the

model enormously. Prices are not a solution to a fixed point problem anymore but can

just be read off the representative agents’ consumption (which in the case of a pure

exchange economy is aggregate endowments, in the case of a production economy

the solution to a simple optimization problem). The use of a single agent in macro

has often led general equilibrium theorists to not think of macro as applied general

equilibrium theory. I will try to argue that part of the confusion comes from the fact

that people read to much into the representative agent. For example, Kirman (1992)

writes:

... there is no plausible formal justification for the assumption that the

aggregate of individuals, even maximizers, acts itself like an individual

maximizer.

In this section of the notes I will try to show under which conditions the assumption

of a representative agent is not as ridiculous as it sounds.

4.3.1 A price representative agent

For me, the main justification for assuming that there exists a representative agent

is that when markets are complete (or slightly more general when the equilibrium

allocation is Pareto optimal) possible equilibrium prices for an economy with a single
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agent are the same as possible equilibrium prices for an economy with several agents if

they all have identical beliefs and identical impatience. The following theorem makes

this clear.

Theorem 2 Given an economy ((uh, eh)H
h=1, A) where all agents maximize time-separable

expected utility of the form

Uh(c) = E
T∑

t=0

βtvh(c(st))

(the expectation is taken under some common probability measure). If the GEI equilibrium

is Pareto efficient there exists a utility function vR : R+ → R such that the economy

with only one agent, ((vR,
∑

h∈H eh), A) has an GEI equilibrium with identical equilibrium

asset prices.

Proof. Let (ch)h∈H be the GEI equilibrium allocation for the original economy. By

the definition of Pareto efficiency, there must exist λ ∈ RH
+ such that

(ch) = arg max
(ch)∈RMH

+

∑
h∈H

λhuh(c) s.t.
∑
h∈H

(c− eh) = 0

This implies that for all agents h and h′ and all nodes σ

λhv′h(c
h(σ)) = λh′

v′h′(ch′
(σ)).

Saying that state prices α support an equilibrium for the GEI economy means that

for all σ, σ′

α(σ)

α(σ′)
=

v′h(c
h(σ))

v′h(c
h(σ′))

But by definition this then implies that

α(σ)

α(σ′)
=

∑
h∈H λhv′h(c

h(σ))∑
h∈H λhv′h(c

h(σ′))

Define vR(c) =
∑

h∈H λhvh(c). The prices α must then support an equilibrium in the

representative agent economy. �

The theorem shows that for asset pricing purposes the assumption of a represen-

tative agent might be justified if we think that markets are dynamically complete and

that all agents have identical beliefs. Note that if markets are complete but agents

do not have time-separable expected utility with identical beliefs, there will still be a
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representative agent, but unfortunately we can say nothing or little about his prefer-

ences. In particular they will, of course, not be time and state separable which makes

it generally impossible to say anything sensible about asset pricing.

However, even when the assumptions of Theorem 2 hold it is in general difficult

to say anything about how the risk aversion of the representative agent relates to the

risk attitudes of the agents in the economy.

Even if we assume that all agents have identical utility (i.e. they only differ

through their individual endowments), it is not obvious how the wealth distribution

affects the risk-aversion of the representative consumer. Gollier (2001) considers a

model with only two periods (the analysis can be easily generalized to T periods) and

shows that the representative agent is more risk averse than the individual agents if

and only if the absolute risk tolerance of all agents is concave. If all agents have HARA

utility functions, the absolute risk tolerance is linear and hence the representative

agent’s attitude to risk is identical to that of all agents in the economy. Therefore,

under the common assumption of HARA utility there is no problem as long as one

assumes identical utility functions. Without this assumption, no results are known

that relate the risk attitude of the representative agent to that of the agents in the

economy.

4.3.2 Gorman aggregation

Microeconomists, when they criticize the concept of a representative agent are of

course aware of the above theorem. However, what they have in mind if they talk

about representative agent is that the economy on the aggregate ‘behaves’ as an

economy with a single agent. Behaves means here that it shows the same comparative

statics. This, of course, is generally not true. One needs extremely strong assumptions

(in addition to complete markets) as was already pointed out by Gorman (1953).

4.3.3 Incomplete markets

Besides the fact that one might want to allow for heterogeneous beliefs across agents,

the main shortcoming of Theorem 2 is obviously that it assumes complete markets

(or more precisely efficient allocations).

When markets are incomplete, the concept of a representative agent really makes

no formal sense. However, there is no a a large applied literature which argues that

quantitatively the effects of incomplete markets are very small. Levine and Zame
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(2002) offer a formal explanation for this in a model with infinitely lived agents. It

is beyond the scope of this class to get into this in detail. It is true that for a finite

horizon model one can show fairly easily that generally (generically in endowments)

GEI equilibrium prices can never be supported by a representative agent.



Chapter 5

Infinite time and several agents

It seems fairly straightforward to extend the model from last chapter to a model with

infinite time horizon. However, to make things formally correct is not quite so trivial.

For example, what is the commodity space, what can we say about preferences over

infinite commodity bundles etc. What assumptions do we impose on short-sales,

bounded debt etc ?

In this chapter we will consider a very simple version of the infinite horizon version

of the model. We assume that each node is a finite history of shocks and that all

agents maximize time separable expected utility. Later, when we consider incomplete

markets we will also impose restrictions on short-sales.

There are H infinitely lived agents, h ∈ H, and a single commodity in a pure

exchange economy. Each agent i ∈ I has endowments ei(σ) > 0 at all nodes σ ∈ Σ

which are time-invariant functions of the shock alone, i.e. there exist functions eh :

S → R+ such that eh(st) = eh(st). Agent h has von Neumann-Morgenstern utility

over infinite consumption streams

Uh(c) = E0

∞∑
t=0

βtuh(ct)

for a differentiable, strictly increasing and concave Bernoulli function uh which satis-

fies an Indada condition.

There are J infinitely lived assets in unit net supply. Each asset j pays shock

dependent dividends dj(s), we denote its price at node st by qj(s
t). Agents trade

these assets but are restricted to hold non-negative amounts of each asset. We denote

portfolios by θh ∈ RJ . At the root node s0 agents hold initial shares θH(s−1).

A competitive equilibrium is a collection ((ch(σ), θh(σ))h∈H, q(σ))σ∈Σ such that

35
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market clear, ∑
h∈H

θh
j (σ) =

∑
h∈H

θh
j (s−1) for all σ ∈ Σ, j ∈ J ,

and such that agents optimize

ch ∈ arg maxc≥0 Uh(c) s.t. ∀st ∈ Σ

ch(st) = eh(st) + θh(st−1)(q(st) + d(st))− θh(st)q(st),

infσ q(σ)θh(σ) > −∞.

Note that as before, we need to add some constraint that rules out Ponzi schemes.

As before, I added the implicit debt constraint. From the previous chapter we can

guess that this will not always be sufficient to guarantee existence, so later we will

also impose short-sale constraints.

5.1 Complete markets

As long as security markets are complete and preferences are time-separable von-

Neumann-Morgenstern, the model remains tractable even if households are heteroge-

neous. In fact, it is fairly easy to show that both individual consumptions and asset

prices are time-invariant function of the shock to endowments and dividends alone.

Portfolio holdings are constant across time and states.

By the first welfare theorem the Arrow-Debreu equilibrium allocation will be effi-

cient. The following lemma is fairly trivial but surprisingly very useful and not very

well known.

Lemma 4 Given an efficient allocation (ch(σ))h∈H
σ∈σ , the individual consumptions must be

time-invariant functions of the shock alone, i.e. there exist c̄ : S → IRH
++ such that for

all st and all h ∈ H, ch(st) = c̄h(st). This fact immediately implies that marginal utilities

are collinear among agents.

Proof. Denote the period 0 probability of event st by π(st). Suppose that

there is an equilibrium where for two date-event nodes st, st′ with st = st′ we have

ch′
(st) 6= ch′

(st′) for some agent h′ ∈ H. Then we could improve everybody’s utility

by redistributing consumption at these nodes as follows, let

c̃h(st) =
βtπ(st)ch(st) + βt′π(st′)ch(st′)

βtπ(st) + βt′π(st′)
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for all h ∈ H. This convex combination, c̃, is clearly a feasible allocation and by strict

concavity agent h′ will derive higher utility. Therefore, ch′
(st) 6= ch′

(st′) contradicts

efficiency. �

Of course, as before, when there are long-lived assets, completeness of markets is

endogenous – we will return to this in Section 5.1.2 below.

To simplify things, we will assume for the rest of this section that the only assets

traded are one-period securities (e.g. bond) and trees.

5.1.1 Characterizing efficient equilibria

In this section, we first want to assume that markets are complete. By the first

welfare theorem, equilibrium allocations are efficient. Lemma (4) implies that agents’

consumptions are time-invariant functions of the exogenous shock alone. This allows

us to write c(s) as functions of the shock s alone.

Prices

Using the Euler equations of the first agent we can compute the price function of any

asset (knowing the consumption of the agent). Taking advantage of the time invariant

consumption, we define (probability deflated) prices by ps = u′1(c(s)). Don’t get

confused. These are not Arrow-Debreu prices as used above. I just could not think

of another symbol.

Just as in Chapter 3, for a long-lived asset j the Euler equations for agent 1 are:

qj(st)pst = βE
{
pst+1(qj(st+1) + dj(st+1)|st

}
These equations are a system of S linear equations in S unknowns. The solution is

qj ◦ p = [IS − βΠ]−1βΠ(p ◦ dj).

For a short-lived asset j the Euler equations for agent 1 are:

qj(st)pst = βE
{
pst+1dj(st+1)|st

}
Knowing the Arrow-Debreu allocation therefore gives us the asset prices right

away. It is pretty easy to use Negishi to show that Arrow-Debreu equilibria always

exist. What’s not so clear is under which conditions they are equivalent to GEI

equilibria.
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5.1.2 When are markets complete ?

Complete markets means that at each node st ∈ σ the payoff matrix

W =



q1(s
t1) + d1(1) · · · q1(s

tS) + d1(S)
...

...

qJ1(s
t1) + dJ1(1) · · · qJ1(s

tS) + dJ1(S)

dJ1+1(1) · · · dJ1+1(S)
...

...

dJ(1) · · · dJ(S)


has full rank S.

For a given economy E with long-lived assets and with J = S, the rank of the

payoff matrix is determined endogenously and there is no guarantee that markets are

complete.

We now want to give conditions which ensure that there exits at least one se-

quential markets equilibrium with complete markets. The following theorem gives a

sufficient condition.

Theorem 3 Suppose that there are J = S assets. Then for a full measure set of short-

lived asset dividends there exists at least one efficient financial markets equilibrium.

In order to prove this theorem, we need a lemma.

Lemma 5 If equilibrium allocations are time-invariant functions of the shock alone, the

assumption that the dividend matrix of the long-lived assets [d1d2 · · · dJ1 ] has full rank J1

implies that in that equilibrium the payoff matrix for the long-lived assets q1(1) + d1(1) · · · q1(S) + d1(S)
...

...

qJ1(1) + dJ1(1) · · · qJ1(S) + dJ1(S)


has also full rank J1.

Proof. If all endogenous variables in a financial markets equilibrium are time

invariant, the stochastic Euler equations for agent 1, which are necessary conditions

for optimality, for long-lived assets are

qj(z)u1′
z (c1(z))− β

∑
s∈S

π(s|z)(qj(s) + dj(s))u
1′

s (c1(s)) = 0 for j ∈ J l, z ∈ S.
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Denoting by u1′ the vector with the zth element u1′
z (c1(z)) and the component-wise

product of S-vectors x and y by x ◦ y we can rewrite the equations as

qj ◦ u1′ − βΠ
[
(qj + dj) ◦ u1′] = 0,

which in turn is equivalent to

qj ◦ u1′ = [I − βΠ]−1 βΠ(dj ◦ u1′).

Adding dj ◦ u1′ to both sides yields

(qj + dj) ◦ u1′ = [I − βΠ]−1 βΠ(dj ◦ u1′) + dj ◦ u1′

= [I − βΠ]−1 (dj ◦ u1′).

Now rank [d1d2 · · · dJ1 ] = J1 implies rank [(d1 ◦ u1′)(d2 ◦ u1′) · · · (dJ1 ◦ u1′)] = J1 and

rank [(q1 + d1)(q2 + d2) · · · (qJ1 + dJ1)] = J1. �

With this lemma, the proof of the theorem follows immediately from Kreps (1982):

Proof of Theorem 3.

Since for economies with complete markets Arrow-Debreu equilibria and financial

market equilibria are equivalent it suffices to show that for any Arrow-Debreu equi-

librium (with efficient and hence time-invariant allocations), the supporting asset

prices are such that the payoff matrix W (q, d) has full rank for a set of asset divi-

dends of the short-lived assets having full Lebesgue measure when J ≥ S. Lemma 5

implies that for W (q, d) to have a rank deficiency one of the dividend vector of a

short-lived asset must be linearly dependent on the remaining payoff vectors. So

there must exist a nonzero vector α ∈ RS such that W (q, d)α = 0 and, without loss

of generality, αS 6= 0. Said equivalently, the system of equations G(d1, α) = 0 where

G : RJ2×S
++ × RS → RS+1 is a smooth function defined by

W (q, d)α = 0 (5.1)

αS − 1 = 0 (5.2)

must have a solution. The function G depends on the J2 × S exogenous parameters

dj(y) for j ∈ J2, s ∈ S, and the endogenous variables αs, s ∈ S. A portion of the

Jacobian of G appears as follows,

dS αS

G(5.1) Λ(αS) S

G(5.2) 0 1 1

S 1
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where Λ(αS) is a diagonal matrix with all diagonal elements equal to αS. Once again

applying the transversality theorem shows that {α ∈ RS : G(d2, α) = 0} = ∅ for

almost all d2 ∈ RJ2×S, and so the matrix P (q, d) must have full rank S. �

Remarkably, the theorem implies that all equilibria must be efficient when there

are S long-lived assets. Kreps (1982) states that given any equilibrium allocation, the

payoff matrix supporting this allocation will have full rank generically in dividends.

Theorem 3 generalizes the result of Kreps (1982) slightly, since it implies that, under

the assumption that all dividend vectors are independent, we can focus on the divi-

dends of the short-lived assets only.

5.2 Incomplete markets

We now consider the model of Duffie et al. (1994, Section 3). This model is a version of

the Lucas (1978) asset pricing model with finitely many heterogeneous agents. There

are H infinitely lived agents, h ∈ H, and a single commodity in a pure exchange

economy. The only assets are trees in unit net supply and agents are not allowed to

take short positions in these trees. In equilibrium tree holdings therefore always lie

in

Θ = {(θh) ∈ RJH
+ :

∑
h∈H

θh = 1}.

As we will see this will make our life much easier.

5.2.1 Existence of (Markov) Equilibrium

In order to define our notion of Markov equilibrium, we need to adapt some concepts

from Duffie et al. (1994) to our model.

The State Space

We start of with defining a very large endogenous state space which consists of all

current endogenous variables. Readers familiar with recursive methods will realize

that this is not what one would usually identify as a natural state space. I will get

back to this point below.
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For now, let

z(σ) = (θ−(σ), c(σ), θ(σ), q(σ) = ((θh
−(σ))h∈H, (ch(σ))h∈H, (θh(σ))h∈H, q(σ))

be the endogenous state at node σ. These are beginning-of-period portfolio holdings of

each agent, current consumption, new portfolio and prices. We define the endogenous

state space as

Z = {z ∈ RJH
+ × RH

+ × RJH
+ × RJ

+ :
∑

h∈H θh
j =

∑
h∈H θh

j− = 1 for all j ∈ J }.

By definition, in any financial markets equilibrium, all endogenous variables lie in Z.

We will make frequent use of the set of endogenous variables without beginning-of-

period portfolios, and we denote this set by Ẑ = RH ×Θ× RJ .

We let the state space Y consist of all exogenous and endogenous variables that

occur in the economy at some node σ, i.e. Y = S × Z, where S is the finite set of

exogenous shocks and Z is the set of all possible endogenous variables.

Expectations Correspondence

For a set X , let X S be the Cartesian product of S copies of X . Given a state (s, z) ∈ Y ,

the ‘expectations correspondence’

g : Y ⇒ ZS

describes all next period states that are consistent with market clearing and agents’

first-order conditions. A vector of endogenous variables (z+
1 , . . . , z+

S ) ∈ g(s, z) if for

all households h ∈ H the following conditions hold.

(a) For all s = 1, . . . , S, the ’new’ beginning-of-period portfolios coincide with the

portfolios chosen today, i.e.

θh+
s− = θh

and the budget constraint holds, i.e.

ch+
s = eh(s) + θh+

s− · (d(s)− q+
s )− θh+

s · q+
s ≥ 0

(b) Agents’ first order conditions relate z to z+, i.e. for each h, there exist multi-

pliers λh ∈ RJ
+ such that for all j ∈ J the following equations hold:

λh
j − qju

′
h(c

h) + βEs
{
(dj + q+

j )u′h(c
h+)

}
= 0 (5.3)

λh
j θ

h
j = 0 (5.4)
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Conditions (a) are just the budget constraint. The conditions (b) are part of the

standard first-order conditions with respect to θh
j . Note that market clearing in asset

markets is ensured by our definition of Z; market clearing in commodity markets

follows from Walras’ law.

We need the following lemma to show existence.

Lemma 6 The graph of g is a closed subset of Y × ZS.

The lemma follows directly from the definition of g.

Definition of Generalized Markov Equilibrium

Markov equilibria are characterized by policy- and transition functions. Given a value

of the state today, the policy function gives the new optimal policy and equilibrium

prices. The transition function gives a probability distribution over states tomorrow.

Unfortunately, if we take the state space to consist only of the shock and beginning-

of-period portfolios (as one would usually do), these equilibria do not always exist.

Instead, we define a generalized Markov equilibrium to consist of a (non-empty

valued) ‘policy correspondence’, P , and a ‘transition function’, F ,

P : S ×Θ ⇒ Ẑ and F : graph(P ) → ZS

such that for all (s, z) ∈ graph(P ) and all s′ ∈ S

F (s, z) ∈ g(s, z) and (s′, Fs′(s, z)) ∈ graph(P ).

We say a generalized Markov equilibrium is simple if the associated policy correspon-

dence is single valued. It is easy to verify that in that case the definition coincides

with what one usually calls Markov equilibria.

A generalized Markov equilibrium is a financial markets equilibrium according to

our previous definitions if we can show that first order conditions are necessary and

sufficient. In order to show sufficiency of the first order conditions, we go back to

lemma 2. What we need to show to apply the lemma to this model is that there are

lower bounds to consumption and we need to assume that utility is bounded above.

To get lower bounds for consumption, we assume that u′h(c) → ∞ as c → 0 and

that eh(s) > 0 for all s ∈ S . With this assumption it is clear that there exists a

c > 0 such that it is never optimal to consume less than this (because remaining in

autarky and consuming endowments for the infinite future would give higher utility

than consuming c now and infinite amounts for the rest of the economy.
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Constructing Markov Equilibria

In constructing a Markov equilibrium (P, F ), we closely follow the existence proof

in Duffie et al. (1994). The basic idea of our approach is very similar to backward

induction. We start with a compact set, T ⊂ Ẑ, that is large enough to ensure that

for all finitely truncated economies the endogenous variables take equilibrium values

in T . The fact that such a set exists is established in Lemma 7 below. Assuming that

next period’s equilibrium variables can be described by some correspondence, V n :

S×Θ ⇒ T , we define a new correspondence, V n+1, by assigning to a given exogenous

shock s and wealth distribution θ− the set of all endogenous variables today that are

consistent (in the sense that all agents’ first-order conditions and market clearing

hold) with some ((θ+
1−, ẑ1), . . . , (θ

+
S−, ẑS)) tomorrow for which ẑs′ ∈ V n(s′, θs′−). With

this construction,
⋂∞

n=1 V n(s, θ−) is non-empty for all s ∈ S, θ− ∈ Θ.

Formally, given a compact set T ⊂ Ẑ, and a correspondence V : S × Θ ⇒ T ,

define an operator, GT , which maps the correspondence V : S × Θ ⇒ T to a new

correspondence W : S ×Θ ⇒ T as follows:

W = GT (V ) if for all θ− ∈ Θ and all s ∈ S,

W (s, θ−) = {(c, θ, q) ∈ T : ∃ (z1, . . . , zS) ∈ g(s, θ−, c, θ, q) such that for all s′ ∈ S,

(cs′ , θs′ , qs′) ∈ V (s′, θs′−)

where zs′ = (θs′−, cs′ , θs′ , qs′)}.

In order to construct a policy correspondence we first need a suitable set T that

is large enough to contain all endogenous variables. We define a truncated economy

with T +1 periods to be a finite horizon economy with an event tree, where all nodes

of the form σ = (s0 s1 · · · sT ) are terminal nodes. Endowments and asset payoffs at

nodes of the truncated tree, as well as agents’ preferences over consumption at these

nodes, are the same as in the infinite horizon economy.

Lemma 7 For all T ≥ 1 there exists a financial markets equilibrium for the truncated

economy in which values of all prices, asset holdings, and consumption allocations lie in

a compact set T ∗ ⊂ Ẑ.

The proof of the lemma is left as an exercise and follows directly along the lines

of the existence proof of Chapter 4.

Define V 0 by V 0(s, θ−) = T ∗ for all θ− ∈ Θ and all s ∈ S. Given a correspondence
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V n, n = 0, 1, . . . , define recursively V n+1 = GT ∗(V n). Finally let

V ∗(s, θ−) :=
∞⋂

n=1

V n(s, θ−) for all s ∈ S, θ− ∈ Θ. (5.5)

We can now state our main theorem.

Theorem 4 The correspondence V ∗ is non-empty valued and there exists a Markov equi-

librium with policy correspondence V ∗.

We have thus proven that in the Lucas model with heterogenous agents equilibria

always exist and that these can be characterized as an generalized Markov equilibrium.

Unfortunately, for the general model one cannot go further.
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