This class

1

- Time $t = 0, 1, 2, ..., T \le \infty$ and uncertainty
- Economic agents that maximize utility over consumption streams
- Assets that can be used to transfer wealth across time and states
- How can we price these assets

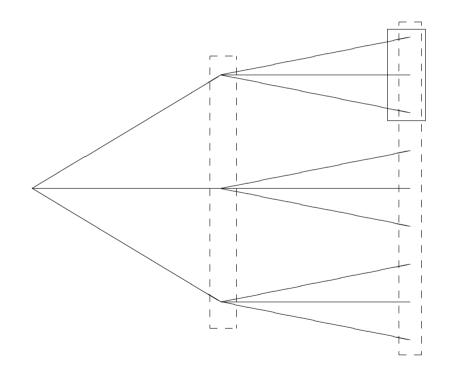
Structure

- Lecture 1: Uncertainty, assets, absence of arbitrage
- Lecture 2: The Lucas asset pricing model
- Lecture 3: General Equilibrium with Incomplete Asset Markets (GEI)
- Lecture 4: Infinite horizon models with heterogeneous agents

Event trees

- A set of nodes $\sigma \in \Sigma$
- Unique root node σ_0
- Each other node has a unique direct predecessor σ_{-}
- Each non-terminal node has a non-empty set of direct successor nodes $\Im(\sigma)$
- Collect all nodes with t predecessors in a set \mathcal{N}_t

Event trees



Stationary trees

- It often simplifies the notation hugely to assume that each (non-terminal) node has the same number of direct successors and that each terminal node is in \mathcal{N}_T .
- We associate with a node a history of shocks

$$\sigma \in \mathcal{N}_t \Leftrightarrow \sigma = (s_0 \dots s_t) = s^t$$

$$s_t \in \mathcal{S} = \{1, \dots, S\}$$

- Write s^{t+1} for a generic successor of s^t and s^{t-1} for the unique direct predecessor
- If s^t is followed by shock s we write $(s^t s)$.

Finance trees

- Underlying probability space (Ω, F, P), where F denotes the tribe (also called σ-algebra or σ-field depending on the context) of subsets of the set of possible states of the world Ω.
- At each date T a tribe $\mathcal{F}_t \subset \mathcal{F}$ denotes the set of events corresponding to the information available at date t. Filtration $\mathbb{F} = \{\mathcal{F}_0, \ldots, \mathcal{F}_T\}$ represents how information is revealed through time, $\mathcal{F}_t \subset \mathcal{F}_{t+1}$.
- We can then identify a node of the event tree by a date and a state of the world, ω_t , require that things that happen at t are \mathcal{F}_t measurable
- Advantage: Ω does not need to be countable, relates to continuous time model

Infinite event trees

• A node is a finite history of shocks

$$\sigma = s^t = (s_0, \dots, s_t)$$

- Countable many nodes in the event tree
- In contrast, if we consider sample paths, there must be a continuum, e.g. if S = 10 can associate each path with an element in [0, 1)
- I will choose the first interpretation. Does it make a difference?

General Equilibrium on an event tree

- Given a tree Σ with M nodes $\sigma \in \Sigma$
- Suppose there is one (perishable) commodity per node
- There are H agents with individual endowments $e^h \in \mathbb{R}^M_+$ and utility

$$u^h: \mathbb{R}^M_+ \to \mathbb{R}$$

• Agents want to trade to obtain consumption that gives higher utility than endowments

Assets

- At each node $\sigma \in \Sigma$ there are J assets $j \in \mathcal{J}$
- Each $j \in \mathcal{J}$ generates payoff at all direct successors $(a_j(\zeta))_{\zeta \in \Im(\sigma)} \in \mathbb{R}^{J+1}.$
- Assets pay off in both assets and the single commodity a_{j0}(σ) is the payoff in node σ commodity (and sometime write d_j(σ) to refer to this payoff as a dividend) while ã_j = (a_{j1},..., a_{jJ}) is the payoffs in node σ assets.
- The price of assets at node σ is denoted by $q(\sigma),$ a row vector.
- \bullet We collect payoffs of all assets at σ in a $J+1\times J$ matrix

$$A(\sigma) = (a_1(\sigma), \ldots, a_J(\sigma)).$$

Stocks and bonds

- A stock (or Lucas tree) is an asset that pays dividends and one unit of itself in the next period (does not pay in other assets).
- A one period asset (e.g. one period bond) pays only in commodities
- A bond of maturity T pays one unit of a bond of maturity T 1 next period
- In this class, I will only consider stocks, in the notes everything is for general assets, but this just makes notation complicated !

Budget sets

 \bullet At each node an agent h faces the budget constraint

$$c(\sigma) - e^{h}(\sigma) \le (1, q(\sigma))A(\sigma)\theta(\sigma_{-}) - q(\sigma)\theta(\sigma)$$

• In the case of only long-lived assets this gives

$$c(\sigma) - e^{h}(\sigma) \le (q(\sigma) + d(\sigma)) \cdot \theta(\sigma_{-}) - q(\sigma) \cdot \theta(\sigma)$$

- We collect the set of all non-negative consumption processes and portfolio processes which satisfy these constraints at all nodes for an agent h in a budget set *B*^h(q).
- It will be useful to associate with a trading strategy $(\theta(\sigma))_{\sigma \in \Sigma}$ a so-called 'gain-process':

$$D^{\theta}(\sigma) = (q(\sigma) + d(\sigma))\theta(\sigma_{-}) - \theta(\sigma)q(\sigma)$$

Absence of arbitrage - Definition

Prices and payoffs $(q(\sigma), d(\sigma))_{\sigma \in \Sigma}$ preclude arbitrage if there is no trading strategy $(\theta(\sigma))_{\sigma \in \sigma}$ with $\theta(0-) = 0$ such that $D^{\theta}(\sigma) \ge 0$ for all $\sigma \in \Sigma$ and $D^{\theta}(\sigma) \ne 0$ for at least one $\sigma \in \Sigma$.

Absence of arbitrage - Characterization

Prices and payoffs $(q(\sigma), d(\sigma))_{\sigma \in \Sigma}$ preclude arbitrage if and only if there exists a strictly positive state-price process $(\alpha(\sigma))_{\sigma \in \Sigma}$ such that for all non-terminal $\sigma \in \Sigma$,

$$q(\sigma) = \frac{1}{\alpha(\sigma)} \sum_{\zeta \in \Im(\sigma)} \alpha(\zeta) (q(\zeta) + d(\zeta))$$

Substituting

- If T is finite, one can obtain an expression for asset prices as a linear function of all future dividends (i.e. commodity payoffs) by substituting out all future prices
- The price at node σ_0 of a stock with dividend process $(d_j(\sigma))_{\sigma \in \Sigma}$ is simply

$$q_j(\sigma_0) = \sum_{\sigma \in \Sigma} \alpha(\sigma) d_j(\sigma).$$

 \bullet For infinite T there might be bubbles and

$$q_j(\sigma_0) \geq \sum_{\sigma \in \Sigma} \alpha(\sigma) d_j(\sigma).$$

No time to discuss this here, see references in the notes.

Stochastic Discount Factor

- In finance, the state prices α are often rewritten as the 'stochastic discount factor'
- The return of a tree is

$$R_j(s^t) = \frac{q(s^t) + d(s_t)}{q(s^{t-1})}$$

 \bullet Absence of arbitrage implies that there are $\boldsymbol{m}(\boldsymbol{s}^t)$ such that

$$m(s^{t-1}) = E(R_j(s^t)m(s^t)|s^{t-1})$$

The price of an asset is determined by the payoff's covariance with the stochastic discount factor

 \bullet With assumptions on preferences one can pin down m, e.g. CAPM

Outline of proof

- Define $\mathcal{M} \subset \mathbb{R}^M$ as $\mathcal{M} = \{(D^{\theta}(\sigma))_{\sigma \in \Sigma} : \theta \text{ is a trading strategy}\}$ the absence of arbitrage means that $\mathcal{M} \cap \mathbb{R}^M_+ = \{0\}$.
- \bullet If strictly positive α exist, the absence of arbitrage follows from simple calculation
- For the opposite direction, separate M and R^M₊: Suppose M and K are closed convex cones in Rⁿ that intersect precisely at zero. If K is not a linear subspace, then there is a nonzero linear functional F such that F(x) < F(y) for each x ∈ M and each nonzero y ∈ K.

Absence of arbitrage - Example

- Suppose there are 3 periods, two shocks each period (binomial event tree)
- Suppose there is a one period bond traded at each node and that there is a stock which pays dividends

$$d(1) = 2$$
 $d(2) = 1$ $d(11) = d(12) = 1$ $d(21) = d(22) = 0$

• How can we find possible no-arbitrage prices for period 0 ?

A geometric characterization

- Suppose there are J trees and M states in the event tree.
- No arbitrage prices at t = 0 are some subset of \mathbb{R}^J .
- Can characterize this set as the cone spanned by the dividends of the assets in a given state, across assets

Uniqueness of stochastic discount factor

- We will see later that stochastic discount factor is unique if markets are complete (i.e. sufficiently many assets)
- In this case, one can price all conceivable new assets (e.g. options) by the stochastic discount factor that one derives from existing assets
- Most of option pricing (e.g. Black Scholes) relies on this idea