Infinitely lived agents

- We consider a model with H heterogeneous agents who live forever.
- There is no production, only one commodity. Agents have endowments in the commodity which are time-invariant functions of the shock
- Agents maximize time-separable expected utility
- Lucas model with heterogenous agents

Assets

• Lucas trees: Infinitely lived assets that pay a dividend at all nodes $\sigma_t \in \sigma$. The dividend is a function of the shock alone. Each agent faces the following budget constraint

$$c^{h}(s^{t}) = \bar{e}^{h}(s_{t}) + \sum_{j \in \mathcal{J}} \theta^{h}_{j}(s^{t-1})(q(s^{t}) + d(s_{t})) - \theta^{h}(s^{t})q(s^{t}).$$

• One period assets: Contracts written contingent on next period's shock. Easiest example is a bond that pays one unit next period independently of the shock.

Some remarks on complete markets

- Condition for complete markets the same as in finite horizon
- When markets are complete, consumption time-invariant function of shock
- Prices of assets are given by marginal utilities of agents
- Incomplete markets make things incredibly difficult

Heterogeneous Lucas model

- \bullet *H* infinitely lived agents and a single commodity in a pure exchange economy.
- Endowments are $e^h(\sigma) > 0$ with $e^h(s^t) = \mathbf{e}^h(s_t)$
- \bullet h has von Neumann-Morgenstern utility over infinite consumption streams

$$U^{h}(c) = E_0 \sum_{t=0}^{\infty} \beta^{t} u_h(c_t)$$

- J infinitely lived assets in unit net supply. Each j pays shock dependent dividends $d_j(s)$, we denote its price at node s^t by $q_j(s^t)$. Agents trade these assets but are restricted to hold non-negative amounts of each asset. Portfolios are $\theta^h \ge 0$.
- Endogenous state could be initial portfolios or cash at hand (i.e. value of initial portfolio at current prices)

Euler equations

 $z = (\theta_{-}, c, \theta, q), \kappa \in \mathbb{R}^{HJ}_{+}$, equilibrium is determined by $q(\bar{s}, \bar{z}, \kappa, z(1), ..., z(S)) = 0$, where $g_{h}^{1} = -\bar{q}u_{h}'(\bar{c}^{h}) + \beta E_{\bar{s}}\left[(q(s) + d(s))u_{h}'(c^{h}(s))\right] + \kappa^{h}$ $g_{hs}^2 = \theta^h_-(s) - \bar{\theta}^h$ $g_{hs}^{3} = c^{h}(s) - \theta_{-}^{h}(s) \cdot (q(s) + d(s)) + \theta^{h}(s) \cdot q(s) - \mathbf{e}^{h}(s)$ $g_{hi}^4 = \bar{\theta}_i^h \kappa_i^h$ $g_{is}^5 = \sum_{h \in \mathcal{H}} \theta_i^h(s) - 1$

Conditions necessary and sufficient?

- Given sequence of prices $q(s^t)$, need to show that first order conditions are necessary and sufficient for optimality
- Necessity of first order conditions is standard, but for sufficiency we need to
 make additional assumptions. Assume that u^h(c) is bounded above and that
 u_h(c) → ∞ as c → 0.
- \bullet Also need that prices remain bounded, i.e. $\sup_{\sigma}q(\sigma)<\infty$

Recall Sufficiency-lemma

Assume that Bernoulli utility u(.) is bounded above. Suppose asset prices are bounded, i.e. $\sup_{\sigma} q(\sigma) < \infty$. A process $(\bar{c}(\sigma), \bar{\theta}(\sigma))$, with $\sup_{\sigma} q \cdot \bar{\theta}(\sigma) < \infty$ and with $\sup_{\sigma} u'(c(\sigma)) < \infty$ solves an agent *h*'s optimization problem if for all s^t the Euler equation holds, i.e.

$$-q(s^{t})u'(\bar{c}(s^{t})) + \sum_{s} \pi(s|s_{t})(q(s^{t+1}) + d(s_{t+1}))u'(\bar{c}(s^{t+1})) = 0$$

Existence and characterization of equilibria

- Unfortunately, even with a single asset (even a bond) cannot use contraction mapping theorem to prove existence of recursive equilibrium
- In practice, it behaves as if it were a contraction ?
- Can interpret algorithm that are used to compute equilibria as approximating infinite horizon model with long finite horizon.

Existence of Markov equilibria

- In general, one cannot prove that recursive (or Markov) equilibria exist.
- However, one can show that competitive equilibria always exist. This can be done by looking at truncated economies and pass to the limit...
- For any T < ∞, consider a truncated economy where after T periods nobody has endowments. Use standard fixed point methods to prove existence for these 'truncated economies'.

Generalized Markov Equilibria

- Duffie, Geanakoplos, Mas-Colell and McLennan consider more general (much less useful) definition of Markov equilibria
- The state-space consist of all exogenous and endogenous variables that describe the state of the economy at some date-event:

$$\Omega = \mathcal{S} \times \mathcal{Z},$$

where S is the finite set of exogenous shocks and Z, a subset of Euclidean space, is a comprehensive set of possible values for the endogenous variables at any date-event.

• An expectations correspondence,

$$G:\Omega \Rightarrow \mathcal{Z}^S,$$

embodies all short run equilibrium conditions: (first order) conditions for individual optimization and market clearing conditions; to every pair of a realization of the shock and values of endogenous variables, it assigns values of the endogenous variables at all possible realization of the shock at the following date.

• An equilibrium set for an expectations correspondence, G, is a compact subset $\vec{Z}^* \subset Z^N$, such that

$$[(z_1, ..., z_S) \in \vec{\mathcal{Z}}^*] \quad \Rightarrow \quad [G(s, z_s) \cap \vec{\mathcal{Z}}^* \neq \emptyset, \text{ for all } s \in \mathcal{S}]$$

• Can write Z^* as the graph of an equilibrium correspondence, mapping shock and beginning-of-period portfolio holdings to new choices and prices

Existence of equilibrium set

- A *T*-horizon equilibrium for the correspondence *G* consists of a subset Ω ⊂ Ω and (s_t, z(σ_t)) : t = 1, ..., T, z(σ_t) ∈ G_{st}(s_{t-1}, z(σ_{t-1})), that satisfies (s_t, z(σ_t)) ∈ Ω̃; the set Ω̃ supports the equilibrium.
- \bullet If G is an expectations correspondence, such that
 - 1. there exists a compact subset $\mathcal{K} \subset \Omega$ that supports a *T*-horizon equilibrium for $T = 1, \ldots$, and
 - 2. the graph of G is closed,

then, an equilibrium set for G exists.

Proof

Define sets $T_0 = \mathcal{K}$, and, recursively,

 $\mathcal{T}_n = \{(\bar{s}, \bar{z}_{\bar{s}}) \in \mathcal{K} : \text{ there exists } (z_1, ..., z_S) \in G(\bar{s}, \bar{z}_{\bar{s}}), \text{ with } (s, z_s) \in \mathcal{T}_{n-1}\}.$

Since, by assumption, the expectations correspondence has a closed graph and since \mathcal{K} is compact each \mathcal{T}_n is compact.

We show by induction that for each n > 1, $\mathcal{T}_n \subset \mathcal{T}_{n-1}$. By definition $\mathcal{T}_1 \subset \mathcal{T}_0$. If $\mathcal{T}_n \subset \mathcal{T}_{n-1}$ and for some $(\bar{s}, \bar{z}) \in \mathcal{K}$ there exists $(z_1, ..., z_S) \in G(\bar{s}, \bar{z})$ with

$$(s, z_s) \in \mathcal{T}_n \subset \mathcal{T}_{n-1},$$

then, obviously, $(\bar{s}, \bar{z}) \in \mathcal{T}_n$ and $\mathcal{T}_{n+1} \subset \mathcal{T}_n$.

Since, by assumption, all T_n are non-empty, the set

$$\Omega^* = \bigcap_{n=0}^{\infty} \mathcal{T}_n$$

is non-empty. Define $\vec{\mathcal{Z}}^*$ as follows:

$$\vec{\mathcal{Z}}^* = \{ z = (z_1, ..., z_S) : (s, z_s) \in \Omega^* \text{ for all } s \in \mathcal{S} \}$$

It follows from the construction that this is an equilibrium set for G

Why do we care?

- The existence of an equilibrium set implies existence of recursive ϵ -equilibrium
- The first order conditions do not hold exactly, but for small $\epsilon > 0$, we have

$$\| - u'(\bar{c}^h) + \beta \sum_{s'} \pi(s, s')(q(s') + d(s'))u'(c(s')) + \kappa \| < \epsilon$$

- This is what we compute in practice and we can show that it exists
- Obviously, this will not tell us why smooth methods should work here

Existence of approximate equilibria

- For the stochastic economy of overlapping generations, a Markov ε-equilibrium exists, for any ε > 0.
- Given a (compact) equilibrium set, Z
 ^{*}, for an expectations correspondence, G, there exists, for any δ > 0, a finite collection of points, F^δ, such that

$$\sup_{\zeta \in \vec{\mathcal{Z}}^*} \inf_{\xi \in \mathcal{F}^{\delta}} \|\xi - \zeta\| < \delta,$$

and such that there exist a set of beginning-of-period portfolio holdings and stored commodities \mathcal{T} and a function $w : \mathcal{S} \times \mathcal{T} \to \mathcal{Z}^N$, with

$$\mathcal{F}^{\delta} = \operatorname{graph}(w);$$

the former follows from compactness of \mathcal{Z}^* and the latter from the finiteness of \mathcal{F} .

• For each
$$(\bar{z}_1, \ldots, \bar{z}_S) \in \mathcal{F}^{\delta}$$
, each $\bar{s} \in S$, choose
 $\xi = (z_1, \ldots, z_S) \in \mathcal{F}^{\delta}$ such that $\inf_{\zeta \in G(\bar{s}, \hat{z})} |\zeta - \xi| < \delta$
for \hat{z} with $|\hat{z} - \bar{z}_{\bar{s}}| < \delta$

Heterogeneous Lucas model and the data

- Heaton and Lucas (1996) show that with transitory shocks, incomplete markets do not change pricing implications significantly
- Constantinides Duffie show that with permanent shocks things become very different
- Empirical question: What can we say about income processes
- Cross-sectional returns ?
- lacksquare