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Mechanism Design (MD)

• Mechanisms: Protocols to impement desired system-
wide outcomes in multi-agent systems despite the self-
interest and private information of agents.

• Computational MD: the design of such mechanisms. 
– should be “truthful”

– should be “efficiently computable”

– should be  “computationally feasible” for agents

• Auctions: mechanisms for resource allocation
– typically “detail free,” don’t depend on distributional 

knowledge on types of agents.

• Start with a normative model of agent behavior.

• Design “rules of the game”, e.g. to allocate resources 
or tasks efficiently in equilibrium.

• May also try to design for:
– robust equilibrium

– minimal information revelation

– distributed computation

– bounded-rational agents

– adaptive agents

Example: Internet Auctions

• eBay



Example: Ad Auctions

• Google

Example: Procurement Auctions

• CombineNet

Example: LGA Take-off & Landing Example: Sensor Networks

• Intel Research 
Berkeley’s
150-mote sensor 
network



Example: WiFi @ Starbucks Example: MultiAgent Planning

i’ll do tasks 
A and B

task C costs 
me 1kJ

it’s hard work, 
don’t ask me

CS/Econ Analogy

• Agents are 
cooperative

• Main concern is 
computational and
communication

• Agents are self-
interested

• Main concern is 
incentives

Computational Mechanism Design:
- brings both together… 

(based on Feigenbaum)
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tradtional
MD

online
MD

(learning,
temporal
incentives)

distributed
MD

(distr. computation,
partial revelation,
over a network)



Outline: Tutorial

• Static & Centralized MD
– algorithmic mechanism design
– truthful characterizations

• Static & Decentralized MD
– indirect mechanisms
– ascending-price auctions
– distributed implementations

• Dynamic & Centralized MD
– online auctions, online MD
– truthful characterizations

• Adaptive & Decentralized MD
– uncertain rewards, learning

Part I: 

Preliminaries
VCG

Truthfulness
AMD

Multi-agent System: Preliminaries
• Set of alternatives A = {a,b,…}

• Agents N = {1,2,…}, |N|=n

• Agent i has private information (type) i i

– e.g.,  value vi(a; i) for alternative a A

– often times we’ll just write vi(a)

• Quasi-linear utility: ui(a,p)=vi(a; i)-p
for alternative a at price p

– no budget constraints

• Goal: implement a social choice function (scf),
scf( ) A; for instance choose a* to max ivi(a; i)

Truthful Mechanisms

Reports ( 1,…, n) Mechanism
(“center”)
M=< n,g, p>

a* = g( )

(p1,…,pn)=p( )

Truthful reports, i = i in a dominant-strategy equilibrium.
Also called strategyproof.

g: n A outcome rule
p: n Rn payment rule

n type space

^ ^

^

^

^



Example: Second price auction

Value vi. Agent i submits bid bi, and receives utility: 

ui(b1,…,bn) = vi - maxj ibj, if bi > maxj ibj

0,                  otherwise

Truthful: dominant strategy is to bid, b*
i(vi)=vi

(Vickrey’61)

pi = maxj ibj. agent-independent.
will buy if and only if bi > pi

should report bi=vi

Proof:

Auction is efficient.

The Combinatorial Auction

• Goods G, |G|=m

• Alternatives: 
– allocations S=(S1,…,Sn), with bundle Si G

– feasible: Si Sj= for all agents i, j

• Values vi(Si; i) 0 for bundles Si G

• Typical goal: maxS ivi(Si, i)

• Applications: logistics, MBA course scheduling, 
wireless spectrum, school lunches in Chile, …

Computational Results
WDXOR: maxxi(S) i vi(S) xi(S)

s.t. S xi(S) · 1, i

i S:j Sxi(S) · 1, j
xi(S) {0,1}

• XOR bidding language: want at most one bundle
– {(AB,$10) xor (CD,$5) xor (ABC,$15)}

• NP-hard (MaxWeightSetPacking = WD for single-minded)

• Inapproximable, no better than min(l1- ,m1/2- ) polytime-approx
unless NP=ZPP (Hastad’99,Sandholm’02,Lehmann et al’02)

– m1/2 approx; greedy sort by vi(S)/(|S|1/2) (Lehmann et al.’02)

• No polynomial time approximation scheme (PTAS) unless P=NP (A
achieving 1+ approx, poly-time for fixed ) (Berman & Fujito’99, Lehmann et al.’05)

• Polynomial special cases exist for WDOR (e.g. Rothkopf et al.’98)

– {(AB,$5) or (CD,$10) or (CE,$7)}

• restricted valuations: OXS GS SM XOS CF (Lehmann et al.’03)

– log(m)-approx for CF (Dobzinski et al.05); 2- LB

– (e/e-1)-approx for XOS (Dobzinski & Schapira’05); 1+1/2m LB
(Nisan&Segal’03)

Practical WD Algorithms

• Systematic search
– anytime algorithm

– provable error bound

• Branch on bids

• LP-based admissible 
heuristics

• Branch & cut: (Nemhauser
& Wolsey’99, Nemhauser’98)

– cutting planes to 
strengthen
formulations

• Branching heuristics

(Sandholm’05)

bids:

(Fujishima et al’99, Sandholm’99, Sandholm et al.’01, 
Sandholm et al.02, Andersson et al.00, de Vries and Vohra’03)



Truthfulness: The VCG Mechanism

VCG mechanism:

• Collect =( 1,…, n) from agents.

• g( ): Select a* A to maximize ivi(a; i)

• pi( )=pVCG,i= j ivj(a-i; j)- j ivj(a*; j),
where a-i solves maxa A j ivj(a; j)

Theorem. The VCG mechanism is truthful and 
allocatively-efficient.

(Vickrey 61, Clarke 71, Groves 73)
Example: Combinatorial Auction

• Buyer 3 wins, and pays 
10-0=10.

• Buyers 1 and 2 win, and 
pay 7-5=2 each.

12003

5502

5051

ABBA

7003

5502

5051

ABBA

bundles bundles

agents agents

• Consider agent-independent prices:
pi(S) = V-i(G) - V-i(G\S), for all i, all S

where VK(G’)=maxS Feas(G’) i Kvi(Si)

Proof:
• First, show that the efficient allocation S* solves

maxS vi(S) - pi(S), for all i
• S*

i arg maxS vi(S) + v-i(G\S) - V-i(G)

• Second, show that pVCG,i=pi(S*
i)

• pi(S*
i) = V-i(G)-V-i(G\S*

i)
= j ivj(a-i; j)- j ivj(a*; j) = pvcg,i

(writing vi(S, ) as vi(S))

VCG Mechanism
• Generalizes to implement affine-maximizers: 

g( ) = arg maxa icivi(a, i) + c(a)

pvcg,i( ) = 1/ci { j icjvj(a-i, j) + c(a-i) - j icjvj(a*, j) - c(a*) }

• Universal, applies for all domains.

• Unique, only truthful mechanism for unrestricted 
preferences (K.Roberts’79)

• Unique, only truthful affine-maximizing mechanism for 
arbtitrarily-restricted preferences (Green&Laffont’77)

• Maximizes expected revenue across all ex post IR and 
efficient mechanisms (Krishna&Perry’98)



VCG may run at a deficit

• Trade of an item from agent 1 to agent 2
• Agent 1:  v1 [0,1]
• Agent 2:  v2 [0,1]
• Alternatives: {no-trade, trade}
• VCG mechanism: 

– receive bids b1, b2

– if b2 > b1, then trade; and pvcg,1=0-b2, pvcg,2=b1-0
– otherwise, no trade.

• Example: v1=0.3, v2=0.6
• Outcome: trade, pvcg,1=-0.6 and pvcg,2=0.3
• Budget deficit of -0.6+0.3=-0.3

• No-deficit + IR + efficient two-sided trading mechanism is 
impossible (Myerson & Satterthwaite’83)

Computational Issues

• For center: If used to solve NP-hard problems (e.g. 
CAs), easily loses truthfulness if substitute an 
approximation. (Nisan & Ronen’00)

• For agents: required to report complete valuation 
function (Parkes’01)

– hard valuation problem

– privacy

– communication complexity

• Completely centralized

Example: Approximate VCG

• Single-minded: type i=<wi,Si> s.t. 
vi(S; i)= wi, for all S Si

= 0,     otherwise

• Greedy approximation:
– sort bids in order of decreasing wi / |Si|

– allocate with greedy algorithm

E.g., Agent 1.  (A,10), Agent 2. (AB,19), Agent 3. (B,8)
Implement (A, , B).

Payment by 1: 19 - 8 = 11

Payment by 2: 0

Payment by 3: 10 - 10 = 0

fails participation!

should overstate value!

(still NP hard, weighted set-packing problem…) Algorithmic Mechanism Design

• Find truthful and tractable mechanisms M=< n,g,p>

• Still direct-revelation:
– does not address agent complexity

(Lehmann et al.’99,Nisan & Ronen’00)



Idea: Price-Based Mechanisms

Theorem. Mechanism M=< n,g,p> is truthful if and only if 
exists an agent-independent price function 

i:A × -i R s.t.

1) the payment pi( )= i(a, -i), when a=g( ) A is selected.

2) “admissible” a=g( ) arg maxa A{vi(a; i)- i(a, -i)},
for all i, all

(e.g. Segal 02, Bartal et al. 03, Lavi et al. 03, Yokoo 03,

goes back earlier…)

try to characterize allocation rules for which there
exist admissible agent-independent prices. 

sufficient: Agent i cannot change prices i, and 
maximizes utility ui(a, i(a, -i)) by reporting true i

a b c d e alternatives

price

X X X

X X

values

outcome

a b c d e alternatives

price

X X X

X

X

values

outcome

Every truthful mechanism must be 
price-based

Proof. Construct i(a, -i)=pi( ’i, -i) when g( ’i, -i)=a for
some ’i, and i(a, -i)= otherwise.

• Agent-independent: suppose some , some ’i i, with 
g( )=g( ’i, -i)=a, but pi( ) pi( ’i, -i). w.l.o.g., pi( )>pi( ’i, -i),
and should declare ’i. Contradiction w/ truthfulness. 

• Admissible: suppose some with g( )=a, and vi(a, i)-

i(a, -i) < vi(b, i)- i(b, -i) for b a. Agent should declare 
’i, contradiction w/ truthfulness. 



Example: Single-Minded CAs

• Allocate with greedy scheme, in order wi/|Si|

• Winner pays |Si|· {wj/|Sj|}, where bid j is the first bid 
that would win without the bid <wi,Si>
E.g., Agent 1.  (A,10), Agent 2. (AB,19), Agent 3. (B,8)

Implement (A, , B).

Payment by 1:   1 × (19/2) = 9.5

Payment by 2:  0

Payment by 3:  0

(Lehmann, O’Callaghan & Shoham 2003)

Proof:
• Prices i(Si, -i) = min{ w’i R : ’i=<w’i,Si>, gi( ’i, -i) = Si}
• Winner: i(Si, -i) = |Si|·(wj/|Sj|) · wi, where j is

displaced bid, since wi/|Si| wj/|Sj|
• Loser: i(Si, -i) > wi, since greedy algorithm is 

monotonic and would allocate if wi i(Si, -i).

Key Property: Monotonicity

• Bid-monotonic: If bid <wi,Si> wins, then bid <vi,Ti> for
vi wi and Ti Si will also win.

• All single-minded greedy allocation rules g(·) that sort 
by wi/|Si|k for k 0 are monotonic.

• Monotonicity of allocation rule is necessary & 
sufficient for existence of admissible prices for 
single-minded allocation problems.

• “Critical value” payment rule:
pi( )= i(Si, -i)=min { w’i : ’i=<w’i,Si>, gi( ’i, -i) = Si},

Additional Results in AMD
• Multi-item CAs:

– WDPXOR

– each bid for a small number of items (determines k)
– 2(1+rk-1/k)-approx, for constant r>1 and k<1
– (Bartal,Gonen & Nisan.’03)

• Digital goods:
– Consensus revenue estimate (CORE)
– random sampling threshold auctions (RSOT)
– revenue-competitive results
– (Goldberg, Hartline et al.’01,’03; also Segal’02)

• Building on VCG-based Maximal-in-range (Nisan & Ronen’00):
– Anytime SP (Schoenebeck & Parkes’04)

– m1/2-approx for CF special case of CAs (Dobzinski & Schapria’05)

• Handling Budget Constraints
– agent type: value + budget
– Using sampling approach (Borgs, Immorlica et al.’05)

Part II: 

More general 
characterizations

Indirect mechanisms



Seeking more general 
characterizations

• W-MON: g(vi,v-i)=a, g(wi,v-i)=b wi(b)-wi(a) vi(b)-vi(a)
– “cannot change from a to b unless value on b increases.”

• Necessary (truthful WMON) (Rochet’87)

• Suppose g(vi,v-i)=a and g(wi,v-i)=b.

• By truthful,  vi(a)- i(a,v-i) vi(b)- i(b,v-i) and
wi(b)- i(b,v-i) wi(a)- i(a,v-i)

• Combining, wi(b)-wi(a) vi(b)-vi(a).

• Sufficient for single-parameter domains (e.g. single-
minded CAs). Where else?

(Rochet’77,Lavi et al.’03, Roberts’79, Green&Laffont’77,Lehmann et al.02,Saks&Yu’05)

(Constantin & 
Parkes’05)

Order-based Domains

Domain of types defined in terms of:
– constraints: Ri(a,b) {=,<, ·, >, }

– null outcomes: Null A

Then i i if and only if: 
vi(a; i)=vi(b; i), a, b s.t. Ri(a,b) = “=“

vi(a; i)<vi(b; i), a, b s.t. Ri(a,b) = “<“

…

vi(a; i)=0, a Null

Includes: CAs, multi-unit auctions, contiguous 
preferences, unrestricted preferences.

(Lavi, Mu’alem and Nisan’03)
Example: CAs

Alternatives a A define allocations

(no externalities) 

Ri(a,b) = “=“ for all a, b with Si
a=Si

b

(normalizaton)

a Null for all a with Si
a=

(free-disposal)

Ri(a,b) = “·” for all a, b with Si
a Si

b



some results

• Lavi et al.’03: order-based + WMON truthful

• Saks & Yu’05: convex + WMON truthful

• Gui et al.’04: graph-theoretic characterizations for 
sufficiency

• Lavi et al.’04: IIA + order-based + truthful affine-
maximizer

(Constantin & Parkes’05)
Gaps in characterization

Also: bounded-XOR, CF, attribute-based,…

Directions for Characterizations

• +universal
• +natural (“critical value”) price functions
• +additional structure

– exist-order-based
– attribute-based
– multi-order based

• +algorithmically meaningful
– i.e. would like sufficient conditions that map to 

algorithmic properties

(Constantin & Parkes’05)
Outline

• Static & Centralized MD

• Static & Decentralized MD
– indirect mechanisms

– ascending-price mechanisms

– distributed implementations

• Dynamic & Centralized MD

• Adaptive & Decentralized MD



Direct Mechanisms

Reports ( 1,…, n) Mechanism
(“center”)
M=< n,g, p>

a* = g( )

(p1,…,pn)=p( )

g: n A outcome rule
p: n Rn payment rule

n type space

^ ^

^

^

Seek M for which truth-revelation is a DSE.

Indirect Mechanisms

Messages
(s1( 1),…,sn( n)) Mechanism

(“center”)
M=< n,h,p>

a* = h(s( ))

(p1,…,pn)=p(s( ))

h: n A outcome rule
p: n Rn payment rule

n strategy space
strategy s : i i

Seek M for which exists some s*=(s*
1,…,s*

n) that is an
ex post Nash equilibrium.

Feedback

ex post Nash

• ex post Nash: s*
i is best-response whatever the type 

of other agents:
ui(s*

i( i),s*
-i( -i); i)

ui(s’i( i),s*
-i( -i); i), -i, i, i, s’i

ex post Nash requires that other agents ( i) play the 
equilibrium strategy

still allows an agent to have no information about private 
types of other agents.

Example: open out-cry, ascending-price single-item 
auction

DSE ex post

Revelation Principle

• Theorem: Any scf that can be implemented in an ex
post Nash equilibrium in an indirect mechanism can be 
implemented in a DSE in a direct mechanism.

• Proof (sketch). Via a reduction. If there is some 
complex mechanism M with equilibrium s*, then 
construct a new direct mechanism M’ in which the 
center commits to simulate strategy s* and rules <h,p>
of M. Truthful reporting is an equilibrium in M’ because 
s* is an equilibrium in M.

• Why worry about indirect mechanisms?



Computational Advantages of
Indirect Mechanisms

• Less information revelation (privacy)
– e.g., the winner does not reveal vi, and other agents that bid in 

period t reveal vi pt

• Avoids unecessary valuation effort
– e.g., the winner does not need to know exact value, only that vi

pT in final round T
– e.g., the losers do not need to know exact value, only that vi <

pt in drop-out round

• Can distribute computation:
– e.g., ask agents to submit best-responses in each round; can 

perform useful computation.

(Parkes’99,Parkes’01,Contizer&Sandholm’02,Feigenbaum & Shenker’02)

Incremental-Revelation Mechanisms

Strategy: respond 
to query qt

i

Indirect
Mechanism
M=< n,h,p>

a* = g( )

(p1,…,pn)=p( )
new queries
Qt

1,…,Qt
n

enough information?

yesno

• Example queries: value(a)?, demand(p)?, is vi(a)>vi(b)?,
…

• Consistency + VCG outcome ex post Nash

Truthfulness via VCG 
• Let s* denote the truthful strategy.
• Say M is consistent if s’i , then for all i then ’i s.t.

s*
i( ’i) is identical to s’i( i).

– use “activity rules”, e.g. no jump bids, no re-entry once 
dropped out,…

• Theorem: Any consistent mechanism that implements 
the VCG outcome with s* is truthful in ex post Nash 
equilibrium. (Gul & Stacchetti’03)

• Proof (sketch):  Fix s*
-i, fix v-i, consider some vi. show 

that any s’i s*
i is equivalent to s*

i for some v’i vi. Get 
ex post Nash by appeal to VCG.

Static & Decentralized MD

• Center + Incremental-revelation
– Characterization of minimal information requirements to 

implement scfs

– Design of incremental-revelation mechanisms

– Price-based, computational-learning theory based

• Distributed computation
– Good “network complexity”

– Bring computation and information revelation into an 
equilibrium
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Information Certificates
(Parkes 02)

true agent types
=( 1,…, n)set of agent types F( ) for 

which a g( ) for all F( )

insufficient
information

certificate

space of
possible types

Characterizations of Minimal 
information to determine efficient 

allocation in CAs
Price pi(S) 0 for bundles S G.

Prices (p1,…,pn) are CE prices if and only if the 
efficient allocation S* satisfies:

(1) S*
i arg maxSi {vi(Si; i)-pi(Si)}, i

(2) S* arg maxS1,…,Sn i pi(Si)

Theorem. Any mechanism that implements the 
efficient allocation also elicits enough information to 
determine CE prices.

(Also sufficient: an allocation S satisfying (1) and (2) 
for some prices p is efficient.)

(Parkes 02; Segal & Nisan 03)

Ascending-Price CAs

• Large literature on ascending-price CAs 
• Maintain prices pt, allocation xt

• Seek CE prices efficient allocation

• Collect best-response sets BRi
t 2G

• Solve WD to maximize revenue given bids BRi
t

– chose an allocation from bids that maximizes total revenue to 
auctioneer at current prices

• Increment prices
• Terminate when all agents still bidding receive a 

bundle in allocation. Typically, adopt final prices as 
payments.

Minimal VCG Certificates

Prices (p1,…,pn) are Universal CE prices if and only if:

(1) prices are CE for main economy E(N)

(2) prices are CE for marginal economies 
E(N\1),…, E(N\n)

(Lahaie, Constantin & Parkes’05)

Example: v1 = 10. v2= 6. v3 = 4. Price 6·p·10 is a CE 
price. But only 4·p·6 is a CE price in economy {2,3}.
UCE price, puce=6.

Theorem. Any mechanism that implements the 
outcome of the VCG mechanism must elicit enough 
information to determine UCE prices.

(Also sufficient: an allocation S satisfying (1) prices satisfying 
(1) and (2), then pvcg,i = pi(Si) - { s(N)- s(N\i)}. (Parkes&Mishra’04))



Linear-Programming Based Design

• Formulate an LP for the 
allocation problem.

• Auctions provide Primal-
dual/subgradient
algorithms.

• Maintain feasible primal 
and dual solutions: 
allocation & prices

• Increase prices based on 
losing bids.

• Terminate when 
allocation maximizes 
payoff for all bidders.

• Primal & Dual are 
optimal:
(P) efficient allocation

(D) CE prices

• Also get UCE, then 
myopic best-response is 
ex post Nash…

(de Vries et al.’04, Parkes&Ungar’00)
uQCE-invariant Auctions

• In round t:
– collect demand sets at prices pt

– if pt are UCE, then stop
– else, select adjusted buyers Ut B+(pt)
– pt+1

i(S):=pt
i(S)+1 for i Ut, S Di(pt)

• On termination,
– implement final allocation
– payments pT

i(Xi)-{ s(N)- s(N\i)}

• Claim: maintain universal-Quasi-CE prices in each round
– prices s.t. the seller can maximize revenue at prices in the set of 

allocations consistent with demand sets
– for every economy, main & marginal

terminate with UCE prices, … VCG outcome.

(Mishra & Parkes’05)

Example: iBundle Extend & Adjust

• maintain non-linear and non-anonymous prices pt
i(S)

• choose “pivot” economy that is not yet in CE

• solve WD, increase prices on bundles from losing 
bidders

• Example:

1:  A,3* B,0   AB,3

2: A,0   B,6* AB,6

3: A,0   B,2   AB,4

(Parkes & Ungar’03,Mishra & Parkes’05)

pvcg,1=6-6=0
pvcg,3=5-3=2

iBEA:



‘86

‘04

‘04

‘02

‘04

Mishra & Parkes‘05

Mishra & Parkes‘05

Communication Complexity of CAs

• Finding an optimal solution requires exponential 
communication. (Nisan-Segal’04)

• Finding an O(m1/2- )-approximation requires exponential 
communication. (Nisan-Segal’04)

• See Blumrosen & Nisan (EC’05), and Segal & Nisan 
(TARK’X) for worst-case results on communication 
complexity for demand-query based models.

what worse-case results can we achieve?

Demand Queries & Learning Theory

• Computational learning theory: Learn exact 
representation of some target function f : X Y in
number of queries that are polynomial in m=dim(X) and
size(f), which is the minimal size of f in some 
representation class C.

• Efficient elicitation: Determine the efficient 
allocation  in number of queries that are polynomial in 
m (number of goods) and maxi{size(vi)}, where size(vi)
is the minimal size of valuation vi in some valuation 
(bidding) language L.

• Also, note we wish to stop early (elicit, not learn.)

[Hudson & Sandholm, Conen & Sandholm, Parkes, Zinkevich et al., Blum et al., Lahaie & Parkes]

Part III: 

Elicitation via Learning 
Theory

Distributed
Implementations



Bidding languages
• XOR: vi(S) = maxS’ S v(S’)
• OR:   vi(S) = maxS’1,…,S’k Feas(S) kv(S’k)
• Generalize to “atomic languages” (Lahaie et al.’05)

• OR*: use dummy goods to construct constraints on 
feasible combinations of bids (Nisan’00)

• LGB (Boutilier & Hoos’01);  Tree-Based BL (Cavallo et al.05)

generalize to allow arbitrary logical constraints

• Polynomial: vi(S)=a0· x1 + a1 · (x1x3) - a2 · (x1x5) + … 
(Lahaie & Parkes’04)

• Read-once formulae, DNF-formulae (Zinkevich et al.’03)

(Sandholm’99,Nisan’00) Style of results
• [Zinkevich et al. 2003; Santi et al. 2004] Learning algorithms for 

read-once formulae and Toolbox DNF, others…
– Only use value queries.

• [Blum et al. 2004]  Elicitation in poly-queries when learning 
needs exponential queries 
– Exponential number of linear-price demand queries to learn a 

sparse XOR representation

• Interesting to explore the role of non-linear price 
demand queries (Lahaie & Parkes’04)

– Present prices p(S), candidate bundle S.
– Yes: S arg maxS’ vi(S’)-p(S’)
– No, provide some S’’ s.t. vi(S’’)-p(S’’) > vi(S)-p(S)

Frameworks

• Function Class C
– Monotone Boolean functions

• Representation Class C
– Monotone DNF formulae

• Target function f: X Y
– Boolean domain X

– m-dimensional

– Boolean or real-valued  
range Y

• Valuation Classes V1,…,Vn

– Free-disposal                          .

• Bidding Languages V1,…,Vn

– XOR bids

• True valuations vi: X Y
– Domain X of bundles 

– m goods

– Range Y of non-negative real 
values

Learning Elicitation

Queries (1)

• Membership query

• Present an input x.

• Oracle returns the truth-
value f(x).

• Value query

• Present a bundle x.

• Agent returns the exact 
value vi(x).

Learning Elicitation



Queries (2)

• Equivalence query

• Maintain manifest 
hypothesis

• Present manifest 
hypothesis to the oracle

• Oracle replies ‘Yes’ if

• Else presents some input     
such that:

• Demand query

• Maintain manifest valuations

• Present allocation 
and candidate CE prices         

• Agent replies ‘Yes’ if 

• Else presents a bundle  
such that:

Learning Elicitation

Objectives

• Determine target function 
exactly.

• Use only membership and 
equivalence queries.

• Run-time is polynomial in m
and size(f)

• Determine efficient
allocation to the agents.

• Use only value and demand 
queries.

• Communication is polynomial 
in n, m and size(v1,…,v

n
).

Learning Elicitation

Simulation of Equivalence with 
Demand

Equivalence Demand

Oracle AgentAgentAgent …

Counterexample

‘Yes’

(Learning is solved)

‘Yes’ ‘Yes’ ‘Yes’

(Elicitation is solved)

Preferred bundle

Then
• Preferred bundle, or
• Proposed bundle

is a counterexample.

Full Information -- know       

No Information

The Algorithm

1 2 3 4 5



Polynomial Elicitation for CAs

Theorem. The efficient allocation can be determined in 
poly(n,m,size(v1,…,vn)) queries with value and non-linear 
demand queries for class V1 × … × Vn if they can each 
be polynomial-query learned.

Polynomials: t terms, m goods, n agents (Schapire & Sellie’93)
vi(S)=a0· x1 + a1 · (x1x3) - a2 · (x1x5) + …
Concise for valuations “almost substitutes”

O(nmt) demand queries, O(nmt3) value queries

XOR bids: t terms, m goods, n agents
XOR bids can be efficiently learned, generalizing a learning
algorithm for monotone DNF (Angluin 87).
compact for valuations “almost complements”
worst-case t+1 demand queries, mt value queries

(Lahaie & Parkes’04)

Modification: Universal Queries

• Universal Demand Queries <p, {S1,S-2
1,…,S-n

1} >
– Compute provisional allocations in main and marginal economies 

based on manifest valuations

– Compute candidate UCE prices

– Report agent i’s bundle in each economy, as well as price

– Agent replies “Yes” if every bundles in demand-set, otherwise 
provides a counterexample

terminate with UCE prices, and implement VCG outcome

(Lahaie, Constantin & Parkes’05)

Where are we?

DRMreport n g( n),p( n)

M

report
partial n g( n),p( n)

new queries

M

partial n +
computation

g( n),p( n)
messages

m
ore d

ecentralization

Static & Decentralized MD

• Center + Incremental-revelation
– Characterization of minimal information requirements to 

implement scfs

– Design of incremental-revelation mechanisms

– Price-based, computational-learning theory based

• Distributed computation
– Good “network complexity”

– Bring computation and information revelation into an 
equilibrium



Distributed Implementation

• Distributed Algorithmic Mechanism Design
(Feigenbaum et al.’02)

– distributed algorithm (agents perform computation)

– achieve good “network complexity”

– implement outcomes without a center

• Distributed implementation (Parkes & Shneidman’04)

– distributed algorithm (agents perform computation)

– perhaps still a center

– bring computation + message-passing + information-
revelation into an equilibrium

(Monderer & Tennenholtz 99; Feigenbaum et al.02; Feigenbaum & Shenker 02; 
Parkes & Shneidman 04; Shneidman & Parkes 04)

Example: Distributed VCGs

• Take M=< ,g,p> and distribute computation of g( ) and
p( ) to agents.

• Example: distributed combinatorial auction:

– Step 1: agents report to center

– Step 2: dispatches computation of V(N),
V(N\1),…V(N\n) to subsets of agents.

– Step 3: center receives results, and uses them to 
implement the outcome of VCG.

New manipulations

• Agent 1 can now deviate from the “intended protocol” 
and effect a change in:
– the reported types of other agents

– the mechanism’s rules <g, p>

– use observations to implement an adaptive bidding strategy

• For instance, the payment to agent i is
pvcg,i= j ivj(a-i; j)- j ivj(a*; j)

• Agent i would prefer to:
– minimize j ivj(a-i; j), e.g. by obstructing computation of a-i

– maximize j ivj(a*; j), e.g. by artificially inflating the reported 
values of other agents for a*

Idea One: A Partition Principle

Theorem. dM is a “faithful” distributed VCG
implementation when the correct solution to V(N\i) is
computed whatever the actions of agent i.

OK to ask agents to compute V(N)

OK to ask agents i to compute V(N\i)

Consider the distributed CA. Assume agents cannot 
tamper with the reported values of each other.

General idea: ask agents to do computation that is in their
self-interest to complete, or for which they are indifferent.

(Parkes & Shneidman’04)



$14

$8

$12

Agents 2 and 3

Agents 2 and 3

Agent 1

Idea Two: Quorums

• Sequence computation into steps: step1,step2,…stepT.

• Give each step to 3 or more agents:
– Agents report solution to the center, which selects quorum

– center can also do random “checking,” punish agents to provide 
focal point.

Assume agents cannot tamper w/ reports of other 
agents.

Theorem. dM is a “faithful” distributed implementation 
when the corresponding centralized mechanism is truthful 
and when a quorum approach is used for all computation.

(Parkes & Shneidman’04)

Formal definition: Distributed 
Implementation

dM=(f, , sm)

strategy
si i

suggested
strategy
sm

i( i) i

outcome rule 
(choice & prices)

f(s( )) A× Rn

“intended
implementation”

Goal: bring (sm
1,…,sm

n) into an ex post Nash eq.
strategy: computation, communication, info-revelation.

(Shneidman & Parkes’04)
Decomposition: (R,C,P) 

Suggested strategy sm decomposes:

sm
i=(rm

i, cm
i, pm

i)

info-rev action
“only effect is to 
provide info about 
type i”

f(s’,sm
-i( -i))=f(sm

i( ’i),sm
-i( -i)),

for all s’ that differ only in rm
i

comput. action
“action can affect 
outcome rule”
(not just info-rev)

(new)

message-passing
action, “send a 
message, unchanged”

(new)

Adopt a message-passing architecture.



1

2

3

Information Revelation Action, ri

• ri: reveal private type 
information to neighbors

^

^̂
1

2

3

Computational Action, ci

• ri reveal private type information 
to neighbors

• ci: perform some local 
computation, and report result “a”
to a neighbor.

a

1

2

3

Message Passing Action, pi

• ri reveal consistent (perhaps 
partial or untruthful) type info.

• ci: perform some local 
computation, and report result “a” 
to a neighbor.

• pi: relay a message from another 
agent.

m

m

Faithful Implementation
Definition. dM=(f, ,sm) is a faithful implementation of
outcome g( )=f(sm( )) if strategy sm is an ex post Nash eq.

Incentive compatibility (IC): will perform all information-
revelation actions truthfully in equilibrium.

Algorithm compatibility (AC): will follow the specified 
computational actions in equilibrium.

Communication compatibility (CC): will follow the 
specified communication actions in equilibrium.

Theorem. A dM is faithful when sm is IC, CC, and AC in 
the same ex-post Nash equilibrium.



• Only revelation actions (IC):
– ascending-price auctions

– standard methods from OR, e.g. Dantzig-Wolfe decomposition

• Computational (AC) and revelation actions (IC):
– partition principle for VCG

– quorum approach

• AC + IC + CC?
– e.g. distributed auction on P2P network

– e.g. shortest-cost path routing on Internet

General Proofs of Faithful Impl.

• Need to be able to argue that there is no useful 
“joint deviation” amongst:

– computational actions

– communication actions

– information-revelation actions

• Large strategy space:
– helps to decouple by establishing stronger claims

A General Proof Technique

• Algorithm compatible (AC)
– an agent implements 

suggested computation cm in
equilibrium.

• Strong AC
– an agent chooses to 

implement cm, whatever rm

and pm actions

(Shneidman & Parkes’04)
A General Proof Technique

• Comm. compatible (CC)
– an agent follows suggested 

message-passing pm in
equilibrium.

• Strong CC
– an agent chooses to 

implement pm, whatever rm

and cm actions

• Algorithm compatible (AC)
– an agent implements 

suggested computation cm in
equilibrium.

• Strong AC
– an agent chooses to 

implement cm, whatever rm

and pm actions

(Shneidman & Parkes’04)



A General Proof Technique

Theorem. If the corresponding centralized mechanism 
f(sm( )) is truthful, and dM is strong AC and strong CC,
then we have a faithful implementation.

• Algorithm compatible (AC)
– an agent implements 

suggested computation cm in
equilibrium.

• Strong AC
– an agent chooses to 

implement cm, whatever rm

and pm actions

• Comm. compatible (CC)
– an agent follows suggested 

message-passing pm in
equilibrium.

• Strong CC
– an agent chooses to 

implement pm, whatever rm

and cm actions

(Shneidman & Parkes’04)
A General Proof Technique contd..

1. Take a truthful mechanism and distributed 
algorithm.

2. Decompose dM into disjoint phases.

3. Prove strong-CC and strong-AC for each 
phase regardless of actions in other phases.

4. Ensure that a "checkpoint" exists in the 
specification that separates phases.

-- so that each phase can be proved 
independently

(Shneidman & Parkes’04)

Application to Lowest-Cost Routing on 
Internet

• Feigenbaum et al.’02 (FPPS) studied a distributed
algorithm for computing VCG on lowest-cost 
interdomain routing problem.

• Work in abstract BGP model, achieve with minimal 
additional space & computational requirements.

• FPSS is not AC or CC: drop, change or spoof routing & 
pricing messages; deviate from LCP and pricing 
computation.

• Fix: propose minimal extensions to make this a faithful 
implementation. Neighbors of nodes on graph perform 
checking & “catch and punish.”

(Shneidman & Parkes’04)
Outline

• Static & Centralized MD

• Static & Decentralized MD

• Dynamic & Centralized MD
– online auctions, online MD

– truthful characterizations

• Adaptive & Decentralized MD



Dynamic & Centralized MD

• Agents can arrive and depart dynamically

• Mechanism makes a sequence of decisions, maintains a 
state of the world.

k1

(a1,v1 ,d1)

k2

(a2,v2 ,d2)

(a3,v3 ,d3)

Decisions

TIME

kt

pt

(a4,v4 ,d4)

k3

p3

Dynamic & Centralized MD
• T discrete time points. Decisions k1,…,kT

• Agent i, type i=<ai, vi, di> where vi(k, i) is its value for
a sequence of decisions k

• Dominant-strategy truthful:
– unit-demand auctions (Lavi & Nisan’00;Hajiaghayi et al’04)

– reusable items (Hajiaghayi et al.’05, Porter’04)

– single-minded agents (Awerbuch et al.’03)

– bounded-demand (Bartal et al.’03)

– double-auctions (Bredin & Parkes’05)

• Bayesian-Nash truthful:
– more general sequential decision problem (Parkes & Singh’03,

Parkes et al.’04)

– take an Markov Decision Process approach

Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

How should you bid?
“Please bid your value and 
your patience. A decision 
will be made by the end of 
your stated patience.”

Example: Last-Minute Tickets 

Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr

Auction: sell one ticket in
each hour (given demand),
to the highest bidder at 
second-highest bid price. 

If truthful, then:
{ <1, $80>, <2, $60>}

However, bidder 1 could 
a) reduce bid price to $65

{<2, $65>, <1, $60>}
b) delay bid until 12pm

{<2, $0>, <1, $60>}



Part IV: 

Online Auctions & MD

Adaptive Mechanisms 

Basic Model for Online Auctions
• Valuation vi = <ai, di, wi>
• Arrival time: ai. Departure time: di .Value, wi

• Allocation schedule x.
• vi(x)  = wi ,  if xi(t)=1 for some t [ai,di]

= 0 ,  otherwise
• Quasi-linear utility: ui(x,p) = vi(x) - p

• Auction: A=< f, p >, 
– allocation rule, f : Vn X
– payment rule,   p : Vn Rn

• Truthful auction: reporting value <ai, di, wi> immediately
upon arrival is a dominant strategy equilibrium

~

~

vs. Powerful Adversarial Model

• Assume values in [L,U]. Multi-unit. Let = (U/L).

• Adversarial model: choose values and timing.

• Define a “price schedule”: p(j) = L · j/k+1, for j=1,…,k

• Sell units while marginal value price.

(Lavi & Nisan’00)

1/k+1

k

Truthful.
ln( )-competitive w.r.t. efficiency and Vickrey revenue, 
Matching lower-bound, and good average-case 
performance in simulation.

vs.  Fixed, Unknown Distribution

• More realistic adversarial model.
– Lavi & Nisan allowed arbitrary sequencing of arbitrary values

• Instead, we model values as i.i.d. from some unknown
distribution.

• Want good performance whatever the distribution.

• Should lead to an auction with better performance in 
practice.

(Hajiaghayi, Kleinberg, Parkes’04)



The Online Selection Problem

• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

“secretary problem”

7 1,000 325

• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

• Reduces to the secretary problem:
– interview n job applicants in random order, want to max prob 

of selecting best applicant (told n)

– told relative ordering w.r.t. applicants already interviewed, 
must hire or pass

The Online Selection Problem

7 1,000 325

“secretary problem”

• Remove incentives, and specialize to the case of 
disjoint arrival-departure intervals.

• Reduces to the secretary problem:
– interview n job applicants in random order, want to max prob 

of selecting best applicant (told n)

– told relative ordering w.r.t. applicants already interviewed, 
must hire or pass

The Online Selection Problem
“secretary problem”

7 1,000 325

1 1 421useful
info

The Secretary Algorithm

• Theorem (Dynkin, 1962):  The following stopping rule 
picks the maximum element with probability 
approaching 1/e as n .
– Observe the first bn/ec elements.  Set a threshold equal to 

the maximum quality seen so far.

– Stop the next time this threshold is exceeded.

• Asymptotic success probability of 1/e is best possible, 
even if the numerical values of elements are revealed.
– i.e. optimal competitive ratio in the large n limit



Straw model for an Auction
• Auction: p(t)= , then set p(t )=maxi·jwi after j=bn/ec

bids received. Sell to first subsequent bid with wi

p(t), then set p(t)= .

• Not truthful: Bidders that span transition, and with 
high enough values, should delay arrival.

Truthful Auction:
–At time (for n/e arrival) let p q be the top two bids yet 
received.
–If any agent bidding p has not yet departed, sell to that 

agent (breaking ties randomly) at price q.
–Else, sell to the next agent whose bid is at least p (breaking

ties randomly)

Adaptive Limited-Supply Auction

0 T

$5

$2

$4

$5

$8

$10

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

• At time , denoting arrival j bn/ec, let p q be the top 
two bids yet received.

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.

Adaptive Limited-Supply Auction
• At time , denoting arrival j bn/ec, let p q be the top 

two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.

0 T
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$2

$4

$5

$8
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Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

p

q

Agent 1 wins, pays $2

Adaptive Limited-Supply Auction

0 T
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$2

$4

$5

$8
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Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

• At time , denoting arrival j bn/ec, let p q be the top 
two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.



Adaptive Limited-Supply Auction

0 T

$5

$2

$4

$5

$8

$10

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

p

q

Agent 3 wins, pays $5

• At time , denoting arrival j bn/ec, let p q be the top 
two bids yet received. 

• If any agent bidding p has not yet departed, sell to 
that agent (breaking ties randomly) at price q.

• Else, sell to the next agent whose bid is at least p.

Analysis:  Competitive Ratio

• Competitive ratio for efficiency is e+o(1), assuming all 
valuations are distinct.

Proof.

• Case 1:  Item sells at time t.  Winner is highest bidder 
among first bn/ec. With probability ~1/e, this is also 
the highest bidder among all n agents.

• Case 2:  Otherwise, the auction picks the same 
outcome as the secretary algorithm, whose success 
probability is ~1/e.

General approach:Two phase

• “Learning phase”
– use a sequence of bids to set price for rest of 

auction

Transition:
– be sure that remains truthful for agents on 

transition

• “Accepting phase”
– exploit information, retain truthfulness

Necessary and Sufficient Characterization

• Price schedule psi(ai,di,v-i) is monotonic if
psi(ai,di,v-i)·psi(a’i,d’i,v-i), for all a’i ai and d’i·di.

• Auction is “price-based” if exists psi s.t. fi(v)=1 iff
psi(ai,di,v-i)·vi, and payment pi(v)=psi(ai,di,v-i).

• Critical period: first t [ai,di] with minimal psi(ai,t,v-i)

Special case: define psi(ai,di,v-i)=min [a,d]ps( ,v-i), for some ps(t,v-i)

(Hajiaghayi, Kleinberg, Mahdian, and Parkes’05)

~

Theorem. An online auction is truthful if and only if the
auction is price-based for some monotonic price schedule 
psi(ai,di,v-i), and assigns the item after the critical period. 



Monotonic Allocation Rules

• Allocation rule f: Vn {0,1}n is monotone if for every 
agent i and every v, v’ Vn with [a’i,d’i] [ai,di], and wi w’i,
we have fi(v) fi(v’).

• Define Critical Value,
vc(ai,di,v-i)=min w’i s.t. fi(<ai,di,w’i>,v-i)=1

, if no such w’i exists),
– monotonicity implies that fi(v)=1 iff wi vc(a,d,v-i).

Theorem. Online auction is truthful if and only if the 
allocation rule, f, is monotonic, sets payment equal to 
critical value, and assigns item after the critical period. 

Another way to get this:

Application: Reusable Goods

• One good in each time slot (can extend to k>1).

• Agent value <ai,di,wi>. Value for one time slot in [ai,di].
(can extend to Li contiguous slots.)

• No-late departures (i.e. [a’i,d’i] [ai,di])
– (WiFi) suppose can verify presence, and fine an agent that 

reports d’i>di but leaves at di

– (Grid) reasonable to hold result until time d’ with some small 
probability

– necessary to achieve a bounded competitive ratio on 
efficiency (Lavi & Nisan’05)

(Hajiaghayi, Kleinberg, Mahdian, and Parkes’05; also Porter’04, Lavi&Nisan’05)

Given this, monotone allocation rule truthful

Online Auction for Reusable Goods

Greedy Allocation rule: In each period, t, allocate the good 
to the highest unassigned bid.

Payment rule: Pay smallest amount could have bid and still 
received good.

Note: for impatient bidders this is precisely a sequence 
of Vickrey auctions.

Montone truthful

2-competitive (matching LB, c.f. 1.618-competitive result 
w/out incentives)

Back to our example

Truthful auction:
Bidder 1 gets slot 1. Pays $60
Bidder 2 gets slot 2. Pays $60

Value      $100  $80  $60
Arrival:   11am  11am  12pm
Patience: 2hrs  2hrs  1hr
Duration: 1hr    1hr    1hr

Recall: Sequence of Vickrey auctions, bidder 1 had wanted to
delay until 12pm or report $60+ .



Relaxing: Bayes-Nash equilibrium

• State: ht=( 1,…, t;k1,…,kt-1)

• Model: Prob(ht+1|ht,kt)

• Reward: R(ht,kt) = i Ri(ht,kt)

• Optimal policy: *
t : Ht Kt maximizes value 

V (ht)=E {R(ht, (ht))+R(ht+1, (ht+1))+…+R(hT, (hT))} in all 
states.

• Bayes-Nash equilibrium: truthful bidding maximizes 
expected utility, in equilibrium and given common 
knowledge of a model of the problem.

An Online VCG Mechanism
• Agents report type

• State: reported type + history of decsions

• Reward: depends on reported type of agents present

Online VCG Mechanism:

• Implement optimal policy *

• On departure, collect payment 

R·T( i; *)  - [V*(hai)-V*(hai
-i)]i

hai
-i is the state in 

period ai with agent 
i removed…

total reported value expected positive effect on
value system

Theorem. Online VCG mechanism with an optimal policy 
* for a correct MDP model that satisfies “stalling” is

BNIC and implements expected-value maximizing policy

(Parkes & Singh’03)

Approximate Online MD
• Sparse-sampling (Kearns et al. 1999)

• Compute an -approximation to the optimal value and 
action in a state in time independent of the size of 
state space.

• MDP model Mf used as a generative model. 

Approximate Online Mechanism: 
Implement policy ’ computed by sparse-sampling( )

Payments: R·T( i; ’)-[Vss(hai)-Vss(hai
-i)]

Theorem. Truthful-bidding is an 4 -BNE of sparse-
sampling( )-based approximate VCG mechanism.

i ^ ^

(Parkes et al.,’04) Outline
• Static & Centralized MD

• Static & Decentralized MD

• Dynamic & Centralized MD

• Adaptive & Decentralized MD
– uncertain rewards, learning



Learning in Online MD
Like to deploy “black box” mechanism, have it learn and 
improve over time.
Challenge: maintaining truthfulness while learning

t0 t1 t2 t3

M0 M1 M2 M3

…

Staged approach to OMD. Not truthful because model 
inaccurate in early stages.

A Simple Bandits Model

• Multi-armed bandit (MAB) problem

• N arms (arm == agent)

• Each arm has stationary uncertain reward process, 
privately observed. 

• Goal: implement an optimal learning policy

Mechanism

choice of action, 
payments

observe

update

bid

(with Cavallo and Singh)

Bayesian-optimal Learning
• No self-interest. Infinite time horizon, discount 

factor 0 < < 1

• n stochastic processes. Information state sk(t).

• Expected reward r(sk(t), k) for action k {1,…,n} in
period t.

• Let f(.,.) denote Bayesian updates. 

• Update: sk(t+1) = f(sk(t), rk(t)), if arm k pulled

= sk(t), , otherwise.

• Goal: arg max E [ t=0
t r(s(t), (s(t)) | s(0)] 

Gittins Index

• Factored algorithm to compute the “Gittins index” for 
each arm in any state. 

• Optimal policy is to pull the arm with the maximal 
index.

• For finite-state approximations, can compute as 
optimal MDP value to “restart-in-i” MDP, solve using LP 
(Katehakis & Veinott’87)

• Analytic results for special-cases (Berry & Fristedt’85)

(Gittins & Jones’74)



Straw Auction Model

• Sequence of Vickrey auctions

• Bid Gittins index for each arm

• Pull arm with highest bid, make that arm pay second-
highest bid

• Not truthful. Why?

• Agent 1 may have knowledge that the mean reward for 
arm 2 is smaller than agent 2’s current gittins index.

• Learning by 2 would decrease the price paid by 1

• In arm 1’s interest to under-bid and allow arm 2 to 
learn, reduce price in future.

Solution: Long-term Vickrey w/ -sampling

• Each agent maintains Gittins index for its arm.

• In each period t, report gk(t) and reward rk(t-1)

• With prob 1- ,
– pull arm with maximal reported gk(t)

• With prob >0,
– pull arm uniformly at random

– use to update “ -statistics”

• Payments: Tk(t) = j k rj(t (a’-k(t)) - j krj(t)
– where, a’-k(t) is the optimal action without arm k based on 

leave-one-out statistics from -interleaving samples 

– and t (a) is the most recent sample for a particular action

(Cavallo, Parkes & Singh’05)

aligns incentives

Theorem: truthful reporting of Gittins index is a 
(Perfect) BNE.

agent-independent

Part V: 

Wrap-up

Future Directions

• Macroeconomics + Computational Mechanism Design:
– in grid computing, sensor nets, etc.
– need to design “central banks”
– fiscal policy, think about exchange rates, etc.

• Consumption externalities:
– in grid computing, P2P networks, etc.

• Second-best MD:
– making tradeoffs between computational cost, informational 

cost, privacy cost and qualities of approximation
– equilibrium models for bounded-rational agents

• Learning + CMD:
– both for agents (learn values for different choices)
– and for center (learn model of dynamic world)
– dynamic mediation between learning agents



Review

MD Dec MD online MD adaptive MD

• Price-based mechanisms, monotonicity

• Approximability results (tractable + truthful)

• Elicitation: ascending-price, CLT-based, role of bidding 
languages

• Distr. implementation: extended equilibrium concepts; 
AC, CC and IC.

• Online: temporal IC issues, dominant vs BNE models

• Learning: connections to MAB, bring learning into an 
equilibrium.
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