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1. L imitations of Conventional Wall  Functions.

The conventional wall  functions introduced in the
earlier lecture rely on the following assumptions:

1. Near-wall velocity obeys the log-law.

 2. The total shear stress remain constant over
the near-wall control volume.

3. Within the fully turbulent region of the
near-wall  control volume, the turbulent
kinetic energy remains constant.

4. The dissipation rate is inversely
proportional the wall  distance over the inner
region and constant across the viscous sub-
layer.

5. In three-dimensional flows the velocity direction
remains unchanged between the near-wall  node
and the wall .

To appreciate how limiting these approximations
are, it would be instructive to:
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Examine the of effect the departure from the
uniform stress 

Identify under what circumstances some of the other
assumptions no longer apply.

Departures  from  uniform-stress behaviour.
 
In fully developed internal flows, such as pipe or
channel flows, the total shear stress (viscous +
turbulent) varies linearly from �

w at the wall  to zero
at the symmetry axis, or plane. This may be readily
shown for pipe flow as follows.

U- Momentum Equation for fully
developed conditions :

Integration, w.r.t. r, with  � = �
w  at r = R  and � =0 at

r = 0, then leads to :�   =  �
w r / R  =  �

w (R-y)/R
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At high mean flow Reynolds numbers
(Re� UB.D/ � ) the viscous sub-layer is thin enough
for the reduction in shear stress across it to be
negligible. 

The approximation of uniform stress in the inner
region is thus reasonable.

Consequently in fully-developed pipe and channel
flows, the at  high Re values, the near-wall flow
obeys the log-law.

At low Reynolds numbers,  because for a given
value of  y+ ( � yU � / � ), the physical distance, y,
becomes greater, the thickness of the viscous sub-
layer increases. 

The percentage reduction in shear stress across the
sub-layer therefore increases. 

This causes a departure from the uniform shear
stress condition/

This in turn leads to deviations from the log-law.  In
terms of wall  co-ordinates (y+) the viscous sub-layer
becomes thicker.
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This reduction in shear stress is more conveniently
expressed in terms of d �� +/dy+.  Where     �� + ��  	
 / 	


w.

Since  : �   =  � w (R-y)/R
�

d
 + / dy = - 1 / R

�
d
 + / dy+ = - �  / U � R = - 2 ( � /UB.D) ( � UB

2  / � w)0.5

d� + / dy+ = - 2 Re-1 ( � w/ � UB
2)-0.5

Introduction of Blasius  correlation
� w/ � UB

2 �  0.04 Re-1/4      results in :

d �� + / dy+ =  - 10 Re -7/8

Since for  Re > 10,000 the mean velocity follows the
log-law,  it can be concluded that depar tures from
the uniform  stress limit  are caused  when :

  d �� + / dy+ <  - 3 x 10-3

An increase in the negative shear stress gradient, can
be caused by a number of reasons.
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NEGATIVE  PRESSURE  GRADIENT

For such a boundary layer (accelerating), the
momentum equation is reduced to :

STRONGLY HEATED  INTERNAL FLOWS

Strong heating causes a reduction in fluid density.
As a result, the flow accelerates again causing a
reduction in total shear stress across the sub-layer.

BOUNDARY LAYER FLOWS WITH SUCTION
ACROSS  A  POROUS  WALL

Here the U-Momentum equation
reduces to :

Since  VW < 0 (for suction)   � � + / � y+  <  0
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MIXED  CONVECTION 

Here the buoyancy force
accelerates the boundary layer
flow, leading to :

SEPARATED AND IMPINGING FLOWS

In both the above flows the near-wall  velocity in the
re-circulation, re-attachment and stagnation regions,
would no longer obey the log-law.
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THREE-DIMENSIONAL BOUNDARY LAYERS

As shown above, in a complex three-dimensional
boundary layer, the resultant velocity can change its
direction between the near-wall  node and the solid
surface.

This cannot be allowed for in the conventional wall
functions. 

SUMM A RY OF L I M I TA T I ONS OF
CONVENTIONAL WALL FUNCTIONS.

Most assumptions involved in the conventional wall
functions, break down in complex flows. 

Conventional wall  functions can thus result in
predictions that are either inaccurate or sensitive to
the size of the near-wall cells.
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2. Refinements of the Conventional Wall
Function

Chieng-Launder Wall Function

�
New Elements.

In order to address some of the issues discussed
above, Chieng and Launder allowed for a linear
variation of the both the shear stress, � , and of the
turbulent kinetic energy, k, across the near-wall  cell .

As shown in the diagram,
the linear variation of k is
obtained from the nodal
values of k at the near-
wall  node, P, and the one
next to it, N. 

Within the viscous sub-
layer, k is again assumed

to have a quadratic variation.

The total shear stress, �  = � ( � U/ � y)- � uv, is assumed
to vary linearly from the wall  ( � w)  to  yN ( � N).
Within the sub-layer, the contribution of the
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turbulent shear stress is assumed to be negligible.

While in the "standard" approach the physical
distance yv is obtained from  yv kp

1/2/ �  = 20, now
that  k varies linearly with y,  yv is obtained from
yv kv

1/2/ ��  = 20. This would give rise to a non-linear
equation for yv.

 !
Overall Approach 

The overall  approach is the same as that of the
“standard” wall function strategy. 

Due to the refinements described above, the
resulting equations, listed in the next page, are more
complex.
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Summary of  Chieng - Launder  Wall Function

Launder and Johnson Modification

As explained earlier, one of the consequences of
non-uniform shear is to alter the dimensionless
thickness of the viscous sub-layer.  

The  Launder-Johnson modification is an attempt to
take this into account.  
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When there is diffusion of energy towards the wall
(dk/dy > 0) then the dimensionless thickness of the
sub-layer is reduced. 

By making  use  of  kW, the
pseudo wall  value of  k,  a
parameter "  can be
introduced, that represents
the strength of  such
diffusion.

"  #  (kv-kw)/kv   

Then the dimensionless thickness of  the sub-layer,
which in equili brium boundary layers has the value
of 20,  is modified according  to :

yv* =  20 / ( 1 + c " )

Where  the  coeff icient,  c,  takes  the  value  of  3.1.

Thus
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Comments

Tests show that the Chieng-Launder wall -function:

Improves predictions in separated and
impinging flows.

Reduces sensitivity of the predictions to the size
of near-wall cells.

The Launder and Johnson Modification is found
to improve predictions in some cases, but can be
numerically unstable.

Even with these refinements, the conventional wall
functions still  have to impose a semi-logarithmic
variation in the near-wall velocity.

To radically expand the range of flows to which the
wall -function strategy can be successfully applied,
new types of wall functions are necessary.

Such types, that rely on less restricting assumptions,
are discussed in the next section.
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3. Advanced Wall Functions.

Or igin

These are two recently developed wall -functions
from the UMIST group Craft et al (2002), Craft et
al (2004).

Aim

To preserve the overall  framework of the wall -
function strategy, but to remove some of the more
limiting assumptions made, such as the log-law and
the constant total shear stress.

Approach

The log-law is no longer used.

The velocity and temperature variations across the
near-wall  cells is determined through the solution of
simpli fied, locally one-dimensional transport
equations for the wall -parallel momentum and for
enthalpy.
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Where x and y the wall -parallel and wall -normal
directions respectively.

Boundary conditions are:

At      y = 0,       U=0        T=TW

At    y = yn       Un=(UP+UN)/2        Tn =(YP+TN)/2

Solution of these two equations will result in the
velocity and temperature distribution across the
near-wall cells.
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From these distributions the wall shear stress, $ W,
and also either the wall  temperature, TW, or the wall
heat flux, qW,  (depending on the thermal boundary
conditions) can be obtained.

The wall  shear stress and either, TW or qW can then
be used to modify the discretized  momentum and
enthalpy equations over the near-wall  cells, as in the
conventional wall -functions.

The velocity distribution can also be used to
produce the average generation rate of turbulence,
Pk, across the near-wall cells

The average Pk is then used to modify the
discretized k equation over the near-wall  cell , as in
the conventional wall functions.
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In three-dimensional flows, momentum transport
equations in two directions can be independently
solved.

At  xn = 0        Un =0  Ut= 0

At  xn=xn
n      Un= 0.5*(Un

P+Un
N)      Ut=0
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• Alternative Strategies

The solution of equations (I) and (II)  requires the
introduction of further assumptions.

The two different strategies that have been
developed at UMIST that:

- Share the same overall approach outlined so
far.

- Differ in the assumptions used and the
methods employed to solve equations (I)
and (II) .

- Both come under the acronym of UMIST,
here denoting
Unified Modelli ng through Integrated Sub-
layer Transport.

The two alternatives are now separately presented.



19

3.1 The Analytical Wall Function, UMIST-A

• Mean Flow Analysis

As the name implies, equations (I ) and (II ) are
solved analytically across the near-wall cell .

This is accomplished through the use of a
prescribed var iation for  the turbulent viscosity,%

t.

A consequence of the above variation in %
t, is that

two forms of equations (I) and (II) are solved.
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For     y* < y*
v 

For    y*
v > y* < y*

n 

The right hand sides of the equations are treated as
constants and are calculated from the nodal values.

At the interface between the two regions, y*
v, it is

required that the variables (U and T) and their first
derivatives (dU/dy and dT/dy) are continuous.

The empirical constant y*
v is determined as 10.8
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The analytical integration of the above equations
results in the following U distribution across the
near-wall cells.

For    y*
v > y* < y*

n 

Where

(1- &' y* v) ()  *+
     and     1 + ,-  (y* -y* v)   ./  Y*
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Similarly the temperature distribution is.

For    y*
v > y* < y*

n 

Where

(1- 01
Ty* v) 23  45

T     and     1 + 01
T (y* -y* v)   23  Y* T
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• Wall Shear Stress and Wall Heat Flux

Differentiation of the above expressions at y=0, will
then result in expressions for the wall shear stress
and the wall heat flux.

6
w = - 7 dU/dyy=0       and     qW= - (cP7 /Pr)dT/dyy=0

• Average Generation Rate, Pk

Pk = 8 t  [dU/dy]2      and     8 t = 9 :  ( y* - y* v)

Thus :       Pk = 9 :  ( y* - y* v) [dU/dy]2 

Integration leads to:

Where dU/dy is obtained by differentiating the
expression for U, over the region  y > yv.
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• Average Dissipation Rate

As in the conventional wall -functions

For     y < yd :       ;  = 2 <  kP/ yd
2

For     y > yd :       ;  = kP
3/2 / c=  y

Unlike the conventional wall functions, case (a):

   y*
d >  y*

v (=20)

For continuity of ? :    2 @  kP/ yd
2 = kP

3/2 / cA  yd

B
        y*

d = 5.1
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• Fur ther Extensions

The assumptions involved in the Analytical Wall
Function are less restrictive than those in the
conventional wall functions.

It is consequently possible to introduce further
refinements to the Analytical Wall Function to
extent the range of f lows that it can be applied. 

These refinements include.

- Introduction of Laminarization Effects

- Temperature Variation of Viscosity

- Inclusion of Buoyancy Effects

- High Prandlt Number Modification

- Extension to flows over rough surfaces.

Some of the above refinements make the resulting
equations more complex, but because they are still
algebraic equations, the associated computational
overheads are negligible.
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Inclusion of Laminarization Effects

Objective is similar to that in Johnson-Launder.

The availabilit y of the analytical velocity variation,
makes it possible to employ a more convenient local
parameter, C

C  = D W/ D v

Then the average dissipation rate is multiplied by
the function FE .

C F 1    FG =1 + 1.5{ 1-exp[-6.9( H -0.98)]}
   { 1-exp[-193(max( I ,0))2]}

H <1 FG =1 - (1-FG 0)[1-exp(-(1- H )/ H ]
   { 1-exp[-11.1(max( J ,0))2]}

K =( L /1.02) -1 J =0.98/ L            FM 0 = 0.75

When   L  > 1,   FM  > 1 N    thicker viscous sub-layer.

When L  < 1,  trend is reversed.
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Temperature Variation of Viscosity

In strongly heated flows, changes in temperature
cause variations in fluid properties (viscosity and
thermal conductivity) across the near-wall cells.

These changes can have a strong effect on
hydrodynamic and thermal boundary layers.

Temperature, and hence fluid properties, change
most strongly across the viscous sub-layer.

Thus, only changes in fluid properties across the
zero-viscosity-region are taken into account. 

With O W and O v the viscosities at the analytical
solution temperatures, at the wall  and the edge of
the zero-turbulent-viscosity sub-layer.
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 Inclusion of Buoyancy Effects

The effects of the buoyancy force can be included at
two different levels.

P
In the analytical solution of the wall -parallel
moment equation

Where T is based on the analytical solution of the
enthalpy equation.

P
The integrated form of the buoyancy force,
across the near-wall control volume,  can be
calculated and included in the discretized form
of the wall -parallel momentum equation over
the near-wall control volume.

Both the above extensions become possible, because
of the availabilit y of the analytical temperature
variation over the near-wall cells.
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High Prandlt Number Modification.

At high Prandtl numbers the sub-layer, across which
turbulent transport of thermal energy is negligible,
becomes thinner than the viscous sub-layer.

Thus, the assumption that the turbulent heat flux
becomes negligible when y<yv, no longer applies.

This is corrected, through the introduction of an
effective molecular Prandtl number in equation (II) .
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Extension to flows over rough surfaces

 -  Average height of
roughness elements : h

 -  Local Dimensionless
height of roughness
elements at near-wall
node P:   h* Q h kP 

0.5/ R

 -  Surface roughness affects the modelli ng of near-
wall  turbulence modifying the dimensionless
thickness of the viscosity-dominated sub-layer, yv* .

For a smooth surface : y* vs = 10.7

For a rough surface :

y* v = y* vs [ 1 - (h*/70)m ]

Where m is empirically determined.
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• Applications of the Analytical Wall  Function

Fully Developed Pipe Developing Mixed-
                Flows Convection, Upward

      Pipe Flows
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3.2 The Numerical Wall Function, UMIST-N

The simpli fied transport equations for the wall -
parallel momentum and enthalpy are numerically
solved across the near-wall cells.

   - Each near-wall
cell  is divided into
a number of sub-
volumes.

   - Left hand side terms are discretized using sub-
grid nodal values.

   - Right hand side terms are discretized using main
grid nodal values and are constant across each cell .
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   - The wall normal velocity at the sub-grid nodes is
obtained from local sub-cell continuity.

   - The turbulent viscosity at the sub-grid nodes is
determined by numerically solving simpli fied
equations of a low-Reynolds-number model. 

   - If the Launder-Sharma is used, for example:

Terms with subscript P evaluated using main grid
nodal values.S

t = T  cU  f U  k2 / V            Pk=
S

t(dU/dy)2

f2 = 1 - 0.3 exp (-Rt
2 )      f W  = exp [ -3.4 / (1 + 0.02 Rt)

2 ]
  

  Rt =  k2/( X Y )

YC denotes the Yap length scale correction term.
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• Implementation

   -   The sub-grid nodal values of the flow variables
are stored for all near-wall cells.

-    The discretization of the wall -parallel convectionZ U(d[ /dx) is thus based on sub-grid nodal values.

- The discretization of the simpli fied transport
equations within each near-wall  cell , results in a tri-
diagonal system.
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   - Within each near-wall cell, the discretized sub-
grid equations are solved using a tri-diagonal matrix
solver.

\
Only one sweep of the sub-grid TDMA is
performed within each iteration.\
The k and ]  equations are under-relaxed.

   - Following each sub-grid iteration, the sub-grid
nodal values are used to produce the following:

^ Wall  Shear  Stress _`
W, used to modify the

discretized wall -parallel momentum equation at
the near-wall cells ^ Either the wall  temperature, TW or the wall
heat flux, qW, that modify the enthalpy
equation at the near-wall cells.^ The cell -averaged Pk and ab  that modify the k
transport equation at the near-wall cells.c  The   cell -averaged

that modify the disretized d  equation at the
near-wall cells.
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This wall-function strategy can be used with other
low-Re models, such as non-linear k- e  models.

• Applications of the Numerical Wall Function
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Free Rotating Disc
Flow
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4. Concluding Remarks

- Some Weaknesses of the conventional wall
functions have been identified.

- Extensions of the conventional wall  functions
have been presented.

- Two recently developed wall -function strategies
have been presented, which instead of relying
on the log-law, solve simpli fied momentum and
enthalpy equations across the near-wall cells.

• The Analytical Wall  Function, UMIST-A,
is as computationally eff icient as the
conventional approach and in many
complex flows results in predictions of the
same quality as a low-Reynolds-number
approach.

• The Numerical Wall  Function, UMIST-N,
while increasing computational overheads,
relative to the conventional approach, by
60% to 100%, results in predictions similar
to those of low-Re models at only a fraction
of the cost.
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