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1. Limitationsof Conventional Wall Functions.

The conventional wall functions introduced in the
ealier ledure rely on the foll owing assumptions:

1.

2.

Nea-wall velocity obeysthelog-law.

The total shea stressremain constant over
the nea-wall control volume.

Within the fully turbulent region d the
nea-wall control volume, the turbulent
Kinetic energy remains constant.

The disgpation rate is inversely
propartional thewall distanceover theinner
region and constant aaossthe viscous sub-
layer.

Inthreedimensional flowsthevelocity diredion
remains unchanged between the nea-wall node
and the wall .

To appreaate how limiting these approximations
are, it would be instructive to:



Examine the of effed the departure from the
uniform stress

|dentify under what circumstances some of the other
assumptions no longer apply.

Departures from uniform-stressbehaviour.

In fully developed internal flows, such as pipe or
channel flows, the total shea stress (viscous +
turbulent) varieslinealy from t,, at thewall to zero
at the symmetry axis, or plane. This may be realily
shown for pipe flow as foll ows.

X

¢ U- Momentum Equation for fully
%% > developed condtions:

10(,0U o) 13y 0P _

— ar( v > puv) - - ar(r) — Constant

Integration, w.r.t. r, with t=t, atr=R andt=0 at
r=0, thenlealsto:
t=r1,rR =r1,(RY)/R



At high mean flow Reynolds numbers
(Re=Ugz.D/v) the viscous sub-layer is thin enough
for the reduction in shea stress across it to be
negligible.

The approximation of uniform stressin the inner
regionisthus reasonable.

Conseguently in fully-developed pipe and channel
flows, the & high Re values, the nea-wall flow
obeysthelog-law.

At low Reynolds numbers, becaise for a given
value of y* (syU./v), the physicd distance v,
beaomes greder, the thicknessof the viscous sub-
layer increases.

The percentage reduction in shea stressaaossthe
sub-layer therefore increases.

This causes a departure from the uniform shea
stresscondtion/

Thisinturnleadsto deviationsfromthelog-law. In
terms of wall co-ordinates (y*) the viscous sub-layer
becomes thicker.



This reduction in shea stressis more conveniently
expressd in terms of dt*/dy*. Where t* = 1/t

Since:t =1,(RY)/R = dt'/dy=-1/R
o 4 d.t+/ dy+ =-vV / UTR =-2 (V/UBD) (pU82 / ,EW)O.S
dr*/ dy* = - 2 Re (1,/pUgd) °®

Introduction d Blasius correlation
1,/pUg? = 0.04Re*  resultsin:

dt*/dy*= - 10Re "
Sincefor Re>10,000the mean velocity foll owsthe
log-law, It can be concluded that departuresfrom
theuniform stresslimit are caised when :

dt*/dy* < -3 x 10°

Anincreaseinthenegative shea stressgradient, can
be caised by a number of reasons.



NEGATIVE PRESSJRE GRADIENT

For such a boundry layer (accéerating), the
momentum equationis reduced to :

ot oP oo dt” Vv oP
dy 0x dy* 0 Uj 0x

STRONGLY HEATED INTERNAL FLOWS

Strong heating causes a reduction in fluid density.
As a result, the flow accéerates again causing a
reductionin total shea stressaaossthe sub-layer.

BOUNDARY LAY ER FLOWS WITH SUCTION
ACROSS A POROUS WALL

Here the U-Momentum equation

reducesto:
T w
ot _ Vwa_U - ot :V+W8U
dy ay ay* ay*

Since V,, <0 (for suction) ot"/aoy" < O
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MIXED CONVECTION

; Here the buoyancy force
7 accéerates the boundry layer
i " flow, leadingto
Zam
T I o= — (o - b2
y 2" y=0 pr ref

SEPARATED AND IMPINGING FLOWS

NANNNNNNNNNNNNNNNNN ARIRIRIRIRIRIRTTITIRIITEEEE

In both the aboveflowsthe nea-wall velocity inthe
re-circulation, re-attadhment andstagnationregions,
would nolonger obey the log-law.



THREE-DIMENSIONAL BOUNDARY LAY ERS

A/ /777777

As shown abowe, in a complex threedimensional
boundadry layer, theresultant velocity can changeits
diredion between the nea-wall node and the solid
surface

Thiscanna be all owed for in the conventional wall
functions.

SUMMARY OF LIMITATIONS OF
CONVENTIONAL WALL FUNCTIONS.

Most assumptionsinvolvedinthe conventional wall
functions, break down in complex flows.

Conventional wall functions can thus result Iin
predictions that are either inacarate or sensitive to
the size of the nea-wall cdls.
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2. Refinements of the Conventional Wall
Function

Chieng-Launder Wall Function

® New Elements.

In order to address some of the isaues discussed
above, Chieng and Launder allowed for a linea
variation of the both the shea stress t, and d the
turbulent kineticenergy, k, aaossthenea-wall cdl.

P N Asshown inthe diagram,

° thelinea variationof k is
obtained from the nodd
, E values of k at the nea-
o i3 wal node, P, and the one

) / next to it, N.
Tw "'-:

Within the viscous sib-
layer, k is again assumed
to have aquadratic variation.

T = -

Thetotal shea stress t = pu(0U/dy)-puv, isassumed
to vary linealy from the wall (t,) to Vg (tn)-
Within the sub-layer, the ntribution d the
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turbulent shea stressis asaumed to be negligible.

While in the "standard" approad the physicd
distancey, is obtained from 'y, k,"*/v = 20, now
that k varieslinealy withy, vy, isobtained from
y, k,*¥/v = 20. Thiswould gveriseto anonlinea
eqguationfory,,.

kN B kP 1/2yv
v

ky - B (yN - yv)
Yn — Vp

= 20

® Overall Approach

The overall approad is the same as that of the
“standard” wall function strategy.

Due to the refinements described above, the

resultingequations, listed in the next page, aremore
complex.
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Summary of Chieng- Launder Wall Function

12
k, - k Y,

ky - N P(yN—yv) — =20
Yy ~ Vp v

R V2 B 1/ 14 *
T, = k¢, pk, Up/IZn(Ecu yv)

}T Tw<Un B Uv) + Tw(rn B Tw)(l _ yv]

k 1/4 . 12
yn KCH pkv yn yn
3/2
_ 1| 2vk, g (k, - k)
€ = — + [ —| k, - o, -»)|
Y.l Y, ¥, €Y Yu =Yy

Launder and Johnson Modificaion

As explained ealier, one of the consequences of
nonuniform shea is to ater the dimensionless
thicknessof the viscous sub-layer.

The Launder-Johrmsonmodificaionisan attempt to
take thisinto ac@urt.
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When there is diffusion of energy towards the wall
(dk/dy > 0) then the dimensionlessthicknessof the
sub-layer isreduced.

By making use of k, the
P N pseudowall value of k, a

. parameter A can be

/ introduced, that represents

: : the strength of  such
Bl M diffusion.

3‘ T INONNNNN

A = (k,-k,)/k,
Then the dimensionlessthicknessof the sub-layer,
which in equili brium boundary layers hasthe value
of 20, ismodified acording to:
y, = 20/(1+cA)
Where the mefficient, c, takes the value of 3.1.

Thus
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Comments
Tests show that the Chieng-Launder wall -function:

Improves predictions Iin separated and
Impinging flows.

Reducessenditi vity of thepredictionstothesize
of nea-wall cdls.

TheLaunder andJohrmsonModificaionisfound
to improve predictions in some caes, but can be
numericdly unstable.

Even with these refinements, the conventional wall
functions still have to impaose a semi-logarithmic
variation in the nea-wall velocity.

Toradicdly expandtherange of flowsto which the
wall -function strategy can be successfully applied,
new types of wall functions are necessary.

Suchtypes, that rely onlessrestrictingassumptions,
are discussd in the next sedion.
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3. Advancead Wall Functions.
Origin

These are two recently developed wall-functions
from the UMIST group Craft et a (2002, Craft et
a (2009.

Aim

To preserve the overal framework of the wall-
function strategy, but to remove some of the more
li miti ng assumptions made, such asthelog-law and
the constant total shea stress

Approach

Theloglaw isnolonger used.

The velocity and temperature variations aaossthe
nea-wall cdlsisdetermined throughthe solution of
smplified, locdly one-dimensiona transport

eguations for the wall -parallel momentum and for
enthalpy.
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Where x and y the wall-parallel and wall-normal
diredions respedively.

Boundary condtions are:

At y=0, U=0 T=T,
At y=vy, U=Us+tU,)/2 T,=(Y+T,)/2
Solution of these two eguations will result in the

velocity and temperature distribution aaoss the
nea-wall cdls.
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From these distributions the wall shea stress T,
and also either thewall temperature, T,,, or the wall
hed flux, q,, (depending onthetherma boundary
condtions) can be obtained.

Thewall shea stressand either, T,, or g,, Can then
be used to modify the discretized momentum and
enthal py equationsover thenea-wall cdls, asinthe
conventional wall-functions.

The velocity distribution can also be used to
produce the average generation rate of turbulence,
P, aadossthe nea-wall cdls

The average P, is then used to modify the

discretized k equation over the nea-wall cdl, asin
the conventional wall functions.

16



In threedimensional flows, momentum transport

eguations in two diredions can be independently
solved.

d dau, d d
|| T T PO - L
d au dpP
dxn (p’ + p't) dxnt - - _t(p Ut Ut) - Et (Ib)
At x.=0 U, =0 U=0

At x=x" U=05%UPUMN U=0

17



 Alternative Strategies

The solution of equations (I) and (Il) reguires the
Introduction d further assumptions.

The two different strategies that have been
developed at UMIST that:

- Sharethesameoverall approac oulined so
far.

- Differ in the assumptions used and the
methods employed to solve equations (1)
and (ll).

- Both come under the aconym of UMIST,
here denating
Unified Modelli ngthroughlntegrated Sub
layer Transport.

The two aternatives are now separately presented.

18



3.1 The Analytical Wall Function, UMIST-A
« Mean Flow Analysis

As the name implies, equations (I) and (Il ) are
solved analytically aaossthe nea-wall cdl.

This is acomplished through the use of a
prescribed variation for the turbulent viscosity,

Mt

Y
7R
1 P? N
/ . U o [
T
7—
A Y
M o =ce,
K, = max[0,pa(y*-y*,)]

10.8 y* Eykpl/z/v

A consequence of the above variationin ., is that
two forms of equations (1) and (I1) are solved.
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For vy <y,

d| dU d dP
p || (o) o 2
dy| dy dx dx |p
L2 2l - Lipun
Pr dy| dy dx p
For y',>y <y,

d dU d dP
—(1+a(y™-y*))— | = | —(pUU) + —
udy[( 0 -y dy] dov0) - 2|
B dif g olre s o1 dl L d oo
Pr dy o, Oy v)) dy dx<p )P

Theright hand sides of the eguations are treaed as
constants and are cdculated from the nodal values.

At the interfacebetween the two regions, y',, it is
required that the variables (U and T) and their first
derivatives (dU/dy and dT'/dy) are continuots.

The empiricd constant y',, is determined as 10.8

20



The analyticd integration of the above eguations

results in the following U distribution aaoss the
nea-wall cdls.

A * C *2
For y*<y*V U = %4 + 4
K 2p
For y,>y <y,
C C,.A A
U=—"Yyr - 1Y Qn(Y*) + —Uﬂn(Y
o o po
+ AUy v + C'Uy v y v_l
i o 2 «
Where
1 y' 7l
WU, = Col — 0", y") + =" - — Ay
4, = x

(Tray*))=A and 1+a(y*-y*) =Y*
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Simil arly the temperature distributionis.

A * C *2
For y* <y*v T _ Ty + Ty + TW
w/Pr 2u/Pr

Pr . Pr . Pr .
T =Ty + —Cpy' = ZCohgnlY* ) + —apim(7* )
Her ho Her
Pr . Pr N y*v 1
_ATy y T _CTy v T
U U 2 o
Where
2
M 1 Yoy 1
E(Tn a TW) a C'T T(y n_y v) * a ?ATﬂn[Y Tn]] ]
A, = 1 !
—nY
Yy v + aT n[ Tn]
2
d
c, =12 (pUur
s dx(p )P
(I-ory*) = Ay and 1+ (Y*-y*) =Y*;
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 Wall Shear Stressand Wall Heat Flux
Diff erentiationof theabowveexpressonsat y=0, will
then result in expressons for the wall shea stress
and the wall hea flux.
T, =-pdU/dy,., and @~ - (Ceu/Pr)dT/dy,,
 Average Generation Rate, P,

P.=p [dU/dy]* and  po=ap (y*-y*)

Thus:  Pc=ap (y* -y*,) [dU/dy]’

Integration leads to:

ocuy:yn . [ dU)?
[O =y ) | &

Yu )2, dy

Where dU/dy is obtained by differentiating the
expressonfor U, over theregion y > ..

P, =
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 AverageDisgpation Rate

Asinthe omnventional wall-functions

For y<y,: €=2vkJdyS
For y>y,: e=k?/cy

Unlike the conventional wall functions, case (a):
y'a# Y (=20)

For continuity of € 2v ki y,* =ks**/ ¢, Y4

*

-» yq =951
Y, Y,
Standard Analytical
WF l WF
E> &2
s P > P
Y. 7 — Y,
)

T T

C)) (b)

24



 Further Extensions
The asumptions invaved in the Analyticad Wall
Function are less restrictive than those in the
conventional wall functions.
It IS conseguently possble to introduce further
refinements to the Anayticd Wall Function to
extent the range of flowsthat it can be goplied.
These refinements include.

- Introduwction d Laminarizaion Effeds

- Temperature Variation d Viscosity

- Inclusion d Buoyancy Effeds

- High Prandit Number Modificaion

- Extension to flows over roughsurfaces.
Some of the above refinements make the resulting
eguations more complex, but because they are il

algebraic equations, the associated computational
overheads are negligible.

25



Inclusion d Laminarizaion Effeds

Objediveis smilar to that in Johnson-Launder.

Theavall ability of theanalyticd velocity variation,
makesit posgbleto employ amoreconvenient locd
parameter, A

A =1,l/T,

Then the average disgpation rate is multiplied by
the function F..

Evew = F'e€oricmaL

A>1  F.=1+ 1.5{1-exp[-6.9(1-0.99)]}
{ 1-exp[-193max(e,0))]}

A<l F.=1- (1-F.)[1-exp(-(1-A)/A]
{ 1-exp[-11.1(max(y,0))]}

oa=(A/1.02) -1 v=0.98/A F.,=0.75
When A>1, F.>1=» thickerviscous sub-layer.

When A <1, trendisreversed.

26



Temperature Variation d Viscosity

In strongly heaed flows, changes in temperature
cause variations in fluid properties (viscosity and
thermal conductivity) aaossthe nea-wall cdls.

These changes can have a strong effed on
hydrodynamic and thermal boundary layers.

Temperature, and hence fluid properties, change
most strondy aaossthe viscous sub-layer.

Thus, only changes in fluid properties aadoss the
Zero-viscosity-region are taken into acourt.

B
1+b,y"p" —2yv)

For y<y, W =

With p,, and p, the viscosities at the analyticd
solution temperatures, at the wall and the edge of
the zeo-turbulent-viscosity sub-layer.
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Incluson d Buoyancy Effeds

Theeffedsof thebuoyancy forcecan beincluded at
two dfferent levels.

A In the analyticd solution d the wall-parall el
moment equation

* prefgx B (T a Tre )

P

i) - Lpv0) - £

Where T is based on the analyticd solution d the
enthalpy equation.

A The integrated form of the buoyancy force
aaoss the nea-wall control volume, can be
cdculated and included in the discretized form
of the wall-parallel momentum equation over
the nea-wall control volume.

Yn
F,, = yifprefgxﬁ(T—Tre )y

I’ly:O

Boththe @bove extensionsbeammepossble, becaise
of the avallability of the analyticd temperature
variation ower the nea-wall cdls.
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High Prandit Number Maodification.

At highPrandtl numbersthesub-layer, aaosswhich
turbulent transport of thermal energy is negligible,
becomes thinner than the viscous sub-layer.

Thus, the asaumption that the turbulent hea flux
becomes negligible when y<y,,, nolonger applies.

Difference in turbulent thermal diffusivities
between LRN and AWF approaches

Molecular thermal diffusivity across the viscous sublayer

=

Thermal Diffusivities
Thermal Diffusivities

This is corrected, through the introduction of an
effedivemoleaular Prandtl number inequation(ll).

Pr
1+0.017(Pif1+ 2.9|F, ~1]*°

Pry =

29



Extension to flows over roughsurfaces

- Average height of
roughresselements: h

o . - Locd Dimensionless
height of roughnress
2 elements at nea-wall
Dl noce P: h*=h k,%°/v

< e ———— ]

- Surfaceroughressaffeds the modelling d nea-
wall turbulence modifying the dimensionless
thicknessof the viscosity-dominated sub-layer, y, *.
For asmoath surface: y*,.=10.7
For aroughsurface:

y* =Y s 1- (0*/70)"]

Where m isempiricaly determined.
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 Applicationsof theAnalytical Wall Function
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Figure 6. Predicted (a) Nusselt number and (b} wall
temperature for buovancy-opposed water flow in annulus
at Bo=0.7%.

Figure 7. Predicted (a) Nusselt number and (b} wall
temperature for buovancy-opposed water flow in annulus
at Bo=0.83 and Re=4000.

32



3.2 TheNumerical Wall Function, UMIST-N

The simplified transport equations for the wall-
parallel momentum and enthalpy are numericaly
solved aaossthe nea-wall cdls.

-\
- Each nea-wall
cdl isdivided into Subgrid —— Subgrid defined
a number of sub- " [T A meraided
volumes.
__,rOOOOSOStOETETs
d dUu d d dP
—(w+p)==| - —(pVU) = |==(pUV) + =
dy dy dy dx ax |p
a)| » FRidl) 9 (ovT) = | L(pUT)
ay|\\ Pr o,| dy dy dx p

- Left hand side terms are discretized using sub-
grid nodhl values.

- Right hand sideterms are discretized usingmain
grid nodal values and are constant aadossead cdl.
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- Thewall normal velocity at the sub-grid nocesis
obtained from locd sub-cdl continuity.

- The turbulent viscosity at the sub-grid noces is
determined by numericdly solving simplified
eguations of alow-Reynolds-number model.

- If the Launder-Sharmais used, for example:

0

2
3 9 ok ok
—(pVk) + | —(pUk)| = —|(p+Q,)—| + P, - -2 ——
ay(p )+ 5P )P ay[(“ ”f)ay] , - PE pv[ ay)
0 0 0 0
—(pVe) + | —(pUe = —|(HtH,)—
2(ove) + | Z(pve) ay[m ut)a]
€2 2u|?

Terms with subscript P evaluated using main grid
nodal values.
w=pc,f k/e P.=u.(dU/dy)?

f,=1-0.3exp(-R’) f,=exp[-3.4/(1+0.02R)?]
R, = k¥(ve)
Y C denates the Y ap length scde wrredionterm.

34



 Implementation

- Thesub-grid noddl values of the flow variables
are stored for all nea-wall cdls.

Subgrid boundary
condition interpolated

N . from main—grid nodes
Nand P

s \\\\\%\7&\\ UM

Subgrid pressure gradient
calculated from main—grid
pressures interpolated to e and w

- Thediscretizaion d thewall -parall el convedion
oU(dd/dx) isthus based onsub-grid nodd values.

- The discretization of the smplified transport
equationswithin ead nea-wall cdl, resultsinatri-
diagonal system.

pVGCD 0 PGCD =S/q, _ s, - pU@
dy oy\ oy 0x

-+  A,®, =4, + NO, + S’
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- Within ead nea-wall cdl, the discretized sub-
grid equationsare solved usingatri-diagonal matrix
solver.

m Only one swee of the sub-grid TDMA is
performed within ead iteration.
B Thek and e equations are under-relaxed.

- Following ead sub-grid iteration, the sub-grid
nodal values are used to producethe foll owing:

= Wall Shear Stress t,,, used to modify the
discretized wall -parall el momentumequationat
the nea-wall cdls

= Either the wall temperature, T,, or the wall
heat flux, q,, that modify the ethalpy
equation at the nea-wall cdls.

= Thecdl-averaged P, and € that modify the k
transport equation at the nea-wall cdls.

= The cdl-averaged

2

€p 82U
Coy— k pcezfz— + 2pvv,

oy>

+ YC

that modify the disretized e equation at the
nea-wall cdls.
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This wall-function strategy can be used with ather
low-Re moddls, such as nonlinea k-e models.

Applicationsof theNumerical Wall Function
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Figure 5. Nusselt number predictions for the impinging jet (H/D =4, Re = 70,000} using the nonlinear
k—& model; broken lines are wall-function results with different near-wall cell sizes; (left) Chieng and
Launder wall function; (right) UMIST-N wall function.

Wall functions

Chieng and Launder UMIST-N Low-Re, Craft et al.
Number of nodes T0 % 45 T0 =45 @ 40 T0 90
CPU time per iteration (s) 0.158 0.260 0.324
MNo. of llerations 1.426 1,380 9116
Total CPU time (s) 226 359 2,955
Relatve CPU tme 1 1.59 13.08
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Figure 8. Predicted integral Nusselt number in the free-dise flow using the lincar & — & model with: (left)
Chieng and Launder wall function; (right) UMIST-N wall funcuon. Solid line, low-Re model; broken
lings, wall function results for different grid arrangements; ©, experimental values from Cobb and
Saunders [24].
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Figure 9. Velocity profiles for the free-disc flow at Rey = 1.0 10° using wall-law axes; (left) radial
U-velocity and (right ) tangential B-velocity; —=—, UMIST-N wall function {circles indicate the position of
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low-Re model; —-—, Chieng and Launder wall function; -- -, “universal” log-law.
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4. Concluding Remarks

- Some We&knessss of the conventional wall
functions have been identified.

-  Extensions of the conventional wall functions
have bean presented.

- Tworecanitly developed wall -functionstrategies
have beean presented, which instead of relying
onthelog-law, solve simplified momentum and
enthalpy eguations aaossthe nea-wall cdls.

The Analyticd Wall Function, UMIST-A,
IS as computationally efficient as the
conventional approadh and in many
complex flows resultsin predictions of the
same quality as a low-Reynolds-number

approad.

The Numericd Wall Function, UMIST-N,
whil e increasing computational overheads,
relative to the conventional approad, by
60% to 100%, resultsin predictionssimil ar
tothose of low-Remodelsat only afradion
of the @ost.
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