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Introduction – 1

Both linear and non-linear EVM’s use algebraic relations for the stresses.

This means the stresses respond instantly to changes in the mean
strain, and leads to a direct link between the stress anisotropy and mean
strains. If mean velocity gradients vanish at some point in the flow, even
a NLEVM will return isotropic turbulence at that position.

Physically, the individual stresses get generated, convected, diffused and
dissipated at different rates. We now, therefore, explore a modelling
strategy that takes account of this.

One can construct an exact transport equation for each stress
component uiuj , by manipulating the equations for the fluctuating
velocities ui and uj . The result does contain unknown products – which
have to be modelled – but the modelling is now at a more fundamental
level than the approach of obtaining an effective turbulent viscosity.
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Introduction – 2

An important aspect of stress transport modelling is that the generation
terms are represented exactly.

In this first lecture we will:

Examine the stress transport equations, and identify some of the
physical features built into them.

Describe simple models that can be used to close the set of
equations.

In a second lecture we will look at more methods of devising more
advanced stress transport models.
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Stress Transport Equations – 1

To obtain a transport equation for uiuj , the equation for uj is multiplied by
ui and averaged:

ui

[

∂uj

∂t
+ Uk

∂uj

∂xk
= · · ·

]

Adding this to the equation for ui multiplied by uj (also averaged), results
in an equation which begins

ui
∂uj

∂t
+ uj

∂ui

∂t
+ Uk

[

ui
∂uj

∂xk
+ uj

∂ui

∂xk

]

= · · ·

or
∂uiuj

∂t
+ Uk

∂uiuj

∂xj
≡

Duiuj

Dt
= · · ·
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Stress Transport Equations – 2
After some manipulation, the stress transport equation becomes

Duiuj

Dt
= −

(

uiuk
∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)

− 2ν
∂ui

∂xk

∂uj

∂xk

+
p

ρ

(

∂ui

∂xj
+

∂uj

∂xi

)

−
∂

∂xk

[

uiujuk + pui/ρδjk + puj/ρδik − ν
∂uiuj

∂xk

]

which is often written in shorthand notation

Duiuj

Dt
= Pij − εij + φij + dij
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Stress Transport Equations – 3

There are similarities with the turbulent kinetic energy equation:

Pij is the generation rate of the turbulent stress by mean shear.

εij is the viscous dissipation rate of the stress component.

dij is the diffusion rate of the turbulent stress by turbulent and
viscous action.

For practical computations, models are needed for φij , εij and dij .
However, the important generation terms do not require modelling.

One difference between the turbulent kinetic energy and stress equations
is that the k transport equation has no equivalent of the process φij.

If we sum the equations for the normal stresses (set i = j) we produce
an equation for (twice) the turbulence energy (Duiui/Dt ≡ 2 Dk/Dt).
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Stress Transport Equations – 4
For φij we get:

φii =
p

ρ

(

∂ui

∂xi
+

∂ui

∂xi

)

= 0 (by continuity)

This process – called the “pressure-strain” or “pressure-scrambling” term
– thus makes no direct contribution to the level of turbulence energy.

However, φij does act to redistribute turbulence energy from one stress
component to another.

As a vast generalization, if the normal stress in one direction is less than
in the other directions, it will receive energy through φij .

The process φij is thus often thought of as tending to return the
turbulence towards an isotropic state.
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The Production Tensor

The production term are exact, in that they only contain Reynolds
stresses and mean strains, and therefore do not require further
modelling:

Pij = −

(

uiuk
∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)

Before considering the modelling of other terms, we first examine how
these generation rates behave in a few example flows.

STRESS TRANSPORT MODELLING – 1 – p.8



Simple Shear Flow
In a simple shear flow, with U1(x2), U2 = U3 = 0,

P11 = −2 u1u2

∂U1

∂x2

P22 = P33 = 0

P12 = −u2

2

∂U1
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This shows why:

u1u2 is (usually) of the opposite sign to ∂U1/∂x2: its generation term
is of the opposite sign.

The streamwise normal stress is typically larger than the others: only
u2

1
is generated directly by Pij, and the pressure-strain φij then acts

to ‘redistribute’ some of this energy into u2

2
and u2

3
.

Free flows spread more rapidly than near-wall flows: u2

2
/k is larger in

free flows than in near-wall flows, leading to higher levels of shear
stress generation.
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Generation Rates on Curved Surfaces – 1
It is known that even weak surface curvature can have a strong effect on
turbulence levels. The reasons for this can be seen from the generation
terms.

In addition to the primary shear ∂U1/∂x2, there is now a shear
associated with curvature ∂U2/∂x1. This results in

P12 = −u2

2

∂U1

∂x2

− u2

1

∂U2

∂x1

and

P22 = −u1u2
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For the concave wall shown, ∂U1/∂x2 > 0, and ∂U2/∂x1 > 0.

Both terms in P12 are thus of the same sign. As noted earlier, u2

1
is

significantly larger than u2

2
(particularly in the viscosity affected sublayer).
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Generation Rates on Curved Surfaces – 2
Thus, although ∂U2/∂x1 is much smaller than ∂U1/∂x2, the difference in
magnitude of the associated normal stresses means that the second
term in P12 is not neligible when compared to the first.

In addition, the generation term in the u2

2
equation is positive (since u1u2

is negative), helping to further increase P12.

The shear stress production is thus augmented partly by the secondary
strain term in P12 and partly because the curvature enhances u2

2
.

Since stress transport models represent Pij exactly, they should (at least
qualitatively) capture this effect.

In contrast, a linear eddy-viscosity model takes

−u1u2 = νt

(

∂U1

∂x2

+
∂U2

∂x1

)

and since the secondary strain is much smaller than the primary, its
effect in this case is negligible.
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Modelling the Stress Transport Equations
Although generation terms are treated exactly, models are needed for
the dissipation (εij), diffusion (dij) and pressure-strain correlation (φij).

There are a number of properties which the model equations should
ideally have:

The correct tensorial form: they should have the same symmetries
and contraction properties that the exact processes do.

Coordinate invariance: they should be independent of the frame of
reference – including accelerating frames.

Realizability: models should not predict physically impossible values
such as negative normal stresses.

Consistency with physical wall/surface limits.

Geometry independence: models should not be dependent on
details of the specific geometry being studied.

Models described in this lecture satisfy the first two conditions.
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Dissipation, εij

Dissipative processes arise from the smallest scale eddies:

εij = 2ν
∂ui

∂xk

∂uj

∂xk

Turbulence energy gets cascaded from larger eddies to smaller ones.

If there is a wide enough range of scales, one can argue that the
smallest eddies will be (almost) isotropic – local isotropy.

Hence, at high Reynolds numbers, the dissipative terms are often
assumed to be isotropic:

εij = 2/3εδij

– an equal effect on all normal stresses, and none on the shear stress.

The turbulence energy dissipation rate ε is obtained from its own
transport equation, similar to that used in a k-ε scheme.

STRESS TRANSPORT MODELLING – 1 – p.13



Diffusion, dij

From the exact expression, the diffusion can be seen to be due to triple
moments, pressure-velocity correlations and viscous effects:

dij = −
∂

∂xk

(

uiujuk + puj/ρδik + pui/ρδjk − ν
∂uiuj

∂xk

)

Pressure-diffusion is usually negligible, except very close to a wall or
surface.

The generalized gradient diffuion hypothesis (Daly & Harlow 1970) is
often employed:

ukφ ∝ −
k

ε
ukul

∂φ

∂xl

for some quantity φ.

Applying this to the triple moments gives

dij =
∂

∂xk

(

cs
k

ε
ukul

∂uiuj

∂xl

)
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Pressure-Strain, φij – 1
As already seen, φij is redistributive: it has no direct influence on levels
of turbulence energy.

φij =
p

ρ

(

∂ui

∂xj
+

∂uj

∂xi

)

One can obtain and solve a Poisson equation for p, and thus arrive at an
expression for φij :

φij = −
1

4π

∫

V

(

∂3u′

lu
′

kui

∂rl∂rk∂rj
+

∂3u′

lu
′

kuj

∂rl∂rk∂ri

)

dV

|r|

−
1

2π

∫

V

∂U ′

k

∂rl

(

∂2u′

lui

∂rk∂rj
+

∂2u′

luj

∂rk∂ri

)

dV

|r|

In buoyant flows there is a third part to φij , involving the fluctuating
buoyant forces.
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Pressure-Strain, φij – 2
One thus expects to have contributions to φij from turbulence-turbulence
interactions and from mean strains (and from buoyancy terms in buoyant
flows). Hence φij is often modelled as

φij = φij1 + φij2(+φij3)

In a simple shear flow φij acts to reduce the anisotropy of the stresses –
by redistributing energy from the streamwise component into the other
two normal stresses.

If one generates an initially anisotropic turbulence, it will return towards
isotropy once the external strains have been removed. This must be due
to φij1, the “slow pressure-strain”, or “return to isotropy”, term.
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Pressure-Strain Modelling – 1

A simple linear model for the turbulence-turbulence interactions is thus
(Rotta 1951):

φij1 = −c1εaij

where aij = uiuj/k − 2/3δij .

This redistributes energy to reduce the anisotropy of the stresses.

φij2 has a similar effect of tending to reduce the anisotropy (at least in
simple shear flow).

A simple (and widely used) model for the “rapid” pressure strain term is

φij2 = −c2(Pij − 1/3Pkkδij)

(Naot et al 1970, Launder et al 1975).

This acts to redistribute the generation rates to reduce anisotropy.
(“Isotropization of Production” or IP model)

STRESS TRANSPORT MODELLING – 1 – p.17



Pressure-Strain Modelling – 2
In a simple shear, where only P11 and P12 are non-zero, this gives

φ112 = −c1εa11 − 2/3 c2P11

φ222 = −c1εa22 + 1/3 c2P11

φ332 = −c1εa33 + 1/3 c2P11

φ122 = −c1εa12 − c2P12
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φij2 acts as a sink for u2

1
and u1u2, but a source for u2

2
and u2

3
.

Since u2

1
will be larger than u2

2
and u2

3
, φij1 will also act to reduce u2

1
and

increase the other two normal stresses. It will also act as a sink for u1u2.
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Accounting for Wall-Reflection Effects – 1
In a simple shear flow with velocity gradient dU1/dx2, the model
described so far gives identical values for u2

2
and u2

3
.

This is not what is found experimentally, even in free flows: in near-wall
flows even larger anisotropy is expected.

Typical stress anisotropy levels:

u2

1
/k u2

2
/k u2

3
/k u1u2/k

Free shear 0.95 0.47 0.55 0.32

Near-wall flow 1.20 0.25 0.55 0.25

Equal values for u2

2
and u2

3
would imply significant errors near a wall.
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Accounting for Wall-Reflection Effects – 2

One of the effects of the wall (or surface)
is to impede the energy transfer into the
stress component normal to the wall.

Pressure fluctuations get reflected from
walls or surfaces, and this leads to a
damping of the velocity fluctuations nor-
mal to the surface.

This also leads to a reduction of the shear stress.

Additional terms are often included in φij to account for these effects.
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Wall-Reflection Modelling – 1
The wall damping effect is often modelled by employing the turbulence
lengthscale to control the strength of the wall corrections.

The quantity fy defined by

fy =
k3/2/ε

2.5xpnp

where n is the unit vector normal to the wall,
is typically close to unity near the wall, but
decreases as one moves away from the wall.

n

Note, however, that this can be difficult to apply in computing
complicated geometries.
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Wall-Reflection Modelling – 2

A widely-used wall correction to φij1 (Shir 1973) can be written:

φw
ij1 = c1w

ε

k
(ukul nlnkδij − 3/2 uiuk njnk − 3/2 ujuk nink) fy

where c1w is typically taken as 0.5.

For a single wall with n1 = n3 = 0, n2 = 1 this gives:

φw
111

= φw
331

= c1w
ε

k
u2

2
fy

φw
221

= −2 c1w
ε

k
u2

2
fy

φw
121

= −3/2 c1w
ε

k
u1u2fy

The model thus acts to impede the transfer of energy into u2

2
as the wall

is approached.
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Wall-Reflection Modelling – 3

Corrections are usually also applied to φij2. The Gibson-Launder (1978)
model for φw

ij2 can be written:

φw
ij2 = c2w (φkl2 nknlδij − 3/2 φik2 njnk − 3/2 φjk2 nink) fy

This acts to oppose the φij2 redistribution process. For n = (0, 1, 0),

φw
112

= φw
332

= c2w φ222 fy

φw
222

= −2 c2w φ222 fy

φw
122

= −3/2 c2w φ122 fy

But in an impinging flow (where, because of the different strain rates,
energy is generated in the component normal to the wall), this has the
effect of increasing the stress component normal to the wall!
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Wall-Reflection Modelling – 4
An alternative model for φw

ij2, proposed by Craft & Launder (1992), has
the desired effect of damping the wall-normal stress component in both
wall-parallel and impinging flows:

φw
ij2 = −0.08

∂Ul

∂xk
uluk(δijntnt − 3ninj)fy

− 0.1kalm

(

∂Uk

∂xm
nlnkδij − 3/2

∂Ui

∂xm
nlnj − 3/2

∂Uj

∂xm
nlni

)

fy

+ 0.4k
∂Uk

∂xl
nlnk (ninj − 1/3 ntntδij) fy
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Summary

In this first lecture on sress transport modeling, we have covered:

Where the stress transport equations come from.

The physical processes that appear in the equations.

Some simple modelling ideas to close the equations.

In the next lecture we will look at routes to devise more advanced
models: in particular the idea of realizability and the development of
two-component-limit models.
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