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1. Theproblem of the modelling near-wall
turbulent flows.

,_, Turbulen
— f

[aminar
/? Iﬁ

77777777 7777777777777,

=  Mostflow problemsinengineaingapplicaions
iInvolve wall-bounded turbulent flows.

= Atthesolidfluid interface thenodlip condtion
ensuresthat thetur bulent fluctuationsvanish.

=  There is thus a very thin, but important sub-
layer next to the wall, where transport of hed
and momentum is predominately due to
molecular diffusion.

= Question: How to acourt for this viscosity-
dominated sub-layer in the
numerica simulation of turbulent
flows ?



Alternatives:

1. UseLow-Reynolds-number Models.
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- Transport models that can be integrated aaoss
the viscous sub-layer.

- Invoalve no assumptions abou the nea-wall
variation d velocity and temperature.

- Reguire very fine nea-wall resolution.

2. UseWall-Function Strategy.
- Computationally Efficient.
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- Involve asamptions abou the nea-wall
variation of the mean flow and d the turbulent

flow parameters.



2. TheWall-Function strategy.
Overview of Wall-Function Strategy

Useof Large I ntroduction of
Near-Wall Assumptions about
Control Volumes the Near-Wall

—~ Flow Variation
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M odification of Discretize
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Discretized Equations
This framework i1s common to the cmnventional
wall functionsandalsototherecently developed
more alvanced alternatives.

The main numerical advantage arises from the
use of large near-wall cells.

Differences in wall functions arise from

- Theassumptions made abou the nea wall
behaviour

- The way the wal shea stress wall
temperature and cdl-averaged turbulence
parameters are cadculated.

The assumptions made also determine the range
of flows over which the an approadh can be
effedive.



3. Conventional Wall Functions and theair
limitations
m Qverview of Conventional Wall Functions

1. The wall-parallel
velocity aaoss most of
the nea-wall cdl Is 7 up
asumed to obey thew| rkp
inner law of the wall ’
(k=0.41)

2. The total shear stress i
remains constant aaoss T=(H;+Hf)(dU/dv)=fw
the nea-wal cell and |
equal to the wall shea

Stress /

3. Theturbulent kinetic energy is constant over
the inner region (=k;) and fall s quadraticdly to
Zero, inthe viscous sub-layer.

k=k,

4. The dissipation rate a the inner region is
asaumed to vary acmording to € = ky*/cy
(c,=2.55) and to remain constant aaoss the
viscous sub-layer.



= |_imitations of Conventional Wall Functions
- Flows sibeded to strong Pressure Gradients
- Strongy Heaed Internal Flows

- Boundary Layer Flows with Suction Across A
Porous Wall

- Mixed and Natural Convedion Flows
- Separated and Impinging Flows

- Threedimensional Boundary Layers




4. TheUMIST approachtothedevelopment
of Wall-Functions

m  Earlier attemptsto refine conventional wall
functions

- Chieng and Launder (1980/Johmnson
Launder(1982

- Amano (1984

- Ciofalo and Collins (1989
® All aboweattemptsstill made use of thelog-law.
B Current UMIST attempts
Aim
To preserve the overall framework of the wall-
function strategy, but to remove some of the more

li miti ng assumptions made, such as thelog-law and
the constant total shea stress



Approach
- Thelog-law isnolonger used.

- Thevelocity and temperature variations aaoss
the nea-wall cdls are determined through the
solution of simplified, locdly one-dimensional
transport equations for the wall -parall el momentum
and for enthalpy.
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From the resulting velocity and temperature
distributions across the near-wall cells:
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Thewall shea stress T, can be cdculated

Either thewall temperature, T, or thewall hea
flux, g,, can be cdculated

The cdl-average P, can be cdculated
Theabowve parameters can be used to modify the
discretized transport equations for wall -parall

momentum, enthalpy and turbulent Kkinetic
energy over the nea-wall cdls.
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® |n threedimensiona flows, momentum
transport equations in two diredions can be
Independently
solved.

Boundary Condtions

At x,=0

U,=0 and U=0
At x=x" U=05*U"UN) And U=0
® Alternative Strategies

Two different strategies have bean developed at
UMIST for the solutionof equations(l) and(l1) that:

- Sharethe sameoverall approad outlined sofar.

- Differ inthe assumptions used and the methods
employed.

- Both come under the aaconym UMIST,
denating Unified Modelling through Integrated
Sub-layer Transport.

The two alternatives are now separately presented.
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5. TheAnalytical Wall-Function, UMIST-A

® Mean Flow Analysis

As the name implies, equations (1) and (I1) are
solved analytically aaossthe nea-wall cdl.

This is acomplished through the use of a
prescribed variation for the turbulent viscosity,
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A consequence of this variation in u,, is that two
forms of equations (I) and (Il) are solved.

For y <y,
d[au] [d o, dp
dy| dy dx dx | p
b 41 a1 4 (pur)
Pr dy| dy dx P
For y,>y <y,

d dU d dP
—(1+a(y -y ))—| = | —(pUU) + —
udy[( 0 -y dy] dov0) - 2|
B dif g olre s o1 dl L d oo

Pr dy o, Oy v)) dy dx<p )P

The right hand sides of the equations are treaed as
constants and are caculated from the nodal values.
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At the inter face between the two regions, y',, it is
required that thevariables (U and T) andtheir first
derivatives (dU/dy and dT/dy) are continuous.

The enpiricd constant y', is determined as 10.8
The analytical integration of the abowve equations
results in algebraic equations that provide a
continuousvariationof Uand T.

® \Wall Shear Stressand Wall Heat Flux

Differentiation of theanalyticd expressonsat y=0,
will then result in:

Ty = 'I-LdU/dyy:O and qw= - (Cpp,/Pr)dT/dyy:O
® Average Generation Rate, P,

Thus:  P.=ap (y* -y*,) [dU/dy]?

Integrating: P, = —& f ”( -y’ )( )

Y=y,
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® AverageDissipation Rate

Asinthe @mnventional wall-functions

For y<y,:
For y>yy:

e=2vkdyy
e =k ?/cy

Unlike the conventional wall functions, case (a):

Standard
WF
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Y, Y,
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For continuity of €:
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® Further Extensions

The assumptions involved are lessrestrictive than
those in the conventional wall functions.

It isthus posgbleto introducefurther refinements

Introduction of L aminarization Effects, based
onthe parameter A=1,,/T,

Temperature Variation of viscosity and
thermal conductivity aaoss the viscosity-
affeded sub-layer.

Inclusion of Buoyancy Forceinthe integration
of the equation of the wall-parallel momentum
(I) and in the disctretized momentum equation
over the nea-wall cdls.

High Prandlt number correction of the
enthalpy eguation (1) .

Extension to flows over rough surfaces, by
making the sub-layer thickness y,", a function
of h’, where h is the average height of the
roughresselements.
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® Applicationsof the Analytical Wall Function
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Flows over Rough Surfaces
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Other Applications of the Analytical Wall
Function

| sothermal and nonisothermal oppased
wall j ets.

- Free onwvedion boundry layer.

- Diffuser Flows

- Ribbed ppe aad channel flows.

-  3-D U-Bend Flows.
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6. TheNumerical Wall-Function, UMIST-N

=  Approach /\gf
The transport \
equations for the _

within near—wall

wall-parallel &—F— /man_gm, -
momentum and - [t
enthalpy are e
numer I C aI | y SO| v ed \\\\\\\\\\\\\\\\\\\\\\\ NN
aqgoss the nea-wadl
cdls.

- Eadch nea-wall cdl isdivided into sub-volumes.

d dU d d dP
+ yu) = vvu) + —
dy[(u u,)dy] L(ory) [dxm ) o &

P

d

a4
dy

dy

L&d_T
dy

pVT) = uxwﬂ

P

- Left hand side terms are discretized using sub-
grid nodal values.

- Right hand sidetermsarediscretized usingmain
grid nodal values and are constant acossead cdl.
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- Thewall normal velocity at the sub-grid nodesis
obtained fromlocd sub-cdl continuity andscdedto
match the boundary nodal value.

- The turbulent viscosity at the sub-grid nodesis
determined by numericdly solving equations of a
low-Reynaolds-number model, over the sub-grid.

- If the Launder-Sharmais used, for example:

9 9 3 ok Wk
Vk Uk)| = —|(W+p,)—| + P -2
ay(p )+ | (P )P ay[(“ u,)ay] ¢~ PE pV[ )
0 0 0 o€
—(pVe) + | —(pUe = —
2ipve) +| 2pue)| a[(u b2

2

2
pcezfz— + 2pvv, U v|’

ay*?

+ YC

Terms with subscript P evaluated using main gid
nodal values.

w=pcf k/e P.=u(dU/dy)?
f,=1-0.3exp(-R*) f,=exp[-34/(1+0.02R)*]

R, = k¥(ve)
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= |Implementation

- The sub-grid nodal values of the flow variables
are stored for al nea-wall cdls.

Subgrid boundary
condition interpolated

.N . from main—grid nodes
Nand P

S, \\\\3\\\74\\ S

Subgrid pressure gradient
calculated from main—grid
pressures interpolated to e and w

- Thediscretizaion o thewall-parall el convedion
oU(dd/dx) isthus based onsub-grid nodd values.

- The discretizaion of the smplified transport
equations within ead nea-wall cdl, resultsin atri-
diagonal system.

pV8<I> 0 I,GCD :S/cp _ s, - pU@
oy oy\ oy 0x

2 A,®,=4,0, + NO, + S
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- The discretized sub-grid eguations are solved
using atri-diagonal matrix solver (TDMA).

B Only one swee of the sub-grid TDMA is
performed within ead iteration.
®  Thek and e equations are under-relaxed.

- The sub-grid nodil values are used to produce

= Wall Shear Stress t,,, used to modfy the
discretized wall -parall el momentum equation at
the nea-wall cdls

m Either the wall temperature, T, or the wall
heat flux, q,,, that modify the enthal py equation
at the nea-wall cdls.

m  The cell-averaged P, and e that modify the k
transport equation at the nea-wall cdls.

= The cell-averaged

2
+ YC

2

€ € o*U
cel%Pk B pCerZ? + 2pVVt

8y2

that modify the disretized e equationat the nea-
wall cdls.

This wall-function strategy can be used with other
low-Re models, such as nonlinea k-e models.
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® Applicationsof the Numerical Wall Function
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Figure 5. Nusselt number predictions for the impinging jet (H/D = 4, Re = 70,000} using the nonlinear
k—& model; broken lines are wall-function results with different near-wall cell sizes; (left) Chieng and

Launder wall function; (right) UMIST-N wall function.

Wall functions

Chieng and Launder UMIST-N Low-Re, Craft et al.
Number of nodes T0 %45 TOx 45 (40 T0 %90
CPU time per iteration (s) 0.158 0.260 0.324
No. of iterations 1,426 1,380 9,116
Total CPU time (s) 226 359 2,955
Relative CPU time 1 1.59 13.08
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experimental values from Cobb and

4(]__ -+ 1 — 40t:——¢-4—b—H+f-H—l—l—¢—¢-‘-H4-|-—+—+-i—4-H-Hr
a0 S ey
1 TN T :
% 1 A ]
S 20 1l gm]
10-
G_
1

yx yt

Figure 9. Velocity profiles for the free-disc flow at Rey = 1.0 10® using wall-law axes; (left) radial
Uevelocity and (right) tangential W-velocity; <=—, UMIST-N wall function (circles indicate the position of
primary grid nodes and the solid line without symbols represents the solution across the subgrid); — — —,
low-Re model; —- —, Chieng and Launder wall function; - - -, “universal” log-law.
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3-D U-Bend Flow
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3-D U-Bend Flow

Comparisons of Side-aver aged Nusselt Number
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Other Applications of the Numerical Wall
Function

- 3-D Flow over the Ahmed Body.
- Rotating Cavity Flows

- Abrupt Pipe Expansion
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. Concluding Remarks

Two wall -function strategies have been
presented which:

= Do narely oneather theloglaw, or a
prescribed total shea-stressvariation.

= Solve ssimplified momentum and enthal py
eguations aaossthe nea-wall cdls.

The Anayticd Wall Function, UMIST-A:

= |sascomputationally efficient asthe
conventional approad.

= |nmany complex flowsresultsin
predictions of the same quality as alow-
Reynolds-number approad.

= Hasbea also extended to include the
effeds of small-scae surfaceroughress
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The Numericd Wall Function, UMIST-N:

= |ncreases computational overheals,
relative to the mnventional approad, by
60% to 100%.

= Resultsin predictions smilar to those of
low-Re models a only afradion d the
cost.

Both approadies have been implemented in 3

dimensional general-geometry codes.

Applicaion d both approadies to more cases
ISin progress
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