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1. The problem of the modelling  near-wall
turbulent flows.

� Most flow problems in engineering applications
involve wall-bounded turbulent flows.

� At the solid fluid interface, the no slip condition
ensures that the turbulent fluctuations vanish.

� There is thus a very thin, but important sub-
layer next to the wall , where transport of heat
and momentum is predominately due to
molecular diffusion.

�� Question: How to account for this viscosity-
dominated sub-layer in the
numerical simulation of turbulent
flows ?
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Alternatives:
1. Use Low-Reynolds-number Models.

- Transport models that can be integrated across
the viscous sub-layer.

- Involve no assumptions about the near-wall
variation of velocity and temperature.

- Require very fine near-wall resolution.

2. Use Wall-Function Strategy.
- Computationally Eff icient.

- Involve assumptions about the near-wall
variation of the mean flow and of the turbulent
flow parameters.
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2. The Wall-Function strategy.
Overview  of  Wall-Function  Strategy

      Use of Large                 Introduction of 
       Near-Wall          Assumptions about 
   Control Volumes      the Near-Wall 

     Flow Variation

     Calculation of Wall Shear 
          Stress and Average
     Generation and Dissipation
      Rates of Turbulent Kinetic
          Energy for Near-Wall 
              Contol Volumes.

Modification of Discretize
 Transport Equations for Wall-

 Parallel Momentum and Turbulent
 Kinetic Energy over Near-Wall

 Control-Volumes. 

Numerical Solution of Resulting



5

 Discretized Equations� This framework is common to the conventional
wall  functions and also to the recently developed
more advanced alternatives.

� The main numerical advantage arises from the
use of large near-wall cells. 

� Differences in wall functions arise from 

- The assumptions made about the near wall
behaviour

- The way the wall  shear stress, wall
temperature and cell -averaged turbulence
parameters are calculated.

� The assumptions made also determine the range
of flows over which the an approach can be
effective.
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3. Conventional Wall Functions and their
limitations��  Overview of Conventional Wall Functions

1. The wa l l - p a ra l l e l
velocity across most of
the near-wall cell i s
assumed to obey the
inner law of the wall
( �� =0.41)

2. The total shear stress
remains constant across
the near-wall  cell and
equal to the wall shear
stress.

3. The turbulent kinetic energy is constant over
the inner region (=kP) and falls quadratically to
zero, in the viscous sub-layer.

4. The dissipation rate at the inner region is
assumed to vary according to �	  = kP

1.5/c 
� y
(c� =2.55) and to remain constant across the
viscous sub-layer.
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�  Limitations of Conventional Wall Functions

- Flows subjected to strong  Pressure  Gradients

- Strongly Heated  Internal Flows

- Boundary Layer Flows with Suction Across  A
Porous  Wall

- Mixed and Natural Convection Flows

- Separated and Impinging Flows

- Three-dimensional Boundary Layers
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4. The UMIST approach to the development
of Wall-Functions

�� Earlier attempts to refine conventional wall
functions

- Chieng and Launder (1980)/Johnson-
Launder(1982)

- Amano (1984)

- Ciofalo and Colli ns (1989)

�
All  above attempts still  made use of the log-law.

�� Current UMIST attempts

Aim

To preserve the overall  framework of the wall -
function strategy, but to remove some of the more
limiting assumptions made, such as the log-law and
the constant total shear stress.
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Approach

  -   The log-law is no longer used.

  -   The velocity and temperature variations across
the near-wall  cells are determined through the
solution of simpli fied, locally one-dimensional
transport equations for the wall -parallel momentum
and for enthalpy.

Where x and y the wall -parallel and wall -normal
directions respectively

Boundary conditions:
At      y = 0
       U=0    And     T=TW

At    y = yn       Un=(UP+UN)/2        Tn =(YP+TN)/2
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From the resulting velocity and temperature
distributions across the near-wall cells:

- The wall shear stress, � W, can be calculated

- Either the wall  temperature, TW, or the wall  heat
flux, qW, can be calculated

- The cell -average Pk can be calculated

�
The above parameters can be used to modify the
discretized transport equations for wall -parallel
momentum, enthalpy and turbulent kinetic
energy over the near-wall cells.
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�
In three-dimensional flows, momentum
transport equations in two directions can be
independentl y
solved.

Boundary Conditions

At  xn = 0

Un =0  and   Ut= 0

At  xn=xn
n    Un= 0.5*(Un

P+Un
N)    And   Ut=0

��
Alternative Strategies

Two different strategies have been developed at
UMIST for the solution of equations (I) and (II)  that:

- Share the same overall  approach outlined so far.
- Differ in the assumptions used and the methods

employed.
- Both come under the acronym UMIST,

denoting  Unified Modelling through Integrated
Sub-layer Transport.

The two alternatives are now separately presented.
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5. The Analytical Wall-Function, UMIST-A

��
Mean Flow Analysis

As the name implies, equations (I) and (II) are
solved analytically across the near-wall cell .

This is accomplished through the use of a
prescribed variation for the turbulent viscosity,�

t.
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A consequence of this variation in � t, is that two
forms of equations (I) and (II) are solved.

For     y* < y*
v 

For    y*
v > y* < y*

n 

The right hand sides of the equations are treated as
constants and are calculated from the nodal values.
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At the interface between the two regions, y*
v, it is

required that the variables (U and T) and their first
derivatives (dU/dy and dT/dy) are continuous.

The empirical constant y*
v is determined as 10.8

The analytical integration of the above equations
results in algebraic equations that provide a
continuous variation of  U and T.

��
Wall Shear Stress and Wall Heat Flux

Differentiation of the analytical expressions at y=0,
will t hen result in:

� 
w = - !" dU/dyy=0       and     qW= - (cP !" /Pr)dT/dyy=0

#$
Average Generation Rate, Pk

Thus :       Pk = % &  ( y* - y* v) [dU/dy]2 
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'(
Average Dissipation Rate

As in the conventional wall -functions

For     y < yd :       )  = 2 *  kP/ yd
2

For     y > yd :       +  = kP
3/2 / c,  y

Unlike the conventional wall functions, case (a):

 

y*
d -  y*

v (=20)

For continuity of . :    2 /  kP/ yd
2 = kP

3/2 / c0  yd
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12
Further Extensions

The assumptions involved are less restrictive than
those in the conventional wall functions.

It is thus possible to introduce further refinements

-  Introduction of Laminarization Effects, based
on the parameter 34 56 78

W/ 78
v

- Temperature Variation of viscosity and
thermal conductivity across the viscosity-
affected sub-layer.

- Inclusion of Buoyancy Force in the integration
of the equation of the wall -parallel momentum
(I) and in the disctretized momentum equation
over the near-wall cells.

- High Prandlt number correction of the
enthalpy equation (II) .

- Extension to flows over rough surfaces, by
making the sub-layer thickness, yv

*, a function
of h*, where h is the average height of the
roughness elements.
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9:
Applications of the Analytical Wall Function

Fully Developed Pipe Developing Mixed-
                Flows Convection, Upward

      Pipe Flows
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Flows over Rough Surfaces

Moody Chart

Flow over a sand-dune
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Other Applications of the Analytical Wall
Function

- Isothermal and non-isothermal opposed
wall j ets.

- Free convection boundary layer.

- Diffuser Flows

- Ribbed pipe and channel flows.

- 3-D U-Bend Flows.
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6. The Numerical Wall-Function, UMIST-N

;< Approach

T he  t r a n s p o r t
equations for the
w a l l - p a r a l l e l
moment um  and
e n t h a l p y  a r e
numerically solved
across the near-wall
cells.
   - Each near-wall cell i s divided into sub-volumes.

   - Left hand side terms are discretized using sub-
grid nodal values.

   - Right hand side terms are discretized using main
grid nodal values and are constant across each cell .
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   - The wall normal velocity at the sub-grid nodes is
obtained from local sub-cell  continuity and scaled to
match the boundary nodal value.

   - The turbulent viscosity at the sub-grid nodes is
determined by numerically solving equations of a
low-Reynolds-number model, over the sub-grid. 

   - If the Launder-Sharma is used, for example:

Terms with subscript P evaluated using main grid
nodal values.=

t = >  c?  f ?  k2 / @            Pk= A t(dU/dy)2

f2 = 1 - 0.3 exp (-Rt
2 )      f B  = exp [ -3.4 / (1 + 0.02 Rt)

2 ]
  

  Rt =  k2/( C D )
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EF Implementation

   -   The sub-grid nodal values of the flow variables
are stored for all near-wall cells.

-    The discretization of the wall -parallel convectionG U(dH /dx) is thus based on sub-grid nodal values.

- The discretization of the simpli fied transport
equations within each near-wall  cell , results in a tri-
diagonal system.
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   - The discretized sub-grid equations are solved
using a tri-diagonal matrix solver (TDMA).

I
Only one sweep of the sub-grid TDMA is
performed within each iteration.I
The k and J  equations are under-relaxed.

   - The sub-grid nodal values are used to produce:

K Wall Shear Stress LM
W, used to modify the

discretized wall -parallel momentum equation at
the near-wall cells K Either the wall temperature, TW or the wall
heat flux, qW, that modify the enthalpy equation
at the near-wall cells.K The cell-averaged Pk and NO  that modify the k
transport equation at the near-wall cells.K  The   cell-averaged

that modify the disretized J  equation at the near-
wall cells.

This wall -function strategy can be used with other
low-Re models, such as non-linear k- J  models.



25

PQ
Applications of the Numerical Wall Function
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Free Rotating Disc
Flow
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3-D U-Bend Flow

Streamwise Velocity Comparisons

____ : DSM /UMIST-N   ------- k- RS /UMIST-N
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3-D U-Bend Flow

Comparisons of Side-averaged Nusselt Number

____ : DSM /UMIST-N   ------- k- TU /UMIST-N
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Other Applications of the Numerical Wall
Function

- 3-D Flow over the Ahmed Body.

- Rotating Cavity Flows

- Abrupt Pipe Expansion
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7 . Concluding Remarks

V
Two wall -function strategies have been
presented which: 

W Do not rely on either the log-law, or a
prescribed total shear-stress variation.W Solve simpli fied momentum and enthalpy
equations across the near-wall cells.

V
The Analytical Wall Function, UMIST-A:

W Is as computationally eff icient as the
conventional approach.W In many complex flows results in
predictions of the same quality as a low-
Reynolds-number approach.W Has been also extended to include the
effects of small -scale surface roughness.
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X
The Numerical Wall Function, UMIST-N:

Y Increases computational overheads,
relative to the conventional approach, by
60% to 100%. Y Results in predictions similar to those of
low-Re models at only a fraction of the
cost.X

Both approaches have been implemented in 3-
dimensional general-geometry codes.

X
Application of both approaches to more cases
is in progress.
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