Introduction to Aerodynamic Shape Optimization

Aircraft Design Process
 Aircraft Design Methods

 a. Inverse Surface Methods
 b. Inverse Field Methods
 c. Numerical Optimization Methods

The McGill

Introduction to Aerodynamic Shape Optimization Aircraft Design Process

The McGill

Introduction to Aerodynamic Shape Optimization Aircraft Design Process

Medium Size Transport

Introduction to Aerodynamic Shape Optimization You Bet Your Company

Medium Size Transport Aircraft

Introduction to Aerodynamic Shape Optimization Aircraft Design Process

Introduction to Aerodynamic Shape Optimization Aircraft Design Process

Introduction to Aerodynamic Shape Optimization Aerodynamic Design Methods

The **goal** of all aerodynamic design methods, be they experimental, analytical, or computational, is to find a shape which improves an aerodynamic measure of merit while adhering to appropriate constrains

Introduction to Aerodynamic Shape Optimization Aerodynamic Design Methods

The CFD-based aerodynamic design methods that do exists can be grouped into three basic categories

1. Inverse Surface Methods

- a. Incompressible Inviscid Flow
- b. Transonic Potential Flow
- c. Euler and Navier-Stokes
- 2. Inverse Field Methods
- 3. Numerical Optimization Methods (Gradient Based)
 - a. Finite Difference
 - b. Complex Step
 - c. Control Theory Approach

Introduction to Aerodynamic Shape Optimization Inverse Surface Methods

Incompressible Inviscid Flow

- Airfoil or wing shape is computed for a given surface distribution of an aerodynamic quantity.
- *Lighthill* used the method of conformal mapping to solve the two-dimensional inverse pressure problem for the incompressible inviscid flow equations.
 - The airspeed over the profile is given

$$q = \frac{\phi}{h}$$

where ϕ is the velocity potential for flow past a circle and h is the modulus of the conformal mapping function between the circle and the profile.

Since the solution ϕ is also known for incompressible inviscid flow over a circle, then if the analytical mapping is known as well, then the solution over the profile is known.

Introduction to Aerodynamic Shape Optimization Inverse Surface Methods

Incompressible Inviscid Flow

• Therefore, if q_d is the desired surface speed, then

$$q_d = \frac{\phi}{h} \qquad h = \frac{\phi}{q_d}$$

- The solution to determines the mapping from a circle to the desired shape.
- q is not arbitrary and must satisfy the following constraint:
 - q must attain the freestream value q_{∞} in the far field.

$$\int_{-\pi}^{\pi} \log q_o d\theta = 0$$

• Profile must not produce a gab at the trailing edge. $\int_{-\pi}^{\pi} \log q_o \cos \theta d\theta = 0 \qquad \int_{-\pi}^{\pi} \log q_o \sin \theta d\theta = 0$

Introduction to Aerodynamic Shape Optimization Inverse Surface Methods

Transonic Potential Flow

- 1. Tranen, T. L. "A rapid computer aided transonic airfoil design method. AIAA 74⁻⁵⁰¹
 - Tranen replaced the Neumann surface boundary condition $\frac{\partial \phi}{\partial n}$ in an existing CFD potential flow analysis code with a Dirichlet boundary condition ϕ obtained by integrating a desired target velocity distribution.
 - The shape is updated iteratively by the computed normal velocity through the surface.
 - If the target pressure distribution is not realizable the iterations cannot converge.

The McGill

Introduction to Aerodynamic Shape Optimization Inverse Surface Methods

Transonic Potential Flow

- 2. McFadden and Garabedian extended Lighthill's method.
 - The flow equation is first solved for a given mapping h_o .
 - Then an updated mapping is determined by setting $q = q_d$.
 - The flow equation is then solved for this new mapping, h_1 , and the process is repeated.
 - It does not require a modification to a Dirichlet boundary condition at the surface. Therefore it retains a valid solution during the entire design process.

Introduction to Aerodynamic Shape Optimization Inverse Surface Methods

Euler and Navier-Stokes

- *Campbell*. An approach to constrained aerodynamic design with application to airfoils. NASA Technical Paper 3260, Langley Research Center, November 1992.
 - The difference between the target and actual pressures is translated into surface changes through the use of the relationship between:
 - surface curvature and pressure for subsonic flow,
 - and, surface slope and pressure for supersonic flow.
 - The method has been very successful for 2D Euler and Navier-Stokes equations. The method suffers from 3D flows with cross-flow character since the surface curvatures and slopes are calculated plane by plane

$$\Delta n + \beta_1 \frac{\partial}{\partial x} \Delta n + \beta_2 \frac{\partial}{\partial y} \Delta n + \beta_3 \frac{\partial^2}{\partial x^2} \Delta n + \beta_4 \frac{\partial^2}{\partial y^2} \Delta n = \beta_5 \Delta c_p$$

$$\Delta n = \text{ local normal surface displacement}$$

$$\beta_i = \text{ user specified quantities}$$

McGill

Introduction to Aerodynamic Shape Optimization Inverse Field Methods

- Designs are based upon objectives or constraints imposed on the configuration surface but everywhere in the flow field.
 - Garabedian and Korn.
 - Hodograph transformation.
 - Method can guarantee that no shock will occur in the flow field.
 - Has been successful in the development of airfoils displaying shockfree transonic flows.
 - Its major disadvantage is that hodograph transformations are not applicable to three dimensions.
 - Sobieczky. Fictitious gas method.

Disadvantage of Inverse Surface and Field Methods is that the objective of a target pressure distribution is built directly into the design process and thus cannot be changed to any arbitrary objective function.

Introduction to Aerodynamic Shape Optimization Numerical Optimization Methods

Gradient Based

- Concept of a gradient.
 - Define the geometry by weights, α_i and shape functions, b_i so that the shape can be represented by

$$f(x) = \sum_{i=1}^{n} a_i b_i(x)$$

- Then a cost function I is selected. I is regarded as a function of the parameters α_i
- Then,

$$\delta I = \sum_{i=1}^{n} \frac{\partial I}{\partial \alpha_i} \delta \alpha_i$$
 where, $\frac{\partial I}{\partial \alpha_i}$ is a gradient

The gradient vector $\frac{\partial I}{\partial \alpha_i}$ may now be used to determine a direction of improvement.