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Finite Difference Method

• Traditionally finite-difference methods have been used to calculate sensitivities 
of aerodynamic cost functions. 

• The computational cost of the finite-difference method for problems involving 
large numbers of design variables is both unaffordable and prone to subtractive
cancellation error. 

• In order to produce an accurate finite-difference gradient, a range of step sizes 
must be used, and thus the ultimate cost of producing,      gradient evaluations 
with the finite-difference method is the product        , where     is the number 
of different step sizes used to obtain a converged finite-difference gradient.
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Finite Difference Method

• An estimate of the first derivative of a cost function     using a first order 
forward difference approximation is as follows:

•
where        is the perturbation in the design variable.

• A small step size is desired to reduce the truncation error               but a very 
small step size would also increase subtractive cancellation errors.
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Complex-Step Method

• Lyness and Moler introduced the use of the complex-step in calculating the 
derivative of an analytical function. 

• Instead of using a real step        the step size        is added to the imaginary part 
of the cost function.         will be represented as    in the following equations. 

• A Taylor series expansion of the cost function    yields:

• Take the imaginary parts of the above equation and divide by the step
size    to produce a second order complex-step approximation to the
first derivative:
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Complex-Step Method

• The complex step formula does not require any subtraction to yield the 
approximate derivative.

• The following figure illustrates the complex-step versus the finite-difference 
gradient errors for the inverse design case for decreasing step sizes. 

• At a step size of           the finite-difference and complex-step approximations 
to the first derivative of the cost function are very similar. 

• As the step size is reduced, the finite-difference gradient error starts to 
increase because of subtractive cancellation errors; however, the complex-step
continues to produce more accurate results. 

• Therefore, the complex-step is more robust and does not require repeated 
calculations in order to produce an accurate gradient. 

• If a very small step size is chosen, the gradient is calculated only once per 
design variable. Due to the use of double precision complex numbers, the code 
requires three times the wall clock time when compared to the finite-
difference method. 

• But the benefits of using the complex-step to acquire accurate gradients out-
weighs its disadvantages.
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Complex-Step Method
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Grid Perturbation

• The variation of the cost function written as a function of the variation of the 
state vector,      , grid point location,      , and surface,      , can be expressed as:

• The solution of the adjoint equation removes the dependence of the gradient 
on the flow solution, so that only the variations of the grid point locations and 
the variation of the surface shape remain.

• The variation of the surface shape,      , only introduces surface integrals into 
the equation that computes the gradient. 

• Therefore, the computational cost is negligible even for complex three-
dimensional geometries. 

• However, the variations of the grid point locations,      , introduce volume 
integrals into the gradient computation. 
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Grid Perturbation

• In order to compute this contribution, regeneration of the grid is required 
based on perturbations on the surface. 

• The grid regeneration is needed for every surface perturbation. 

• This procedure can be costly if the geometry is three-dimensional and 
complex, and would have to be repeated a number of times proportional to the 
number of design variables.

• Jameson} introduced a grid perturbation method that modifies the current 
location of the grid points based on perturbations at the geometry surface. 

• The approach is not dependent on the type of structured grid generation used. 

• The method modifies, the grid points along each grid index line projecting 
from the surface. 

• The arc length between the surface point and the far-field point along the grid 
line is first computed. 
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Grid Perturbation

• Then the grid points at each location along the grid line is attenuated 
proportional to its arc length distance from the surface point and the total arc 
length between the surface and the far-field. 

• The algorithm can be described as:
•
•
•

,where    is the current grid index.
•
• The vector       can be defined as follows
•
•
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Grid Perturbation

•      is the ratio of the arc length from the surface to the current grid point and 
the total arc length from the surface to the far-field along the grid line as

•
•
•
•
• From equation to update the grid point location from the previous slide the 

variation of the grid point location can be expressed as a function of the 
variation of the surface points as

•
• This allows the variation of the grid point location in the equation for gradient

evaluation, to be substituted with the variation of the surface points. 
• The variations,      , and,      , are both absorbed into the metric variations,          
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Grid Perturbation

• This simple grid perturbation scheme has been found to be very robust. 

• The grid perturbation method is successful in producing smooth meshes 
without grid point cross-overs, even in regions of high nonlinearity with
large surface perturbations.  

• The grid perturbation method described in this section is ideal for structured 
meshes, however, the complexity increases with unstructured meshes. 

• The simplicity in the method is in the effortlessness in producing new grid 
point locations along the grid line. 

• In the unstructured case, the lack of a continuous grid line extending from the 
surface to the far-field, removes the efficient property of the grid perturbation 
method. 

• An alternative, would be not to dampen the grid modification along the
grid line but to dampen the changes within a specified bubble around
the surface node. 
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Grid Perturbation

• The nodes in the unstructured mesh can be shifted based upon their distance 
from the surface point. 

• Possible alternatives to the grid perturbation scheme have yet to be researched
and would be an ideal future work topic.


