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“Stiff ’’ Field Theory of Interest Rates
and Psychological Future Time

The noise field describes the external shocks of the economy on the dif-
ferent maturities of the forward rates; its statistics is governed by the
exponential of an ‘action’ S[A], which gives the weight of a given path of
A in the two dimensional space x, t, and is defined on the semi-infinite
domain x ≥ t. The simplest action that factors in the one dimensional
nature of the forward rate string was proposed in (Belal Baaquie (2004,
2001, 2002)), and reads

S[A] = − 1

2

∫ ∞

t0

dt
∫ ∞

t
dx

{
A2(t, x) + 1

µ2

(
∂A(t, x)

∂x

)2
}

, (2)

where µ is a ‘rigidity’ parameter, that gives an elasticity to the FRC. To
eliminate boundary terms from the action we choose to impose
Neumann boundary condition, i.e.

∂A(t, x)

∂x

∣∣∣
x=t

= 0, (3)

corresponding to a parallel motion of the FRC for short maturities,
which is reasonable since the spot rate f (t, t) is fixed by the central bank,
and very short maturities carry no extra risk.

Forward interest rate f (t, x) is the interest rate, agreed upon at time t, for
an instantaneous loan to be taken at future time x > t, between x and
x + dx. At any instant of time t, the forward rate curve (FRC) f (t, x) defines
a kind of string which moves and deforms with time. Modelling the
motion of this curve is of paramount importance for many financial
applications (Hull (1997)): pricing of interest rate derivatives, such as ‘caps’
that limit the rate of loans that individuals take on their housing, interest
swaps, risk management (asset liability management), etc. The industry
standard is the so-called HJM model (Robert Jarrow, David Heath, and
Andrew Morton (1992), Lane Hughston (1997, 2001)). This model has recent-
ly been generalized in different directions (Kennedy (1994, 1997), Pedro
Santa-Clara and Didier Sornette (2001), Robert Goldstein (2000)), in particular
by one of us (Belal Baaquie (2004, 2001, 2002)), who has proposed a two-
dimensional Euclidean quantum field theory for modelling the forward
interest rate curve. The forward interest rate dynamics has a drift velocity
α(t, x) and volatility σ (t, x); it is convenient to define a driftless noise field
A(t, x) by 

∂ f

∂ t
(t, x) = α(t, x) + σ (t, x)A(t, x). (1)

Abstract
The simplest field theory description of the multivariate statistics of forward rate variations over time and maturities, involves a quadratic action containing a gradient
squared rigidity term. However, this choice leads to a spurious kink (infinite curvature) of the normalized correlation function for coinciding maturities. Motivated by empir-
ical results, we consider an extended action that contains a squared Laplacian term, which describes the bending stiffness of the FRC. With the extra ingredient of a ‘psycho-
logical’ future time, describing how the perceived time between events depends on the time in the future, our theory accounts extremely well for the phenomenology of inter-
est rate dynamics. 
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The quantum field theory (Zinn-Justin (1992)) needed to
describe the statistics of the FRC is defined by a functional integral
over all variables A(t, x) and yields the partition function
Z = ∫

DAeS[A] . The propagator (or noise correlator) is given by 

〈A(t, x)A(t′, x′)〉 = 1

Z

∫
DA A(t, x)A(t′, x′)eS[A] ≡ δ(t − t′)D(x, x′; t). (4)

Since the above action is Gaussian, the market defined by the
above model is complete in the sense that all contingent claims
can be perfectly replicated by hedging appropriately, as in the stan-
dard Black-Scholes model. For consistency of the description, one
should further impose a ‘martingale’ condition that reads (Belal
Baaquie (2004))

α(t, θ) = σ (t, θ)

∫ θ

0
dθ ′D(θ, θ ′)σ (t, θ ′).

Note however that this term is usually numerically very small
(Jean-Philippe Bouchaud et al. (1999)). With the above choice of the
action, the propagator, in new co-ordinates θ± is given by

D(θ+, θ−) = µ

2
[e−µθ+ + e−µ|θ− |] (5)

with θ± = θ ± θ ′ , θ = x − t and θ ′ = x′ − t with x, x′ > t. 
Note that the slope of the propagator perpendicular to θ− = 0,

as in Figure 1, is discontinuous across the diagonal

m = ∂D(θ+; θ−)

∂θ−

∣∣∣
θ− =0

= µ2

2

{
−1 θ− > 0

+1 θ− < 0
(6)

All the variants of the propagator based on a gradient squared rigidity
term in the action show a similar infinite curvature singularity along the
diagonal (Belal Baaquie and Marakani Srikant (2004)). 

However, as discussed in (Belal Baaquie and Marakani Srikant (2004)), the
surface of the empirical propagator given in Figure 2, is extremely smooth
and shows no such kinks. This observation is in fact related to the empirical
study of (Jean-Philippe Bouchaud et al. (1999)) (see also (Andrew Matacz and
Jean-Philippe Bouchaud (2000), Jean-Philippe Bouchaud and Marc Potters
(2004)), where the correlation of the (fixed maturity) forward rates daily varia-
tions δf (t, θ) ≡ f (t + ε, t + ε + θ)−f (t, t + θ) was studied. More precisely, the
eigenvectors �q(θ ) and eigenvalues ζq, q = 1, 2, . . ., of the correlation matrix
N (θ, θ ′), defined as

N (θ, θ ′) =< δf (t, θ)δf (t, θ ′) >c

≈ εσ (θ )σ (θ ′)D(θ, θ ′)

were determined. It was found that the eigenvectors show a structure
similar to the modes of a vibrating string (�1 has no nodes, �2 has one
node, etc. - see also Rama Cont (1999)), and that the eigenvalues ζq behave
as (a + bq2)−1 for small q (where a, b are constants), crossing over to a
faster decay ≈ q−4 for larger q’s. It is clear that the square gradient action
does indeed lead to plane-wave eigenvectors, with eigenvalues given by
(a + bq2)−1 with b ∝ µ−2 . However, the q−4 falloff points to the existence
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Figure 2: Empirical correlation C(θ, θ ′) = 〈δf(t, θ)δf(t, θ ′)〉c√〈δf2(t, θ)〉c

√〈δf2(t, θ ′)〉c

, determined

from the Eurodollar rates in the period 1994-1996. See (Bouchaud et al. (1999)) for
more details on the data.
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Figure 1: For θ− = θ − θ ′ , the figure shows that the diagonal
axis is given by θ− = 0. The direction of change in θ− for con-
stant θ+ , namely δθ− , is orthogonal to the diagonal, as shown
in the Figure.
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of another term in the action that is a fourth power in the derivative
along the future time x. This higher power of the derivative stiffens the
fluctuations of the forward rates curve, in the sense that two nearby
maturities experience more correlated external shocks. The aim of the
rest of this letter is to compare in details empirical data with the predic-
tions of the following action

SQ [A] = − 1

2

∫ ∞

t0

dt
∫ ∞

t
dx

{
A2(t, x) + 1

µ2

(
∂A(t, x)

∂x

)2

+ 1

λ4

(
∂2A(t, x)

∂x2

)2
}

,

(7)

that includes the new stiffness term. We will see that this theory indeed
allows one to get rid of the infinite curvature of the propagator along the
diagonal, but that a quantitative agreement with empirical data can only be
achieved if the action is written in terms of an effective ‘psychological’ time
z in the maturity direction, that is a sublinear function of the ‘true’ maturi-
ty x − t. In other words, changes in the maturity direction are given by ∂/∂z.
The introduction of z is similar (but not identical (Belal Baaquie and
Marakani Srikant (2004))) to the rigidity µ−2 and the stiffness λ−2 not being
constant along the x direction, which should be expected. With this extra
ingredient, we will see that the details of the propagator surface are repro-
duced with surprising accuracy. 

Let us first compute the propagator of the ‘stiff ’ action above. Using
eq.(5), we find

G(θ+; θ−) =
(

λ4

α+ − α−

) [ 1

α−
D(θ+; θ−; √

α−) − 1

α+
D(θ+; θ−; √

α+)

]
(8)

with

α± = λ4

2µ2

[
1 ±

√
1 − 4(

µ

λ
)4

]

In the limit λ → ∞ one finds α+ � λ4/µ2and α− � µ2 . Hence the propa-
gator has the following limit

lim
λ→∞

G(θ+; θ−; µ, λ) → D(θ+; θ−; µ)

and, as expected, reduces to the case of constant rigidity.
The solution for α± yields three distinct cases, namely, when α± is  real,

complex or degenerate depending on whether µ <
√

2λ,, µ >
√

2λ,,
µ = √

2λ respectively. One finds

G(θ+; θ−) =




λ

2 sinh(2b)

[
e−λθ+ cosh (b) sinh{b + λθ+ sinh(b)}

+ e−λ|θ− | cosh (b) sinh{b + λ|θ−| sinh(b)}
]

λ

4

[
e−λθ+ {1 + λθ+} + e−λ|θ− |{1 + λ|θ−|}

]
λ

2 sin(2φ)

[
e−λθ+ cos(φ) sin{φ + λθ+ sin(φ)}

+ e−λ|θ− | cos(φ) sin{φ + λ|θ−| sin(φ)}
]

(9)

In the above equation, α± = λ2e±b in the first case, and α± = λ2e±iφ in the
third case, and b = φ = 0 in the degenerate case. Expanding the propaga-
tor G(θ+; θ−) about θ− = 0 leads to a cancellation of the term linear in |θ−|
and gives a final result that is a function of θ 2

− . More precisely, the curva-
ture rQ orthogonal to the diagonal line θ− = 0 is given, in the real case, by

rQ = ∂2Gb(θ+; θ−)

∂θ 2−
|θ− =0 = − λ3 sinh(b)

2 sinh(2b)

[
cosh2(b) − sinh(b)

]
< 0. (10)

rQ < 0 follows from the fact that b ≥ 0, confirming that the value of the
propagator along θ− = 0 is a maximum. A similar result holds in the com-
plex case. Note that in the limit of λ → ∞, one can no longer carry out the
Taylor expansion around θ− = 0, the cancellation of the term linear in |θ−|
becomes invalid, and the propagator G(θ+; θ−) develops the expected kink.

In order to compare with empirical data, we define the normalized
correlation function by

C(θ, θ ′) = G(θ, θ ′)√
G(θ, θ)G(θ ′, θ ′)

(11)

Of special interest will be the curvature of C(θ, θ ′) perpendicular to the
diagonal, for which an explicit expression can be obtained. We do not
show this formula here but note that the curvature is predicted to increase
with θ+ (see Fig. 3, inset). As one moves along the diagonal to longer matu-
rities, the (negative) curvature of C(θ, θ ′) increases, which means that the
noise affecting nearby maturities is faster to decorrelate as a function of
θ − θ ′. This is contrary to intuition: since the long term future is much
more uncertain, one feels that shocks in the far future are more difficult to
resolve temporally than shocks in the near future. Therefore one expects,
and indeed empirically find, that the curvature is a decreasing function of
the maturity. In fact, we have discoved the new following ‘stylized fact’: the
curvature R of the FRC correlation function along the diagonal decays as a
power law of the maturity, R(θ+) ∼ θ−ν

+ , with ν ≈ 1.32 (see Fig. 3, inset).
A way to reconcile the above finding with our stiff quantum field theory

is to realize that the gradient terms in the action need not be uniform. More
intuitively, in the mind of market participants, the perceived time between
events depends on the time in the future, and a decreasing function of the
maturity itself. The distance (in time) between - say - a 10 years maturity and
a 30 years maturity clearly appears to be much less than the distance
between a 1 month maturity and a 10 year maturity. A way to describe this
mathematically is to replace the true, physical future time θ = x − t by a
psychological time z = z(θ ) (Belal Baaquie and Marakani Srikant (2004),
Marakani Srikant (2003)), which is expected to grow sublinearly with θ , so
that the rate of time change z′(θ ) is a decreasing function of θ . In general,
one can impose some general features of function z(θ ): it is monotone
increasing, such that θ = θ(z) is well defined, and one can impose
z = 0 ; z(∞) = ∞. The independent variables will now be t, z(θ ) instead of
t, x. Our final model for the forward rate dynamics then reads:

∂ f

∂ t
(t, θ) = α(t, z(θ )) + σ (t, z(θ ))A(t, z(θ )) ; θ = x − t (12)
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where f (t, θ) depends only on calendar time θ = x − t. An important fea-
ture of the defining equation above is that both future times, namely
θ = x − t and psychological time z(θ ) occur in the theory1. The corre-
sponding stiff action in psychological time is written as

Sz = − 1

2

∫ ∞

t0

dt
∫ ∞

0
dz

(
A2 + 1

µ2

(
∂A

∂z

)2

+ 1

λ4

(
∂2A

∂z2

)2
)

(13)

The propagator for Sz is G(z, z′; µ, λ) as in eq.(8) and the martingale con-
dition for psychological time is given by (Belal Baaquie (2004))
α(t, z) = σ (t, z)

∫ z
z(0)

dz′G(z, z′)σ (t, z′) . Our final result on the normalized
correlation now reads

CQz(θ+; θ−) = g+(z+) + g−(z−)√
[g+(z+ + z−) + g−(0)][g+(z+ − z−) + g−(0)]

z±(θ+; θ−) ≡ z(θ ) ± z(θ ′)
(14)

with, in the real case that will be of relevance for fitting the empirical
data

g+(z) = e−λz cosh (b) sinh{b + λz sinh(b)}
g−(z) = e−λ|z| cosh (b) sinh{b + λ|z| sinh(b)}

e±b = λ2

2µ2

[
1 ±

√
1 − 4(

µ

λ
)4

]

It can be shown (Belal Baaquie (2004)) that the curvature with psycholog-
ical time reads

∂2CQz(θ+; 0)

∂θ 2−
= [z′(θ+)]2RQ (2z(θ+/2)), (15)

where RQ is the curvature of the model in physical time. Since one
observes a power law fall off for the curvature, we can make the ansatz
z(θ ) = θη for fitting the data. Using the fact that RQ (2z(θ+/2))varies very
slowly as a function of θ+ , one can make the following approximation

[z′(θ+)]2 ∝ 1

θν+
⇒ 2η − 2 = −ν, (16)

leading to η ≈ 0.34. Therefore the psychological time flows, as expected,
much slower than real time. The rate of change of psychological time
decreases as ≈ θ−0.66 : a year after ten years looks similar to two weeks after
a month. 

Having used the behaviour of the curvature to fix the value of η (and
thus, up to an irrelevant overall scale, the function z(θ ), we are left with
only two parameters, λ and µ, to fit the whole correlation surface C(θ, θ ′).
For the Eurodollar data that we have used (see (Jean-Philippe Bouchaud et
al. (1999)) for more details), we have up to 30 different maturities and
therefore 405 different points (the diagonal values are trivial). We deter-
mine λ and µ such as to minimize the average square error between the
empirical C(θ, θ ′) and the prediction of the model. Defining λ̃η = λ and
µ̃η = µ, the best fit is obtained for λ̃ = 1.79/year and µ̃ = 0.403/year, cor-
responding to b = 0.845. The residual error is as low as 0.4% per point,
and the order of magnitude of the time scales (one year) defined by λ̃ and
µ̃ are very reasonable. The remarkable quality of the fit can be checked in
Fig. 3, along the longest stretch perpendicular to the diagonal, i.e.
θ ′ = � − θ , where � is the maximum available maturity (7.5 years). Even
more remarkable is that the curvature of C(θ, θ ′) along the diagonal is
very precisely reproduced by the same fit, as shown in the inset of Fig. 3.
Testing the fit on the second derivative of the fitted surface is of course
much more demanding. The existence of the boundary at x = t, or θ = 0,
is reflected in the θ+ term in the propagator; if one removes this term, and
in effect assumes that the forward rates exist for all − ∞ ≤ x ≤ +∞, then
the best fit deteriorates with the root mean square error increasing from
0.40% to 0.53%. The existence of the boundary at x = t can hence be seen
to have a significant effect on the correlation of the forward rates.

Let us summarize what we have achieved in this study. The simplest
field theoretical description of the multivariate statistics of forward rate
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Figure 3: Circles: Empirical correlation C(θ; θ ′) along the longest stretch per-
pendicular to the diagonal, i.e. θ ′ = � − θ , where � is the maximum avail-
able maturity. The plain line is the best fit with our stiff propagator model
and a power-law psychological time. The inset shows a plot, in log-log coor-
dinates, of the curvature −R(θ+) as a function of θ+ , for a) the stiff model in
real (physical) time, showing an increasing curvatue (dashed line) and b) the
stiff model with a power law psychological time z(θ ), correctly sloping down-
wards as to reproduce the power law behaviour of the empirical curvature
(squares).



W

6 Wilmott magazine

TECHNICAL ARTICLE 1

variations over time t and maturities θ , involves a quadratic action contain-
ing a gradient squared rigidity term (Belal Baaquie (2001)), that captures
the one dimensional string nature of the forward rate curve. However, this
choice leads to a spurious kink (infinite curvature) of the normalized corre-
lation function along the diagonal θ = θ ′. Motivated by a previous empiri-
cal study (Jean-Philippe Bouchaud et al. (1999)) where the short wavelength
fluctuations of the FRC were shown to be strongly reduced as compared to
that of an elastic string, we have considered an extended action that con-
tains a squared Laplacian term, which describes the bending stiffness of the
FRC. In this formulation, the infinite curvature singularity is rounded off.
In order to fit to the observed correlation functions of the forward interest
rates, however, one has to add as an extra ingredient that the rigidity/stiff-
ness constants are in fact not constant along the maturity axis but increase
with maturity. An intuitive and parsimonious way to describe this effect is
to postulate that markets participants, who generate the random evolution
of the FRC, do not perceive future time in a uniform manner. Rather, time
intervals in the long term future are shrunk. The introduction of a ‘psycho-
logical time’ z(θ ), found to be a power law of the true time, allows one to
provide an excellent fit of empirical data, and in particular to reproduce
accurately a new stylized fact: the curvature of the forward rate correlation
perpendicular to the diagonal decays as a power-law of the maturity. We
believe that our quantum field formulation, including the new stiffness
term and coupled with an appropriate calibration of the term structure of
the volatility σ (θ) (see (Jean-Philippe Bouchaud et al. (1999), Andrew Matacz
and Jean-Philippe Bouchaud (2000))), accounts extremely well for the phe-
nomenology of interest rate dynamics. It is also mathematically tractable,
and should allow one to compute in closed forms derivative prices and opti-
mal hedging strategies. It would be interesting to generalize the above
model to account for non Gaussian effects, that are important in many
cases (Jean-Philippe Bouchaud and Marc Potters (2004)). This would amount
to considering non quadratic terms in A in the action. We leave this exten-
sion for future work.

1. The theory for psychological future time can be defined entirely in terms of for-
ward rates f̃(t, z(θ )). However, for imposing the martingale condition, it is necessary
(Belal Baaquie (2004)) to specify the relation between f̃(t, z(θ )) and f(t, θ ), and in
effect one would recover Eq.(12) 
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