Pricing Mortgage-Backed Securities – Continuous Time Stanton's Model ^a

Min DAI

Department of Mathematics

National University of Singapore

^aJoint with Yue-Kuen Kwok and Hong You

Introduction

- Introduction
- Historical Work

- Introduction
- Historical Work
 - Structural Model

- Introduction
- Historical Work
 - Structural Model
 - Reduced-form Model

- Introduction
- Historical Work
 - Structural Model
 - Reduced-form Model
 - Stanton's Model

- Introduction
- Historical Work
 - Structural Model
 - Reduced-form Model
 - Stanton's Model
- Continuous-time Stanton's Model

- Introduction
- Historical Work
 - Structural Model
 - Reduced-form Model
 - Stanton's Model
- Continuous-time Stanton's Model
- Numerical Schemes

- Introduction
- Historical Work
 - Structural Model
 - Reduced-form Model
 - Stanton's Model
- Continuous-time Stanton's Model
- Numerical Schemes
- Applications to Other Derivatives

What is mortgage?

• a loan in order to purchase a house

- a loan in order to purchase a house
- collateralized by the house

- a loan in order to purchase a house
- collateralized by the house
- similar to an amortizing bond

- a loan in order to purchase a house
- collateralized by the house
- similar to an amortizing bond
- A mortgagor has the **right** to prepay his loan at any time

What is a mortgage-backed security?

 securitized product: a claim to the cash flows generated by a pool of mortgages

- securitized product: a claim to the cash flows generated by a pool of mortgages
- attractive yields with little or no credit risk, trade in a liquid secondary market

- securitized product: a claim to the cash flows generated by a pool of mortgages
- attractive yields with little or no credit risk, trade in a liquid secondary market
- dramatic growth since its inception in 70s

- securitized product: a claim to the cash flows generated by a pool of mortgages
- attractive yields with little or no credit risk, trade in a liquid secondary market
- dramatic growth since its inception in 70s
 - total notional amount of MBS and collateralized mortgage obligations outstanding as of 30 June 2002 \$3.9 trillion

- securitized product: a claim to the cash flows generated by a pool of mortgages
- attractive yields with little or no credit risk, trade in a liquid secondary market
- dramatic growth since its inception in 70s
 - total notional amount of MBS and collateralized mortgage obligations outstanding as of 30 June 2002 \$3.9 trillion
 - total notional amount of US treasury debt \$3.5 trillion

The Pricing of MBS

Black-Scholes Option Pricing

The Pricing of MBS

- Black-Scholes Option Pricing
- The key point is how to deal with the prepayment behavior

structural models

reduced-form models

29-30 August, 2005, Workshop on Computational Finance - p. 6/3

structural models

• optimal prepayment policy (like the optimal exercise policy of American options)

reduced-form models

structural models

- optimal prepayment policy (like the optimal exercise policy of American options)
- an optimal stopping problem, or a linear complementary problem

reduced-form models

structural models

- optimal prepayment policy (like the optimal exercise policy of American options)
- an optimal stopping problem, or a linear complementary problem
- reduced-form models
 - prepayment policy given according to historic data

structural models

- optimal prepayment policy (like the optimal exercise policy of American options)
- an optimal stopping problem, or a linear complementary problem
- reduced-form models
 - prepayment policy given according to historic data
 - a simple linear parabolic PDE model

assuming interest rate follows CIR model in the risk-neutral world

$$dr = \kappa(\mu - r)dt + \sigma\sqrt{r}dz$$

assuming interest rate follows CIR model in the risk-neutral world

$$dr = \kappa(\mu - r)dt + \sigma\sqrt{r}dz$$

• mortgagors prepay whenever $V = \varphi(t)$

 assuming interest rate follows CIR model in the risk-neutral world

$$dr = \kappa(\mu - r)dt + \sigma\sqrt{r}dz$$

- mortgagors prepay whenever $V = \varphi(t)$
- basic structure model

 $\begin{cases} V_t + \frac{1}{2}\sigma^2 r V_{rr} + \kappa(\mu - r)V_r - rV + C(t) \ge 0\\ V \le \varphi(t)\\ either must take equality at any point (r, t) \in [0, \infty) \times [0, T]\\ with boundary and initial conditions \end{cases}$

back

Dunn and McConnell (1981, Journal of Finance) assumes

Dunn and McConnell (1981, Journal of Finance) assumes

 suboptimal prepayment: some mortgagors prepay due to exogenous reasons, e.g. migration, divorce or purchase of a better house

Dunn and McConnell (1981, Journal of Finance) assumes

- suboptimal prepayment: some mortgagors prepay due to exogenous reasons, e.g. migration, divorce or purchase of a better house
- exogenous prepayment governed by Poisson process dJ, with density $\lambda(r, t)$

 $\begin{cases} P(dJ=0) = 1 - \lambda \delta t, & \text{no suboptimal prepayment occurs} \\ P(dJ=1) = \lambda \delta t, & \text{suboptimal prepayment occurs} \end{cases}$

Dunn and McConnell model

 $\begin{cases} V_t + \frac{1}{2}\sigma^2 r V_{rr} + \kappa(\mu - r)V_r - rV + C(t) + \lambda(r,t)[\varphi(t) - V] \ge 0\\ V(r,t) \le \varphi(t)\\ either must take equality at any point (r,t) \in [0,\infty) \times [0,T]\\ with boundary and initial conditions \end{cases}$

compare with most basic structural model

back

drawbacks

drawbacks

• theoretical MBS value bounded from above $V(r,t) \leq \varphi(t)$

drawbacks

- theoretical MBS value bounded from above $V(r,t) \leq \varphi(t)$
- predicted rate of prepayment does not match observation

drawbacks

• theoretical MBS value bounded from above $V(r,t) \leq \varphi(t)$

• predicted rate of prepayment does not match observation major reason

drawbacks

- theoretical MBS value bounded from above $V(r,t) \leq \varphi(t)$
- predicted rate of prepayment does not match observation major reason
 - mortgagors may not prepay even when it is optimal

First proposed by Schwartz and Torous (1989, Journal of Finance)

• empirical model

- empirical model
- prepayment policy given

- empirical model
- prepayment policy given
- linear PDE model

- empirical model
- prepayment policy given
- linear PDE model
- Monte Carlo simulation easy to implement

First proposed by Schwartz and Torous (1989, Journal of Finance)

- empirical model
- prepayment policy given
- linear PDE model
- Monte Carlo simulation easy to implement

drawbacks

First proposed by Schwartz and Torous (1989, Journal of Finance)

- empirical model
- prepayment policy given
- linear PDE model
- Monte Carlo simulation easy to implement

drawbacks

• do not explain the true underlying process

First proposed by Schwartz and Torous (1989, Journal of Finance)

- empirical model
- prepayment policy given
- linear PDE model
- Monte Carlo simulation easy to implement

drawbacks

- do not explain the true underlying process
- may not perform well out-of-sample

• a breakthrough among structural models

- a breakthrough among structural models
- key assumption: **random** endogenous prepayment

- a breakthrough among structural models
- key assumption: **random** endogenous prepayment
- endogenous prepayment governed by another independent Poisson process, with density $\rho(r, t)$

 $\begin{cases} P(\text{no endogenous prepayment decision}) = 1 - \rho \delta t, \\ P(\text{endogenous prepayment decision}) = \rho \delta t \end{cases}$

when

 $V(r,t) > \varphi(r,t)$

- a breakthrough among structural models
- key assumption: random endogenous prepayment
- endogenous prepayment governed by another independent Poisson process, with density $\rho(r,t)$

 $\begin{cases} P(\text{no endogenous prepayment decision}) = 1 - \rho \delta t, \\ P(\text{endogenous prepayment decision}) = \rho \delta t \end{cases}$

when

$$V(r,t) > \varphi(r,t)$$

in summary, probability of total prepayment

$$P(\text{prepayment}) = \begin{cases} P_e = \lambda \delta t & V \leq \varphi \\ P_r = (\lambda + \rho) \delta t & \text{otherwise} \end{cases}$$

• discretize time [0,T] into N steps, $\delta t = T/N$

- discretize time [0,T] into N steps, $\delta t = T/N$
- each step, unprepaid mortgage value M_u^n is obtained by solving

$$\frac{1}{2}\sigma^2 r V_{rr} + [\kappa(\mu - r)]V_r + V_t - rV + C = 0$$

- discretize time [0,T] into N steps, $\delta t = T/N$
- each step, unprepaid mortgage value M_u^n is obtained by solving

$$\frac{1}{2}\sigma^2 r V_{rr} + [\kappa(\mu - r)]V_r + V_t - rV + C = 0$$

mortgage value at this step given by

$$M^{n} = \begin{cases} (1 - P_{e})M_{u}^{n} + P_{e}\varphi & M_{u}^{n} \leq \varphi \\ (1 - P_{r})M_{u}^{n} + P_{r}\varphi & \text{otherwise} \end{cases}$$

- discretize time [0,T] into N steps, $\delta t = T/N$
- each step, unprepaid mortgage value M_u^n is obtained by solving

$$\frac{1}{2}\sigma^2 r V_{rr} + [\kappa(\mu - r)]V_r + V_t - rV + C = 0$$

mortgage value at this step given by

$$M^{n} = \begin{cases} (1 - P_{e})M_{u}^{n} + P_{e}\varphi & M_{u}^{n} \leq \varphi \\ (1 - P_{r})M_{u}^{n} + P_{r}\varphi & \text{otherwise} \end{cases}$$

• repeat these steps until $t_0 = 0$

Other features

• mortgage liability vs asset

Other features

- mortgage liability vs asset
- heterogenous transaction cost

Other features

- mortgage liability vs asset
- heterogenous transaction cost

But Stanton's Model is only a numerical algorithm.

• continuous time version of Stanton's model

- continuous time version of Stanton's model
- inherit all features of Stanton's model

- continuous time version of Stanton's model
- inherit all features of Stanton's model
- random exogenous and endogenous prepayment modelled by two independent Poisson processes
 - $dJ = \begin{cases} 0, & \text{exogenous prepayment does not occur} \\ 1, & \text{exogenous prepayment occurs} \end{cases}$ $dK = \begin{cases} 0, & \text{mortgagor makes no endogenous prepayment decision} \\ 1, & \text{mortgagor makes endogenous prepayment decision} \end{cases}$

and

$$E(dJ) = P(dJ = 1) = \lambda dt$$
$$E(dK) = P(dK = 1) = \rho dt$$

With interest rate governed by CIR model,

$$dM = [M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r + C(t)]dt + \sigma\sqrt{r}M_r dz$$
$$+ [\varphi(t) - M]dJ + \min(\varphi(t) - M, 0)dK$$

With interest rate governed by CIR model,

$$dM = [M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r + C(t)]dt + \sigma\sqrt{r}M_r dz$$
$$+ [\varphi(t) - M]dJ + \min(\varphi(t) - M, 0)dK$$

Take expectation E(dM) = rMdt

With interest rate governed by CIR model,

$$dM = [M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r + C(t)]dt + \sigma\sqrt{r}M_r dz$$
$$+ [\varphi(t) - M]dJ + \min(\varphi(t) - M, 0)dK$$

Take expectation E(dM) = rMdtTherefore, we derive the model

$$\begin{cases} M_t + \frac{1}{2}\sigma^2 r M_{rr} + [\kappa(\mu - r)]M_r - rM + C(t) \\ + \lambda[\varphi(t) - M] + \rho \min(\varphi(t) - M, 0) = 0 \\ with boundary and initial conditions \end{cases}$$

With interest rate governed by CIR model,

$$dM = [M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r + C(t)]dt + \sigma\sqrt{r}M_r dz$$
$$+ [\varphi(t) - M]dJ + \min(\varphi(t) - M, 0)dK$$

Take expectation E(dM) = rMdtTherefore, we derive the model

$$\begin{cases} M_t + \frac{1}{2}\sigma^2 r M_{rr} + [\kappa(\mu - r)]M_r - rM + C(t) \\ + \lambda[\varphi(t) - M] + \rho \min(\varphi(t) - M, 0) = 0 \\ with boundary and initial conditions \end{cases}$$

compare with Dunn and McConnell model

 $M_{t} + \frac{1}{2}\sigma^{2}rM_{rr} + \kappa(\mu - r)M_{r} - rM + C + \lambda(\varphi - M) + \rho\min(\varphi - M, 0) = 0$

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

• nonlinear parabolic partial differential equation

New Model

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

- nonlinear parabolic partial differential equation
- does not impose $\varphi(r,t)$ as the upper bound

New Model

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

- nonlinear parabolic partial differential equation
- does not impose $\varphi(r,t)$ as the upper bound
- Stanton's numerical scheme is shown to be consistent with the continuous time model

New Model

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

- nonlinear parabolic partial differential equation
- does not impose $\varphi(r,t)$ as the upper bound
- Stanton's numerical scheme is shown to be consistent with the continuous time model
- provides a financial explanation for penalty approximation for variational inequality problem (see Forsyth and Vetzal, 2002)

• Stanton's numerical algorithm is first order

 $\varepsilon \sim \mathbf{O}(\Delta t + \Delta y)$

• Stanton's numerical algorithm is first order

 $\varepsilon \sim \mathbf{O}(\Delta t + \Delta y)$

• two numerical schemes are devised to achieve

$$\varepsilon \sim \mathbf{O}(\Delta t^2 + \Delta y^2)$$

• Stanton's numerical algorithm is first order

 $\varepsilon \sim \mathbf{O}(\Delta t + \Delta y)$

• two numerical schemes are devised to achieve

$$\varepsilon \sim \mathbf{O}(\Delta t^2 + \Delta y^2)$$

 Crank-Nicolson scheme with generalized Newton iteration

Stanton's numerical algorithm is first order

 $\varepsilon \sim \mathbf{O}(\Delta t + \Delta y)$

• two numerical schemes are devised to achieve

$$\varepsilon \sim \mathbf{O}(\Delta t^2 + \Delta y^2)$$

- Crank-Nicolson scheme with generalized Newton iteration
- hybrid scheme using Crank-Nicolson and Adam-Bashforth

Crank-Nicolson scheme with generalized Newton iteration

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

Crank-Nicolson scheme with generalized Newton iteration

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

• all terms are expanded at point $(y_i, t_{n+\frac{1}{2}})$ to obtain

$$AM^{n} = BM^{n+1} + \eta^{n+\frac{1}{2}} + \rho \min\{\varphi^{n+\frac{1}{2}} - \frac{1}{2}(M^{n+1} + M^{n}), 0\}$$

Crank-Nicolson scheme with generalized Newton iteration

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

• all terms are expanded at point $(y_i, t_{n+\frac{1}{2}})$ to obtain

$$AM^{n} = BM^{n+1} + \eta^{n+\frac{1}{2}} + \rho \min\{\varphi^{n+\frac{1}{2}} - \frac{1}{2}(M^{n+1} + M^{n}), 0\}$$

use generalized Newton method

$$f(x^{(k+1)}) = f(x^{(k)}) + f'(x^{(k)})(x^{(k+1)} - x^{(k)})$$

Crank-Nicolson scheme with generalized Newton iteration

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

• all terms are expanded at point $(y_i, t_{n+\frac{1}{2}})$ to obtain

$$AM^{n} = BM^{n+1} + \eta^{n+\frac{1}{2}} + \rho \min\{\varphi^{n+\frac{1}{2}} - \frac{1}{2}(M^{n+1} + M^{n}), 0\}$$

use generalized Newton method

$$f(x^{(k+1)}) = f(x^{(k)}) + f'(x^{(k)})(x^{(k+1)} - x^{(k)})$$

perform iteration at each step

hybrid scheme using Crank-Nicolson and Adam-Bashforth

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

hybrid scheme using Crank-Nicolson and Adam-Bashforth

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

 nonlinear term expanded explicitly (Adam-Bashforth) to obtain

$$AM^{n} = BM^{n+1} + \eta^{n+\frac{1}{2}} + \rho \min\{\varphi^{n+\frac{1}{2}} - \frac{1}{2}(3M^{n+1} - M^{n+2}), 0\}$$

hybrid scheme using Crank-Nicolson and Adam-Bashforth

$$M_t + \frac{1}{2}\sigma^2 r M_{rr} + \kappa(\mu - r)M_r - rM + C + \lambda(\varphi - M) + \rho \min(\varphi - M, 0) = 0$$

 nonlinear term expanded explicitly (Adam-Bashforth) to obtain

$$AM^{n} = BM^{n+1} + \eta^{n+\frac{1}{2}} + \rho \min\{\varphi^{n+\frac{1}{2}} - \frac{1}{2}(3M^{n+1} - M^{n+2}), 0\}$$

no iteration required

ε_1		Stanton's Scheme		CN with Newton Iteration	
N_t	N_y	$arepsilon_1$	ratio	$arepsilon_1$	ratio
50	50	127.513522		2.413700	
100	100	64.293427	2.0	0.588450	4.1
200	200	32.275461	2.0	0.146250	4.0
400	400	16.169679	2.0	0.036505	4.0
800	800	8.092824	2.0	0.009120	4.0
1600	1600	4.048412	2.0	0.002277	4.0
3200	3200	2.024710	2.0	0.000566	4.0
6400	6400	1.012484	2.0	0.000139	4.1
12800	12800	0.506278	2.0	0.000032	4.4

Stanton vs Crank-Nicolson with Newton Iteration

ε_1		Stanton's So	cheme	Hybrid Scheme	
N_t	N_y	$arepsilon_1$	ratio	$arepsilon_1$	ratio
50	50	57.449132		0.670530	
100	100	27.242231	2.1	0.158820	4.2
200	200	13.468115	2.0	0.038450	4.1
400	400	6.705991	2.0	0.009536	4.0
800	800	3.346585	2.0	0.002374	4.0
1600	1600	1.671741	2.0	0.000591	4.0
3200	3200	0.835489	2.0	0.000147	4.0
6400	6400	0.417650	2.0	0.000036	4.1
12800	12800	0.208801	2.0	800000.0	4.3

Stanton vs hybrid scheme

	order	iteration
Stanton's scheme	1	no
CN with Newton Iteration	2	yes
Hybrid scheme	2	no

	order	iteration
Stanton's scheme	1	no
CN with Newton Iteration	2	yes
Hybrid scheme	2	no

Conclusion: Hybrid scheme is most suitable to solve this model

Applications

• CN scheme with Newton iteration can be used to solve penalty approximation for American options

Applications

- CN scheme with Newton iteration can be used to solve penalty approximation for American options
- model other derivatives: convertible bonds, callable warrants, ...

• a new continuous time structural model for MBS

- a new continuous time structural model for MBS
- second order numerical schemes

- a new continuous time structural model for MBS
- second order numerical schemes
- applicable to other derivatives

- a new continuous time structural model for MBS
- second order numerical schemes
- applicable to other derivatives

