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Outline

• Introduction
• Historical Work

◦ Structural Model
◦ Reduced-form Model
◦ Stanton’s Model

• Continuous-time Stanton’s Model
• Numerical Schemes
• Applications to Other Derivatives
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Introduction

What is mortgage?
• a loan in order to purchase a house
• collateralized by the house
• similar to an amortizing bond
• A mortgagor has the right to prepay his loan at any time
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Introduction

What is a mortgage-backed security?
• securitized product: a claim to the cash flows generated by

a pool of mortgages
• attractive yields with little or no credit risk, trade in a liquid

secondary market
• dramatic growth since its inception in 70s

◦ total notional amount of MBS and collateralized
mortgage obligations outstanding as of 30 June 2002
$3.9 trillion

◦ total notional amount of US treasury debt
$3.5 trillion
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The Pricing of MBS

• Black-Scholes Option Pricing
• The key point is how to deal with the prepayment behavior
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Historical Work

structural models
• optimal prepayment policy (like the optimal exercise policy

of American options)
• an optimal stopping problem, or a linear complementary

problem

reduced-form models
• prepayment policy given according to historic data
• a simple linear parabolic PDE model
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Structural Model

• assuming interest rate follows CIR model in the risk-neutral
world

dr = κ(µ − r)dt + σ
√

rdz

• mortgagors prepay whenever V = ϕ(t)

• basic structure model


















Vt + 1
2σ2rVrr + κ(µ − r)Vr − rV + C(t) ≥ 0

V ≤ ϕ(t)

either must take equality at any point (r, t) ∈ [0,∞) × [0, T ]

with boundary and initial conditions

back
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Structural Model

Dunn and McConnell (1981, Journal of Finance) assumes
• suboptimal prepayment: some mortgagors prepay due to

exogenous reasons, e.g. migration, divorce or purchase of a
better house

• exogenous prepayment governed by Poisson process dJ ,
with density λ(r, t)

{

P (dJ = 0) = 1 − λδt, no suboptimal prepayment occurs
P (dJ = 1) = λδt, suboptimal prepayment occurs
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Structural Model

Dunn and McConnell model



















Vt + 1
2σ2rVrr + κ(µ − r)Vr − rV + C(t) + λ(r, t)[ϕ(t) − V ] ≥ 0

V (r, t) ≤ ϕ(t)

either must take equality at any point (r, t) ∈ [0,∞) × [0, T ]

with boundary and initial conditions

compare with most basic structural model
back
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Structural Model

drawbacks
• theoretical MBS value bounded from above V (r, t) ≤ ϕ(t)

• predicted rate of prepayment does not match observation

major reason
• mortgagors may not prepay even when it is optimal
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Reduced-form Model

First proposed by Schwartz and Torous (1989, Journal of
Finance)

• empirical model
• prepayment policy given
• linear PDE model
• Monte Carlo simulation easy to implement

drawbacks
• do not explain the true underlying process
• may not perform well out-of-sample
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• a breakthrough among structural models
• key assumption: random endogenous prepayment
• endogenous prepayment governed by another independent

Poisson process, with density ρ(r, t)

{

P (no endogenous prepayment decision) = 1 − ρδt,

P (endogenous prepayment decision) = ρδt

when
V (r, t) > ϕ(r, t)
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Stanton’s Model (1995)

• a breakthrough among structural models
• key assumption: random endogenous prepayment
• endogenous prepayment governed by another independent

Poisson process, with density ρ(r, t)

{

P (no endogenous prepayment decision) = 1 − ρδt,

P (endogenous prepayment decision) = ρδt

when
V (r, t) > ϕ(r, t)

• in summary, probability of total prepayment

P (prepayment) =

{

Pe = λδt V ≤ ϕ

Pr = (λ + ρ)δt otherwise
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29-30 August, 2005, Workshop on Computational Finance – p. 13/??



Stanton’s Model

• discretize time [0, T ] into N steps, δt = T/N

• each step, unprepaid mortgage value Mn
u is obtained by

solving

1

2
σ2rVrr + [κ(µ − r)]Vr + Vt − rV + C = 0

• mortgage value at this step given by

Mn =

{

(1 − Pe)M
n
u + Peϕ Mn

u ≤ ϕ
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n
u + Prϕ otherwise
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Stanton’s Model

• discretize time [0, T ] into N steps, δt = T/N

• each step, unprepaid mortgage value Mn
u is obtained by

solving

1

2
σ2rVrr + [κ(µ − r)]Vr + Vt − rV + C = 0

• mortgage value at this step given by

Mn =

{

(1 − Pe)M
n
u + Peϕ Mn

u ≤ ϕ

(1 − Pr)M
n
u + Prϕ otherwise

• repeat these steps until t0 = 0
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Stanton’s Model

Other features
• mortgage liability vs asset
• heterogenous transaction cost

But Stanton’s Model is only a numerical algorithm.
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New Model

• continuous time version of Stanton’s model
• inherit all features of Stanton’s model
• random exogenous and endogenous prepayment modelled

by two independent Poisson processes

dJ =

{

0, exogenous prepayment does not occur
1, exogenous prepayment occurs

dK =

{

0, mortgagor makes no endogenous prepayment decision
1, mortgagor makes endogenous prepayment decision

and

E(dJ) = P (dJ = 1) = λdt

E(dK) = P (dK = 1) = ρdt
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New Model

With interest rate governed by CIR model,

dM = [Mt +
1

2
σ2rMrr + κ(µ − r)Mr + C(t)]dt + σ

√
rMrdz

+ [ϕ(t) − M ]dJ + min(ϕ(t) − M, 0)dK
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New Model

With interest rate governed by CIR model,

dM = [Mt +
1

2
σ2rMrr + κ(µ − r)Mr + C(t)]dt + σ

√
rMrdz

+ [ϕ(t) − M ]dJ + min(ϕ(t) − M, 0)dK

Take expectation E(dM) = rMdt
Therefore, we derive the model











Mt +
1

2
σ2rMrr + [κ(µ − r)]Mr − rM + C(t)

+ λ[ϕ(t) − M ] + ρmin(ϕ(t) − M, 0) = 0
with boundary and initial conditions

compare with Dunn and McConnell model
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Mt+
1

2
σ2rMrr+κ(µ−r)Mr−rM+C+λ(ϕ−M)+ρmin(ϕ − M, 0) = 0
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New Model

Mt+
1

2
σ2rMrr+κ(µ−r)Mr−rM+C+λ(ϕ−M)+ρmin(ϕ − M, 0) = 0

• nonlinear parabolic partial differential equation
• does not impose ϕ(r, t) as the upper bound
• Stanton’s numerical scheme is shown to be consistent with

the continuous time model
• provides a financial explanation for penalty approximation

for variational inequality problem (see Forsyth and Vetzal,
2002)
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Numerical Scheme

• Stanton’s numerical algorithm is first order

ε ∼ O(∆t + ∆y)

• two numerical schemes are devised to achieve

ε ∼ O(∆t2 + ∆y2)

◦ Crank-Nicolson scheme with generalized Newton
iteration

◦ hybrid scheme using Crank-Nicolson and
Adam-Bashforth
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Numerical Scheme 1

Crank-Nicolson scheme with generalized Newton iteration

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0
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Numerical Scheme 1

Crank-Nicolson scheme with generalized Newton iteration

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0

• all terms are expanded at point (yi, tn+ 1

2

) to obtain

AMn = BMn+1 + ηn+ 1

2 + ρmin{ϕn+ 1

2 − 1

2
(Mn+1 + Mn), 0}

29-30 August, 2005, Workshop on Computational Finance – p. 19/??



Numerical Scheme 1

Crank-Nicolson scheme with generalized Newton iteration

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0

• all terms are expanded at point (yi, tn+ 1

2

) to obtain

AMn = BMn+1 + ηn+ 1

2 + ρmin{ϕn+ 1

2 − 1

2
(Mn+1 + Mn), 0}

• use generalized Newton method

f(x(k+1)) = f(x(k)) + f ′(x(k))(x(k+1) − x(k))
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Numerical Scheme 1

Crank-Nicolson scheme with generalized Newton iteration

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0

• all terms are expanded at point (yi, tn+ 1

2

) to obtain

AMn = BMn+1 + ηn+ 1

2 + ρmin{ϕn+ 1

2 − 1

2
(Mn+1 + Mn), 0}

• use generalized Newton method

f(x(k+1)) = f(x(k)) + f ′(x(k))(x(k+1) − x(k))

• perform iteration at each step
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Numerical Scheme 2

hybrid scheme using Crank-Nicolson and Adam-Bashforth

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0
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Numerical Scheme 2

hybrid scheme using Crank-Nicolson and Adam-Bashforth

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0

• nonlinear term expanded explicitly (Adam-Bashforth) to
obtain

AMn = BMn+1+ηn+ 1

2 +ρmin{ϕn+ 1

2 − 1

2
(3Mn+1 − Mn+2), 0}
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Numerical Scheme 2

hybrid scheme using Crank-Nicolson and Adam-Bashforth

Mt +
1

2
σ2rMrr + κ(µ − r)Mr − rM + C

+ λ(ϕ − M) + ρmin(ϕ − M, 0) = 0

• nonlinear term expanded explicitly (Adam-Bashforth) to
obtain

AMn = BMn+1+ηn+ 1

2 +ρmin{ϕn+ 1

2 − 1

2
(3Mn+1 − Mn+2), 0}

• no iteration required
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Numerical Result 1

ε1 Stanton’s Scheme CN with Newton Iteration

Nt Ny ε1 ratio ε1 ratio

50 50 127.513522 2.413700

100 100 64.293427 2.0 0.588450 4.1

200 200 32.275461 2.0 0.146250 4.0

400 400 16.169679 2.0 0.036505 4.0

800 800 8.092824 2.0 0.009120 4.0

1600 1600 4.048412 2.0 0.002277 4.0

3200 3200 2.024710 2.0 0.000566 4.0

6400 6400 1.012484 2.0 0.000139 4.1

12800 12800 0.506278 2.0 0.000032 4.4

Stanton vs Crank-Nicolson with Newton Iteration
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Numerical Result 2

ε1 Stanton’s Scheme Hybrid Scheme

Nt Ny ε1 ratio ε1 ratio

50 50 57.449132 0.670530

100 100 27.242231 2.1 0.158820 4.2

200 200 13.468115 2.0 0.038450 4.1

400 400 6.705991 2.0 0.009536 4.0

800 800 3.346585 2.0 0.002374 4.0

1600 1600 1.671741 2.0 0.000591 4.0

3200 3200 0.835489 2.0 0.000147 4.0

6400 6400 0.417650 2.0 0.000036 4.1

12800 12800 0.208801 2.0 0.000008 4.3

Stanton vs hybrid scheme
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Numerical Result

order iteration

Stanton’s scheme 1 no
CN with Newton Iteration 2 yes

Hybrid scheme 2 no
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Numerical Result

order iteration

Stanton’s scheme 1 no
CN with Newton Iteration 2 yes

Hybrid scheme 2 no

Conclusion: Hybrid scheme is most suitable to solve this model
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Applications

• CN scheme with Newton iteration can be used to solve
penalty approximation for American options
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Applications

• CN scheme with Newton iteration can be used to solve
penalty approximation for American options

• model other derivatives: convertible bonds, callable
warrants, ...
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Recap
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Recap

• a new continuous time structural model for MBS
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Recap
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• second order numerical schemes
• applicable to other derivatives
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Recap

• a new continuous time structural model for MBS
• second order numerical schemes
• applicable to other derivatives

Thank you
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