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Topics

• Admixture mapping.

• The statistic and its non-centrality parameter.

• The effect of reconstruction.

• Other effects.
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Admixture mapping

• Population based (characteristics of experimental

genetics): Co-segregation of

Phenotypes = disease status, and

Founder origin = detected by molecular markers.

• Affected only: Scanning for discrepancies from ex-

pected background levels.

• A case-random design: Scanning for discrepan-

cies between cases and random controls.
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P(Xt=1) = p

Xt=1Xs=0

P(Xt=0) = 1-p

A random gamete
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A random gamete

Denote:

Xt = The population source of locus t (0 or 1).

p = P(Xt = 1), for a random gamete.

D, d = Two alleles of a gene linked to t.

Then

p =

(1)︷ ︸︸ ︷
pP(D |Xt = 1)

pP(D |Xt = 1) + (1− p)P(D |Xt = 0)
×P(D)

+

(2)︷ ︸︸ ︷
pP(d |Xt = 1)

pP(d |Xt = 1) + (1− p)P(d |Xt = 0)
×P(d)
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A susceptibility gene

• Terms (1) and (2) are determined by:

1. p⇒ History of admixture, and

2. P(D |Xt = i) ⇒ Characteristics of the founders.

• P(D) = 1−P(d) ⇒ The penetrance associated with

the gene and the selected sampling.

• Hardy-Weinberg + multiplicative GRR ⇒ Binomial

distribution of D alleles among cases and controls.
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Distribution of Xt at a QTL

Among cases:

• Xt ∼ B(pθ,2), where

• θ = log
(
[pθ(1− p)]/[(1− pθ)p]

)
,

• and:

pθ − p

p(1− p)
=

Pθ(D)− P(D)

P(D)(1− P(D))
×

[
P(D |1)− P(D |0)

]

7



Topics

• Admixture mapping.

• The statistic and its non-centrality parameter.

• The effect of reconstruction.

• Other effects.

8



The test statistic

• For a sample of n affected: St =
∑n
i=1Xit ∼ B(2n, pθ).

• Reject θ = 0 for a given locus t if |Zt| is large.

(Zt = standardized version of St.)

• Consider all t over the entire length of the genome.

• Significance is discounted by multiple testing.
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The non-centrality parameter

• Assume a QTL at t.

• Let ξ = Eθ(Zt) be the non-centrality parameter.

• Then:

ξ = E
(
Zte

θSt−2nψ(θ)
)

≈ θE
(
Zt(St − 2nψ̇(0))

)
= θ

{
2n(p(1− p)

}1/2
.
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Genotypes and the reconstruction of Xt

• Unfortunately, Xt cannot be observed directly.

• Instead, one observes molecular markers.

• The distribution of markers may depends on the

state of Xt.

• Consequently, one may reconstruct the state from

the genotypic information.
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A/A

Genotypes

G/C G/T

P(A/A) = p0
2

P(G/C) = p1(1-p0)+p0(1-p1)

P(G/T) = 2p1(1-p1)
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A hidden markov model

• X = {Xt} = Population origin within an individual.

• Assumed to be a stationary, reversible and continu-

ous markov process. (Q = (qij) = transition rates.)

• Hardy-Weinberg ⇒ Xt = XF
t +XM

t , independent.

• G = The genotypic information for the individual.

• If the components of G are conditionally indepen-

dent given X ⇒ (X,G) = HMM.
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The reconstructed scanning process

• Assume Qi and the conditional distributions of Gi
are known.

• X̂it = E(Xit |Gi) = the reconstructed process.

• E(X̂it) = E(X̂it) = 2p and σ2
i = Var(X̂it).

• Ẑt = Scanning statistic =
∑n
i=1(X̂it−2p)√∑n

i=1 σ
2
i

.
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The non-centrality of the reconstructed statistic

• For a QTL at t:

E(Ẑt) = E
(
Ẑte

θSt−2nψ(θ)
)

≈ θE
(
Ẑt(St − 2nψ̇(0))

)
= ξ ×

Cov(Ẑt, St)
{2n(p(1− p)}1/2

= ξ ×
{
1

n

n∑
i=1

σ2
i

2p(1− p)

}1/2
.

• Note that σ2
i < 2p(1− p).
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The reduction in non−centrality
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A basic equation

• P(Xt= i|G) = P(Xt=i,G)
P(G) : Incomplete likelihood ratio.

• From the likelihood ratio identity:

E
[
P(Xt=j|G) · P(Xt= i|G)

]
= E

[
P(Xt=j|G);Xt = i

]
= πiE

[
P(Xt=j|G) |Xt = i

]
.

• πi = P(Xt = i): The stationary probability.
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An asymptotic approximation of σ2

• Let j 6= i and consider π̂j = P(Xt=j|G).

• Assume transition rates are low: qij → 0.

• G is relatively informative in [t− r, t+ r].

• π̂j small, but non-negligible, only when

1. {Xt−r = i,Xt = i,Xt+r = j} or

2. {Xt−r = j,Xt = i,Xt+r = i}.
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An asymptotic approximation of σ2 (cont.)

It follows that:

E(π̂jπ̂i) ≈ 2πiqijE
[
R−r R

+
r

R−r +R+
r

]
,

where

R−r =
∫ r

0
e`(i,j,−s)−`(i,j,0)ds,

R+
r =

∫ r

0
e`(i,j,s)−`(i,j,0)ds and

`(i, j, u) = conditional log-likelihoods of G.
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Analytical expressions

• Assume `(i, j, u)− `(i, j,0) ≈ a Brownian motion.

• Then 1/R∞ ∼ Gamma
(
− 2µ/σ2, σ2/2

)
.

• If −µ = σ2/2 then

E
[
R−r R

+
r

R−r +R+
r

]
≈ H(µij, µji)

=

 − µijµji
µij−µij log(µij/µji), if µij 6= µji,

−µij, if µij = µji.
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Analytical expressions (cont.)

For admixture mapping

• ∆ = Distance between markers.

• µij = E
[
log

{ P(Gt |Xt=j
P(Gt |Xt=i)

} ∣∣∣Xt = i
]
/∆.

• Hij = H(µij, µji).

• σ̂2 ≈ 2p(1− p)− 2
{
(1− p)2q01H01 + p2q21H21

}
.
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Other effects:

• Covariance structure and significance level.

• Estimation of unknown parameters — both global

or local.

• Robustness to modeling assumptions — Markov

process, Brownian process.

• Statistic which involves sums of dependent compo-

nents.
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Thank you!
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