The effect of missing information on gene mapping

Benjamin Yakir Dept. of Statistics The Hebrew University and Stat. & App. Prob., NUS

Workshop on Genomics, IMS, Singapore November, 2005

Topics

- Admixture mapping.
- The statistic and its non-centrality parameter.
- The effect of reconstruction.
- Other effects.

Admixture mapping

• **Population based** (characteristics of experimental genetics): Co-segregation of

Phenotypes = disease status, and

Founder origin = detected by molecular markers.

- Affected only: Scanning for discrepancies from expected background levels.
- A case-random design: Scanning for discrepancies between cases and random controls.

A random gamete

A random gamete

Denote:

$$X_t$$
 = The population source of locus t (0 or 1).
 $p = \mathbb{P}(X_t = 1)$, for a random gamete.
 D, d = Two alleles of a gene linked to t .

Then

$$p = \underbrace{\frac{p \mathbb{P}(D \mid X_t = 1)}{p \mathbb{P}(D \mid X_t = 1) + (1 - p) \mathbb{P}(D \mid X_t = 0)}}_{p \mathbb{P}(d \mid X_t = 1) + (1 - p) \mathbb{P}(D \mid X_t = 0)} \times \mathbb{P}(D)$$

$$+ \underbrace{\frac{(2)}{p \mathbb{P}(d \mid X_t = 1)}}_{p \mathbb{P}(d \mid X_t = 1) + (1 - p) \mathbb{P}(d \mid X_t = 0)} \times \mathbb{P}(d)$$

A susceptibility gene

• Terms (1) and (2) are determined by:

1. $p \Rightarrow$ History of admixture, and

2. $\mathbb{P}(D | X_t = i) \Rightarrow$ Characteristics of the founders.

- $\mathbb{P}(D) = 1 \mathbb{P}(d) \Rightarrow$ The penetrance associated with the gene and the selected sampling.
- Hardy-Weinberg + multiplicative GRR \Rightarrow Binomial distribution of D alleles among cases and controls.

Distribution of X_t at a QTL

Among cases:

• $X_t \sim B(p_{\theta}, 2)$, where

•
$$\theta = \log \left([p_{\theta}(1-p)]/[(1-p_{\theta})p] \right)$$
,

• and:

$$\frac{p_{\theta} - p}{p(1-p)} = \frac{\mathbb{P}_{\theta}(D) - \mathbb{P}(D)}{\mathbb{P}(D)(1-\mathbb{P}(D))} \times \left[\mathbb{P}(D \mid 1) - \mathbb{P}(D \mid 0)\right]$$

Topics

- Admixture mapping.
- The statistic and its non-centrality parameter.
- The effect of reconstruction.
- Other effects.

The test statistic

- For a sample of *n* affected: $S_t = \sum_{i=1}^n X_{it} \sim B(2n, p_\theta)$.
- Reject $\theta = 0$ for a given locus t if $|Z_t|$ is large. ($Z_t =$ standardized version of S_t .)
- Consider all t over the entire length of the genome.
- Significance is discounted by multiple testing.

The non-centrality parameter

- Assume a QTL at t.
- Let $\xi = \mathbb{E}_{\theta}(Z_t)$ be the non-centrality parameter.

• Then:

$$\xi = \mathbb{E} \Big(Z_t e^{\theta S_t - 2n\psi(\theta)} \Big)$$

$$\approx \theta \mathbb{E} \Big(Z_t (S_t - 2n\dot{\psi}(0)) \Big)$$

$$= \theta \Big\{ 2n(p(1-p) \Big\}^{1/2}.$$

Genotypes and the reconstruction of X_t

- Unfortunately, X_t cannot be observed directly.
- Instead, one observes molecular markers.
- The distribution of markers may depends on the state of X_t .
- Consequently, one may reconstruct the state from the genotypic information.

Genotypes

A hidden markov model

- $X = \{X_t\}$ = Population origin within an individual.
- Assumed to be a stationary, reversible and continuous markov process. $(Q = (q_{ij}) = \text{transition rates.})$
- Hardy-Weinberg $\Rightarrow X_t = X_t^F + X_t^M$, independent.
- G = The genotypic information for the individual.
- If the components of G are conditionally independent given $X \Rightarrow (X,G) = HMM$.

Topics

- Admixture mapping.
- The statistic and its non-centrality parameter.
- The effect of reconstruction.
- Other effects.

The reconstructed scanning process

- Assume Q_i and the conditional distributions of G_i are known.
- $\hat{X}_{it} = \mathbb{E}(X_{it} | G_i)$ = the reconstructed process.

•
$$\mathbb{E}(\hat{X}_{it}) = \mathbb{E}(\hat{X}_{it}) = 2p \text{ and } \sigma_i^2 = \mathbb{V}ar(\hat{X}_{it}).$$

•
$$\hat{Z}_t = \text{Scanning statistic} = \frac{\sum_{i=1}^n (\hat{X}_{it} - 2p)}{\sqrt{\sum_{i=1}^n \sigma_i^2}}.$$

The non-centrality of the reconstructed statistic

• For a QTL at *t*:

$$\mathbb{E}(\widehat{Z}_t) = \mathbb{E}\left(\widehat{Z}_t e^{\theta S_t - 2n\psi(\theta)}\right)$$

$$\approx \theta \mathbb{E}\left(\widehat{Z}_t (S_t - 2n\dot{\psi}(0))\right)$$

$$= \xi \times \frac{\mathbb{C}ov(\widehat{Z}_t, S_t)}{\{2n(p(1-p))\}^{1/2}}$$

$$= \xi \times \left\{\frac{1}{n} \sum_{i=1}^n \frac{\sigma_i^2}{2p(1-p)}\right\}^{1/2}.$$

• Note that $\sigma_i^2 < 2p(1-p)$.

•

100 06 % of full information 80 70 # generations = 2
generations = 4
generations = 6
generations = 8 • 60 • 50 0.5 1.0 1.5

The reduction in non-centrality

Relative entropy

A basic equation

•
$$\mathbb{P}(X_t = i | G) = \frac{\mathbb{P}(X_t = i, G)}{\mathbb{P}(G)}$$
: Incomplete likelihood ratio.

- From the likelihood ratio identity: $\mathbb{E}\Big[\mathbb{P}(X_t = j | G) \cdot \mathbb{P}(X_t = i | G)\Big] = \mathbb{E}\Big[\mathbb{P}(X_t = j | G); X_t = i\Big]$ $= \pi_i \mathbb{E}\Big[\mathbb{P}(X_t = j | G) | X_t = i\Big].$
- $\pi_i = \mathbb{P}(X_t = i)$: The stationary probability.

An asymptotic approximation of σ^2

- Let $j \neq i$ and consider $\hat{\pi}_j = \mathbb{P}(X_t = j | G)$.
- Assume transition rates are low: $q_{ij} \rightarrow 0$.
- G is relatively informative in [t r, t + r].
- $\hat{\pi}_j$ small, but non-negligible, only when

1.
$$\{X_{t-r} = i, X_t = i, X_{t+r} = j\}$$
 or
2. $\{X_{t-r} = j, X_t = i, X_{t+r} = i\}.$

An asymptotic approximation of σ^2 (cont.)

It follows that:

$$\mathbb{E}(\hat{\pi}_j \hat{\pi}_i) \approx 2\pi_i q_{ij} \mathbb{E}\left[\frac{R_r^- R_r^+}{R_r^- + R_r^+}\right],$$

where

$$\begin{aligned} R_r^- &= \int_0^r e^{\ell(i,j,-s)-\ell(i,j,0)} ds, \\ R_r^+ &= \int_0^r e^{\ell(i,j,s)-\ell(i,j,0)} ds \text{ and} \\ \ell(i,j,u) &= \text{ conditional log-likelihoods of } G. \end{aligned}$$

Analytical expressions

• Assume $\ell(i, j, u) - \ell(i, j, 0) \approx$ a Brownian motion.

• Then
$$1/R_{\infty} \sim \text{Gamma}\left(-2\mu/\sigma^2, \sigma^2/2\right)$$
.

• If
$$-\mu = \sigma^2/2$$
 then

$$\mathbb{E}\left[\frac{R_r^- R_r^+}{R_r^- + R_r^+}\right] \approx H(\mu_{ij}, \mu_{ji})$$

$$= \begin{cases} -\frac{\mu_{ij}\mu_{ji}}{\mu_{ij} - \mu_{ij}} \log(\mu_{ij}/\mu_{ji}), & \text{if } \mu_{ij} \neq \mu_{ji}, \\ -\mu_{ij}, & \text{if } \mu_{ij} = \mu_{ji}. \end{cases}$$

Analytical expressions (cont.)

For admixture mapping

• $\Delta = Distance$ between markers.

•
$$\mu_{ij} = \mathbb{E}\Big[\log\Big\{\frac{\mathbb{P}(G_t \mid X_t = j)}{\mathbb{P}(G_t \mid X_t = i)}\Big\}\Big|X_t = i\Big]/\Delta.$$

•
$$H_{ij} = H(\mu_{ij}, \mu_{ji}).$$

•
$$\hat{\sigma}^2 \approx 2p(1-p) - 2\left\{(1-p)^2 q_{01}H_{01} + p^2 q_{21}H_{21}\right\}.$$

The fit of the analytical approximation

% of full information

Topics

- Admixture mapping.
- The statistic and its non-centrality parameter.
- The effect of reconstruction.
- Other effects.

Other effects:

- Covariance structure and significance level.
- Estimation of unknown parameters both global or local.
- Robustness to modeling assumptions Markov process, Brownian process.
- Statistic which involves sums of dependent components.

Thank you!