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Biological Sequence Alignments

.. . RNATQRNDCAMFKRRPPSPEGEH! L. . .
.. . AAQDCEMFPPAPREEGDHI LMCAAT. . .

Substitution Matrix (K): R

Gap Penalties: gap open: A\, gap extension: 0

We do not allow simultaneous gaps in both sequences.

2-b



Possible alignment:

z ={(i1,71), -, (bus Ju) }:

.. ATQRNDCAMFKRRPPSP- - EGEHI L. . .

.. AAQ - DCEMF- - - PPAPREEGDHI L. . .



Possible alignment: z={(i1,71),- -, (tu, Ju) }:

X: .. . ATQRNDCAMFKRRPPSP- - EGEHI L. . .

NEEE RN R RR R RN R
y: .. . AAQ - DCEMF- - - PPAPREEGDHI L. . .

Score: S.(x,y)=>1_ K(xi,,y;.) — A —md (here,l = 3andm = 7).
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Possible alignment: z={(i1,71),- -, (tu, Ju) }:

X: .. . ATQRNDCAMFKRRPPSP- - EGEHI L. . .

NEEE RN R RR R RN R
y: .. . AAQ - DCEMF- - - PPAPREEGDHI L. . .

Score: S.(x,y)=>1_ K(xi,,y;.) — A —md (here,l = 3andm = 7).
Maximum Sub-alignment Score: H,(x,y) =max,cz S,(X,y)

Null Distribution: X,y iid~

Two Questions:

How does H,,(x,y) grow with n?
What is Py ( H,,(x,y) > b) for large b?
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Basic Result: The Phase Transition Phenomenon

Let Gn(x, y) be the maximum alignment score of X and y, penalizing gaps at the ends.

By the theory of subadditive sequences,

a=a(K,A§) = lim B(Gn)

n— 00 n

exists.



Basic Result: The Phase Transition Phenomenon

Let G, (X, y) be the maximum alignment score of X and y, penalizing gaps at the ends.

By the theory of subadditive sequences,

a=ca(K,Ad) = lim B(Gn)

n— 00 n

exists.

Arratia and Waterman (1994) Showed that

H,
a>0 = P(lim —=a)—1

n—oo N

H,
a<0 = dbst Ve>0, P((l—e)b<log(n)<(2+e)b)—>1
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Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

Eo[K(x,y)] <0, Po(K(z,y) > 0) > 0,

Hn(x, y) grows logarithmically with n and has extreme value type limiting distribution.
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Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

Eo[K(x,y)] <0, Po(K(z,y) > 0) > 0,

Hn(x, y) grows logarithmically with n and has extreme value type limiting distribution.

2. Gaps Allowed: No complete theory.
e Altschul and Gish (1996) Methods in Enzymology
e Mott and Tribe (1999) Journal of Computational Biology
e Siegmund and Yakir (2000) Annals of Statistics
e Grossman and Yakir (2004) Bernoulli

e Chan (2003) Bernoulli, (2005) Annals of Appl. Prob.
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A Theorem from Chan (2003)

Let (K, A, ) be chosen such that the convex function
h(O) = [ 1+2) e 0AHm | N K@) (1) y)
k>1 x,yeA

has a positive root of 1, with 0 being the larger root, then

P(H,(x,y) > b) <n?e”?



A Theorem from Chan (2003)

Let (K, A, ) be chosen such that the convex function

h(O) = [ 1+2) e 0AHm | N K@) (1) y)

k>1 x,yeA

has a positive root of 1, with 0 being the larger root, then

P(H,(x,y) > b) <n?e”?

Works for K =Blosum62, A = 18, = 1.
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Grossman and Yakir (2005)

Let
1
o(0) = lim —log E(e“n),

n—oo M,
then ¢(0) = 0 has a positive root is necessary and sulfficient for logarithmic region. The

root is the large deviations rate.

A result of similar nature is given in Chan (2005).



Sketch of Proof (Chan 2003):  Construct measure () on A™ x A™ x Z as follows:

1. Pick (i1, 71) uniformly from {1,... n}? setl = 1.

2. Recursively, pick the aligned pair (x;,, ¥/, ) from

fz,y) = eéK(x’y)_S(é)M(f)M(y)a where 3(5) = log (1 + 2 21@1 e_eg(k))

and (G7, G7), the gap at position /, from
P((GF,GY) = (k,0)) = P((GF, GY) = (0,k)) = e~ ==(®

Letijr1 =i+ GV, jit1 = 1 + G.

3. Let 2z be the alignment produced in this process. Stop sampling when 2; > n, 3; > n,

or .S, > b. All unaligned positions are iid ~ L.

Let (), be the measure of (X, y) generated by alignment z. Let Q = > . > Q.. Let 2
be the optimal alignment. Then

dP
dQ’

dP

IP’(Hn(X,y) > b) EQ dQ )

(Xy)>b] <EQ[

' H,(x,y) >b| <n?e %



An optimal alignment is heavily constrained around gaps...

1 -1
Toy example: A ={0,1}, K = ( )
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An optimal alignment is heavily constrained around gaps...

—1
-1 1

Toy example: A ={0,1}, K =

X: ...11011...

y: ...11100011...
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An optimal alignment is heavily constrained around gaps...

—1
Toy example: A ={0,1}, K =

-1 1
X: ...11011...
y: ...11100011...
X: ...11111...

y: ...11101111...
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Local Optimality Property

Definition: A Section of type (u, v, 1) is u aligned letters followed by a gap of length v in

x-sequence (similarly, type (u, v, O) has gap in y-sequence.

Fact: Any alignment is composed of a sequence of sections. The sum of scores of the

sections is the score of the alignment. (Not including the gap penalty at the end.)

Define local move: oL

We can apply the move 7 times: O7 = ﬁb Pk ... gé

For a section C' of type (u, v, t),

Np(C) = [{r: S(9L(C)) = S(C)}]

1,(C) = 0, dr s.t. S(¢7(C)) > S(C);

1

m, otherwise.
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Theorem 1

Let (K, A, ) be chosen such that the convex function

2 Y Y PECI AT (x,y) () ly)

u>1,0>1 xe gutv
yc A"
has a positive root of 1, with the largest root denoted by 6, then exists constant B(@) such
that

P(H,(x,y) > b) < n?’B(0)e %,
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Sketch of Proof (1): Let

g(u,v,1) = q(u,0,0) = Y ECITE L (x vy u(x) ply),
XcAvtv yec Av

then ¢ is a probability measure on the set of all possible section types. Also, for
x € ATy € AY, let

eV KGY)=A=0) [ (x, y)pu(x) pu(y)
q(u,v,1)

QU,U,O(Xa Y) — Qu,’u,l(xv Y) —

Y

then g, .. is a probability measure on the sequences of section type (u, v, )

Construct () on A™ x A" as follows:
1. Pick (i1, 1) uniformly from {1,... , n}? setl = 1.

2. Pick the section type iid from g(u, v, t) and the letter sequence within the section from

the joint distribution gy, 4 ¢ .
3. Stop sampling when either the score exceeds b or one of the sequences exceeds n.

Let (), be the measure of (X, y) generated by alignment z. Let Q) = > - Q..
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Sketch of Proof (2):  Let z have sections {C : 1 < k < [}. By construction of () ., we
have:

(x,5) = [ ] 76(C)]b(8)e?5- =)

k=1

13



Sketch of Proof (2):  Let z have sections {C : 1 < k < [}. By construction of () ., we
have:

sz 95’ (x,y)
dP H I1,(Cy)]b Y

Ontheset A = {(x,y) : H(x,y) > b}, exists z* = z*(x, y) which is locally optimal
such that S« (x,y) > b. Let ®(z*) be all alignments reachable from z* through local
moves. Then,

Zg( y) > Zzeq’;?d%(x,y)
l
> Ll:[lNL(Ck) dc?;*(&}’)
= b(f)e?5= oY) /2
> b(f)e? /n?
Therefore,
P(A) :EQ(;ZS A) < %b (G)e—tb
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Extension to a Markov Model

We can improve on the result of Theorem 1 by also considering two adjacent sections

together and allowing wobbles in the right-to-left direction across the gap, ¢ R.

For two adjacent sections C'; and Co
Ngr(C1,C2) = [{r: S(¢r(C1,Cs)) = S(C1, Ca) |

N(Cl, 02) = NL(Cl) + NR(Cl, 02)

and

0, exists local move that improves the score;

1 .
N(C,y.Ca) otherwise.

I(Cl, CQ) =

15



Theorem 2

LetT : ZT x Z7 x {0,1} — Z7 be any 1-1, onto map. Let
M(0) = M(0, K, A, d) be the matrix with elements

M(Q)T(u1,v1),T(u2,v2) — Z GO(K(X’y)_A_&)Q)I(Xa Y):LL(X):LL(Y)

xeAlviltvitlualtvs
yeALU1J+fU21

If (K, A, d) are chosen such that there exists a value of # for which M (6) has 1 as the

largest eigenvalue, with 6 being the largest such value, then exists constant B(@) such that

~

P(H,(x,y) > b) < n’B(6)e™?".
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Lemma Let M be a matrix with positive elements. If the largest eigenvalue of M is 1

and v¥, v® are the corresponding left and right eigenvectors, respectively, then
1. P = D=1 MD is a stochastic matrix, where D = diag(v?).

2. Letm’ = [vFol vdtvk, .. ] then w/||7|| is the stationary distribution of P.

The proof of Theorem 2 is similar to that for Theorem 1, except for the sections of an
alignment are no longer drawn independently. Instead, they are drawn from a Markov Chain

with transition matrix constructed from M (6).
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Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves
taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the

optimality indicator I(. . .) for all section types.
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Thus we cap the number of allowable transforms to a maximum of . Intuitively, in most

cases alignment score can not be increased by doing many consecutive transforms.
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Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves
taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the

optimality indicator I(. . .) for all section types.

Thus we cap the number of allowable transforms to a maximum of . Intuitively, in most

cases alignment score can not be increased by doing many consecutive transforms.

Then, the conditions for Theorems 1 and 2 can be easily verified using importance

sampling based Monte Carlo.
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Figure 1. For 6 = 1 and increasing values of k,the minimum value of A that can be proven to be in the logarithmic

region. Dashed line is for non-Markov result, solid line is for Markov sections result.
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How well can we possibly do using local optimality?

For each K, let 2 be an alignment composed of two stretches of x aligned pairs with a gap

of length v in the middle. Then for all 6,

E.[I%(2)] = FE,

max e/K(@()
>, K GG

Then
lim E,[I"(2)] = Ao,

R— 00

where \,, v = 1,2, ... are the constants defined in Siegmund and Yakir (2000). Storey
and Siegmund (2001) showed that for all v, A, =~ 0.337.
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In effect, Theorems 1 and 2 give a new criterion function for calculating the large deviations
rate. Below is a plot of the criterion functions for fixed scoring parameters
K = BLOSUM62, A = 15,6 = 1.

K=BLOSUM62, A=14, =1
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1 - = — — — — — -
1 1 1 1 1 1
0.18 0.2 0.22 0.24 0.26 0.28 0.3

21



0 | Chan 2003 | Independent Sections | Markov Sections | Altscul and Gish (1996)

1 18.1 16.1 14.4 ~ 8
2 15.0 13.0 11.3 ~ 6
3 13.0 10.9 9.2 ~ D

Table 1. Boundary of logarithmic region provable using Chan (2003), Theorem 1 using independent sections, and

Theorem 2 using Markov sections. The last column shows numerically determined boundaries.
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Final Comments

e Local optimality play a large role in constraining the alignment...

e ...but only gets us about half way there. Constraints across multiple gaps is needed to

get a more precise boundary.

e \We have obtained a better lower bound for the large deviations rate. How good is our
lower bound remains to be investigated.

® These results can be generalized to other types of scoring scenarios.

Thank you!
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