Local Optimality Properties of Biological Sequence Alignments

Nancy R. Zhang
(Phd research with Prof. David O. Siegmund)

Biological Sequence Alignments

$\begin{array}{ll}\mathrm{x}: & \text {...RNATQRNDCAMFKRRPPSPEGEHIL... } \\ \mathrm{y}: & \text {...AAQDCEMFPPAPREEGDHILMCAAT... }\end{array}$

Biological Sequence Alignments

X:
Y:
. . . RNATQRNDCAMFKRRPP SPEGEHIL . . .
. . . AAQDCEMFPPAPREEGDHILMCAAT . . .

Substitution Matrix $(K): \quad$| | A | R | N | \cdots |
| :---: | :---: | :---: | :---: | :---: |
| A | 4 | -1 | -2 | \cdots |
| R | -1 | 5 | 0 | \cdots |
| N | -2 | 0 | 6 | \cdots |
| \vdots | \vdots | \vdots | \vdots | \ddots |

Gap Penalties: gap open: Δ, \quad gap extension: δ

Biological Sequence Alignments

X:
Y:
...RNATQRNDCAMFKRRPP SPEGEHIL...
. . . AAQDCEMFPPAPREEGDHILMCAAT . . .

Substitution Matrix $(K): \quad$| | A | R | N | \cdots |
| :---: | :---: | :---: | :---: | :---: |
| A | 4 | -1 | -2 | \cdots |
| R | -1 | 5 | 0 | \cdots |
| N | -2 | 0 | 6 | \cdots |
| \vdots | \vdots | \vdots | \vdots | \ddots |

Gap Penalties: gap open: Δ, gap extension: δ

We do not allow simultaneous gaps in both sequences.

Possible alignment: $\quad \mathbf{z}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{u}, j_{u}\right)\right\}:$

Possible alignment: $\quad \mathbf{z}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{u}, j_{u}\right)\right\}$:

Score: $\quad S_{z}(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{u} K\left(x_{i_{k}}, y_{j_{k}}\right)-l \Delta-m \delta($ here,$l=3$ and $m=7$).

Possible alignment: $\quad \mathbf{z}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{u}, j_{u}\right)\right\}$:

Score: $\quad S_{z}(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{u} K\left(x_{i_{k}}, y_{j_{k}}\right)-l \Delta-m \delta$ (here, $l=3$ and $m=7$).
Maximum Sub-alignment Score: $\quad H_{n}(\mathbf{x}, \mathbf{y})=\max _{z \in \mathcal{Z}} S_{z}(\mathbf{x}, \mathbf{y})$

Possible alignment:

$$
\mathbf{z}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{u}, j_{u}\right)\right\}:
$$

Score: $\quad S_{z}(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{u} K\left(x_{i_{k}}, y_{j_{k}}\right)-l \Delta-m \delta$ (here, $l=3$ and $m=7$).
Maximum Sub-alignment Score: $\quad H_{n}(\mathbf{x}, \mathbf{y})=\max _{z \in \mathcal{Z}} S_{z}(\mathbf{x}, \mathbf{y})$
Null Distribution: $\quad \mathbf{x}, \mathbf{y}$ iid $\sim \mu$

Possible alignment:

$$
\mathbf{z}=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{u}, j_{u}\right)\right\}:
$$

Score: $\quad S_{z}(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{u} K\left(x_{i_{k}}, y_{j_{k}}\right)-l \Delta-m \delta$ (here, $l=3$ and $m=7$).
Maximum Sub-alignment Score: $\quad H_{n}(\mathbf{x}, \mathbf{y})=\max _{z \in \mathcal{Z}} S_{z}(\mathbf{x}, \mathbf{y})$
Null Distribution: $\quad \mathbf{x}, \mathbf{y}$ iid $\sim \mu$

Two Questions:

How does $H_{n}(\mathbf{x}, \mathbf{y})$ grow with n ?
What is $\mathbb{P}_{0}\left(H_{n}(\mathbf{x}, \mathbf{y})>b\right)$ for large b ?

Basic Result: The Phase Transition Phenomenon

Let $G_{n}(\mathbf{x}, \mathbf{y})$ be the maximum alignment score of \mathbf{x} and \mathbf{y}, penalizing gaps at the ends. By the theory of subadditive sequences,

$$
\alpha \doteq \alpha(K, \Delta, \delta)=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(G_{n}\right)}{n} \text { exists. }
$$

Basic Result: The Phase Transition Phenomenon

Let $G_{n}(\mathbf{x}, \mathbf{y})$ be the maximum alignment score of \mathbf{x} and \mathbf{y}, penalizing gaps at the ends. By the theory of subadditive sequences,

$$
\alpha \doteq \alpha(K, \Delta, \delta)=\lim _{n \rightarrow \infty} \frac{\mathbb{E}\left(G_{n}\right)}{n} \text { exists. }
$$

Arratia and Waterman (1994) Showed that

$$
\begin{aligned}
& \alpha>0 \Rightarrow \mathbb{P}\left(\lim _{n \rightarrow \infty} \frac{H_{n}}{n}=\alpha\right) \rightarrow 1 \\
& \alpha<0 \Rightarrow \exists b \text { s.t. } \forall \epsilon>0, \quad \mathbb{P}\left((1-\epsilon) b<\frac{H_{n}}{\log (n)}<(2+\epsilon) b\right) \rightarrow 1
\end{aligned}
$$

Brief Literature Review

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.
2. Gaps Allowed: No complete theory.

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.
2. Gaps Allowed: No complete theory.

- Altschul and Gish (1996) Methods in Enzymology

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.
2. Gaps Allowed: No complete theory.

- Altschul and Gish (1996) Methods in Enzymology
- Mott and Tribe (1999) Journal of Computational Biology

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.
2. Gaps Allowed: No complete theory.

- Altschul and Gish (1996) Methods in Enzymology
- Mott and Tribe (1999) Journal of Computational Biology
- Siegmund and Yakir (2000) Annals of Statistics

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.
2. Gaps Allowed: No complete theory.

- Altschul and Gish (1996) Methods in Enzymology
- Mott and Tribe (1999) Journal of Computational Biology
- Siegmund and Yakir (2000) Annals of Statistics
- Grossman and Yakir (2004) Bernoulli

Brief Literature Review

1. Gaps NOT Allowed:

Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

$$
\mathbb{E}_{0}[K(x, y)]<0, \mathbb{P}_{0}(K(x, y)>0)>0
$$

$H_{n}(\mathbf{x}, \mathbf{y})$ grows logarithmically with n and has extreme value type limiting distribution.
2. Gaps Allowed: No complete theory.

- Altschul and Gish (1996) Methods in Enzymology
- Mott and Tribe (1999) Journal of Computational Biology
- Siegmund and Yakir (2000) Annals of Statistics
- Grossman and Yakir (2004) Bernoulli
- Chan (2003) Bernoulli, (2005) Annals of Appl. Prob.

A Theorem from Chan (2003)

Let (K, Δ, δ) be chosen such that the convex function

$$
h(\theta)=\left(1+2 \sum_{k \geq 1} e^{-\theta(\Delta+\delta k)}\right) \sum_{x, y \in \mathcal{A}} e^{\theta K(x, y)} \mu(x) \mu(y)
$$

has a positive root of 1 , with $\tilde{\theta}$ being the larger root, then

$$
\mathbb{P}\left(H_{n}(\mathbf{x}, \mathbf{y}) \geq b\right) \leq n^{2} e^{-\tilde{\theta} b}
$$

A Theorem from Chan (2003)

Let (K, Δ, δ) be chosen such that the convex function

$$
h(\theta)=\left(1+2 \sum_{k \geq 1} e^{-\theta(\Delta+\delta k)}\right) \sum_{x, y \in \mathcal{A}} e^{\theta K(x, y)} \mu(x) \mu(y)
$$

has a positive root of 1 , with $\tilde{\theta}$ being the larger root, then

$$
\mathbb{P}\left(H_{n}(\mathbf{x}, \mathbf{y}) \geq b\right) \leq n^{2} e^{-\tilde{\theta} b}
$$

Works for $K=$ Blosum62, $\Delta=18, \delta=1$.

Grossman and Yakir (2005)

Let

$$
\phi(\theta)=\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left(e^{\theta G_{n}}\right)
$$

then $\phi(\theta)=0$ has a positive root is necessary and sufficient for logarithmic region. The root is the large deviations rate.

A result of similar nature is given in Chan (2005).

Sketch of Proof (Chan 2003): Construct measure Q on $\mathcal{A}^{m} \times \mathcal{A}^{n} \times \mathcal{Z}$ as follows:

1. Pick $\left(i_{1}, j_{1}\right)$ uniformly from $\{1, \ldots, n\}^{2}$, set $l=1$.
2. Recursively, pick the aligned pair $\left(x_{i_{l}}, y_{j_{l}}\right)$ from

$$
f(x, y)=e^{\tilde{\theta} K(x, y)-s(\tilde{\theta})} \mu(x) \mu(y), \text { where } s(\tilde{\theta})=\log \left(1+2 \sum_{k \geq 1} e^{-\theta g(k)}\right)
$$

and $\left(G_{l}^{x}, G_{l}^{y}\right)$, the gap at position l, from

$$
\mathbb{P}\left(\left(G_{l}^{x}, G_{l}^{y}\right)=(k, 0)\right)=\mathbb{P}\left(\left(G_{l}^{x}, G_{l}^{y}\right)=(0, k)\right)=e^{-\tilde{\theta} g(k)-s(\tilde{\theta})}
$$

Let $i_{l+1}=i_{l}+G_{l}^{x}, j_{l+1}=j_{l}+G_{l}^{y}$.
3. Let z be the alignment produced in this process. Stop sampling when $i_{l}>n, j_{l}>n$, or $S_{z}>b$. All unaligned positions are iid $\sim \mu$.

Let Q_{z} be the measure of (\mathbf{x}, \mathbf{y}) generated by alignment z. Let $Q=\sum_{z \in \mathcal{Z}} Q_{z}$. Let z^{*} be the optimal alignment. Then
$\mathbb{P}\left(H_{n}(\mathbf{x}, \mathbf{y})>b\right)=\mathbb{E}_{Q}\left[\frac{d P}{d Q} ; H_{n}(\mathbf{x}, \mathbf{y})>b\right] \leq \mathbb{E}_{Q}\left[\frac{d P}{d Q_{z^{*}}} ; H_{n}(\mathbf{x}, \mathbf{y})>b\right] \leq n^{2} e^{-\tilde{\theta} b}$

An optimal alignment is heavily constrained around gaps...

$$
\text { Toy example: } \quad \mathcal{A}=\{0,1\}, \quad K=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

An optimal alignment is heavily constrained around gaps...

$$
\left.\begin{array}{l}
\text { Toy example: } \mathcal{A}=\{0,1\}, \quad K=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
\mathrm{x}: \\
\mathrm{y}: \\
\ldots .111
\end{array}\right)
$$

An optimal alignment is heavily constrained around gaps...

$$
\begin{array}{lllllll}
\text { Toy example: } & \mathcal{A}=\{0,1\}, & K=\left(\begin{array}{cccccc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
\mathrm{x}: & \ldots & 1 & 1 & 0 & 1 & 1
\end{array} \ldots
$$

Local Optimality Property

Local Optimality Property

Definition: A Section of type $(u, v, 1)$ is u aligned letters followed by a gap of length v in x-sequence (similarly, type $(u, v, 0)$ has gap in y -sequence.

Local Optimality Property

Definition: A Section of type $(u, v, 1)$ is u aligned letters followed by a gap of length v in x -sequence (similarly, type $(u, v, 0)$ has gap in y -sequence.

Fact: Any alignment is composed of a sequence of sections. The sum of scores of the sections is the score of the alignment. (Not including the gap penalty at the end.)

Local Optimality Property

Definition: A Section of type $(u, v, 1)$ is u aligned letters followed by a gap of length v in x-sequence (similarly, type $(u, v, 0)$ has gap in y -sequence.

Fact: Any alignment is composed of a sequence of sections. The sum of scores of the sections is the score of the alignment. (Not including the gap penalty at the end.)

Define local move: $\quad \phi_{L}$
We can apply the move r times: $\quad \phi_{L}^{r}=\underbrace{\phi * \phi * \ldots \phi}_{r}$

Local Optimality Property

Definition: A Section of type $(u, v, 1)$ is u aligned letters followed by a gap of length v in x-sequence (similarly, type $(u, v, 0)$ has gap in y -sequence.

Fact: Any alignment is composed of a sequence of sections. The sum of scores of the sections is the score of the alignment. (Not including the gap penalty at the end.)

Define local move: $\quad \phi_{L}$
We can apply the move r times: $\quad \phi_{L}^{r}=\underbrace{\phi * \phi * \ldots \phi}_{r}$
For a section C of type (u, v, t),

$$
\begin{gathered}
\quad N_{L}(C)=\left|\left\{r: S\left(\phi_{L}^{r}(C)\right)=S(C)\right\}\right| \\
I_{L}(C)= \begin{cases}0, & \exists r \text { s.t. } S\left(\phi_{L}^{r}(C)\right)>S(C) \\
\frac{1}{N_{L}(C)}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Theorem 1

Let (K, Δ, δ) be chosen such that the convex function

$$
2 \sum_{u \geq 1, v \geq 1} \sum_{\substack{\mathbf{x} \in \mathcal{A}^{u+v} \\ \mathbf{y} \in \mathcal{A}^{u}}} e^{\theta(K(\mathbf{x}, \mathbf{y})-\Delta-\delta v)} I_{L}(\mathbf{x}, \mathbf{y}) \mu(\mathbf{x}) \mu(\mathbf{y})
$$

has a positive root of 1 , with the largest root denoted by $\tilde{\theta}$, then exists constant $B(\tilde{\theta})$ such that

$$
\mathbb{P}\left(H_{n}(\mathbf{x}, \mathbf{y}) \geq b\right) \leq n^{2} B(\tilde{\theta}) e^{-\tilde{\theta} b}
$$

Sketch of Proof (1): Let

$$
q(u, v, 1)=q(u, v, 0)=\sum_{\mathbf{x} \in \mathcal{A}^{u+v}, \mathbf{y} \in \mathcal{A}^{u}} e^{\tilde{\theta}(K(\mathbf{x}, \mathbf{y})-\Delta-\delta v)} I_{L}(\mathbf{x}, \mathbf{y}) \mu(\mathbf{x}) \mu(\mathbf{y})
$$

then q is a probability measure on the set of all possible section types. Also, for $\mathbf{x} \in \mathcal{A}^{u+v}, \mathbf{y} \in \mathcal{A}^{u}$, let

$$
q_{u, v, 0}(\mathbf{x}, \mathbf{y})=q_{u, v, 1}(\mathbf{x}, \mathbf{y})=\frac{e^{\tilde{\theta}(K(\mathbf{x}, \mathbf{y})-\Delta-\delta v)} I_{L}(\mathbf{x}, \mathbf{y}) \mu(\mathbf{x}) \mu(\mathbf{y})}{q(u, v, 1)}
$$

Construct Q on $\mathcal{A}^{m} \times \mathcal{A}^{n}$ as follows:

1. Pick $\left(i_{1}, j_{1}\right)$ uniformly from $\{1, \ldots, n\}^{2}$, set $l=1$.
2. Pick the section type iid from $q(u, v, t)$ and the letter sequence within the section from the joint distribution $q_{u, v, t}$.
3. Stop sampling when either the score exceeds b or one of the sequences exceeds n.

Let Q_{z} be the measure of (\mathbf{x}, \mathbf{y}) generated by alignment z. Let $Q=\sum_{z \in \mathcal{Z}} Q_{z}$.
 have:

$$
\frac{d Q_{z}}{d P}(\mathbf{x}, \mathbf{y})=\frac{1}{n^{2}}\left[\prod_{k=1}^{l} I_{L}\left(C_{k}\right)\right] b(\tilde{\theta}) e^{\tilde{\theta} S_{z}(\mathbf{x}, \mathbf{y})}
$$

Sketch of Proof (2): Let z have sections $\left\{C_{k}: 1 \leq k \leq l\right\}$. By construction of Q_{z}, we have:

$$
\frac{d Q_{z}}{d P}(\mathbf{x}, \mathbf{y})=\frac{1}{n^{2}}\left[\prod_{k=1}^{l} I_{L}\left(C_{k}\right)\right] b(\tilde{\theta}) e^{\tilde{\theta} S_{z}(\mathbf{x}, \mathbf{y})}
$$

On the set $A=\{(\mathbf{x}, \mathbf{y}): H(\mathbf{x}, \mathbf{y})>b\}$, exists $z^{*} \doteq z^{*}(\mathbf{x}, \mathbf{y})$ which is locally optimal such that $S_{z^{*}}(\mathbf{x}, \mathbf{y})>b$. Let $\Phi\left(z^{*}\right)$ be all alignments reachable from z^{*} through local moves. Then,

$$
\begin{aligned}
\frac{d Q}{d P}(\mathbf{x}, \mathbf{y}) & >\frac{\sum_{z \in \Phi\left(z^{*}\right)} d Q_{z}}{d P}(\mathbf{x}, \mathbf{y}) \\
& >\left[\prod_{k=1}^{l} N_{L}\left(C_{k}\right)\right] \frac{d Q_{z^{*}}}{d P}(\mathbf{x}, \mathbf{y}) \\
& =b(\tilde{\theta}) e^{\tilde{\theta} S_{z^{*}}(\mathbf{x}, \mathbf{y})} / n^{2} \\
& >b(\tilde{\theta}) e^{\tilde{\theta} b} / n^{2}
\end{aligned}
$$

Therefore,

$$
P(A)=\mathbb{E}_{Q}\left(\frac{d P}{d Q}, A\right)<\frac{1}{n^{2}} b^{-1}(\tilde{\theta}) e^{-\tilde{\theta} b}
$$

Extension to a Markov Model

We can improve on the result of Theorem 1 by also considering two adjacent sections together and allowing wobbles in the right-to-left direction across the gap, ϕ_{R}.

For two adjacent sections C_{1} and C_{2}

$$
\begin{gathered}
N_{R}\left(C_{1}, C_{2}\right)=\left|\left\{r: S\left(\phi_{R}^{r}\left(C_{1}, C_{2}\right)\right)=S\left(C_{1}, C_{2}\right)\right\}\right| \\
N\left(C_{1}, C_{2}\right)=N_{L}\left(C_{1}\right)+N_{R}\left(C_{1}, C_{2}\right)
\end{gathered}
$$

and

$$
I\left(C_{1}, C_{2}\right)= \begin{cases}0, & \text { exists local move that improves the score } \\ \frac{1}{N\left(C_{1}, C_{2}\right)}, & \text { otherwise }\end{cases}
$$

Theorem 2

Let $T: \mathcal{Z}^{+} \times \mathcal{Z}^{+} \times\{0,1\} \rightarrow \mathcal{Z}^{+}$be any 1-1, onto map. Let $\mathcal{M}(\theta) \doteq \mathcal{M}(\theta, K, \Delta, \delta)$ be the matrix with elements

$$
\mathcal{M}(\theta)_{T\left(u_{1}, v_{1}\right), T\left(u_{2}, v_{2}\right)}=\sum_{\substack{\mathbf{x} \in \mathcal{A}^{\left\lfloor u_{1}\right\rfloor+v_{1}+\left\lceil u_{2}\right\rceil+v_{2}} \\ \mathbf{y} \in \mathcal{A}^{\left\lfloor u_{1}\right\rfloor\left\lceil u_{2}\right\rceil}}} e^{\theta\left(K(\mathbf{x}, \mathbf{y})-\Delta-\delta v_{2}\right)} I(\mathbf{x}, \mathbf{y}) \mu(\mathbf{x}) \mu(\mathbf{y})
$$

If (K, Δ, δ) are chosen such that there exists a value of θ for which $\mathcal{M}(\theta)$ has 1 as the largest eigenvalue, with $\tilde{\theta}$ being the largest such value, then exists constant $B(\tilde{\theta})$ such that

$$
\mathbb{P}\left(H_{n}(\mathbf{x}, \mathbf{y}) \geq b\right) \leq n^{2} B(\tilde{\theta}) e^{-\tilde{\theta} b}
$$

Lemma Let M be a matrix with positive elements. If the largest eigenvalue of M is 1 and v^{L}, v^{R} are the corresponding left and right eigenvectors, respectively, then

1. $P=D^{-1} M D$ is a stochastic matrix, where $D=\operatorname{diag}\left(v^{R}\right)$.
2. Let $\pi^{\prime}=\left[v_{1}^{R} v_{1}^{L}, v_{2}^{R} v_{2}^{L}, \ldots\right]$, then $\pi /\|\pi\|$ is the stationary distribution of P.

The proof of Theorem 2 is similar to that for Theorem 1, except for the sections of an alignment are no longer drawn independently. Instead, they are drawn from a Markov Chain with transition matrix constructed from $\mathcal{M}(\tilde{\theta})$.

Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the optimality indicator I(. . .) for all section types.

Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the optimality indicator I(. . .) for all section types.

Thus we cap the number of allowable transforms to a maximum of κ. Intuitively, in most cases alignment score can not be increased by doing many consecutive transforms.

Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the optimality indicator I(. . .) for all section types.

Thus we cap the number of allowable transforms to a maximum of κ. Intuitively, in most cases alignment score can not be increased by doing many consecutive transforms.

Then, the conditions for Theorems 1 and 2 can be easily verified using importance sampling based Monte Carlo.

Figure 1. For $\delta=1$ and increasing values of κ, the minimum value of Δ that can be proven to be in the logarithmic region. Dashed line is for non-Markov result, solid line is for Markov sections result.

How well can we possibly do using local optimality?

For each κ, let z be an alignment composed of two stretches of κ aligned pairs with a gap of length v in the middle. Then for all θ,

$$
E_{z}\left[I^{\kappa}(z)\right]=E_{z}\left[\frac{\max _{\phi} e^{\theta K(\phi(z))}}{\sum_{\phi} e^{\theta K(\phi(z))}}\right]
$$

Then

$$
\lim _{\kappa \rightarrow \infty} E_{z}\left[I^{\kappa}(z)\right]=\lambda_{v}
$$

where $\lambda_{v}, v=1,2, \ldots$ are the constants defined in Siegmund and Yakir (2000). Storey and Siegmund (2001) showed that for all $v, \lambda_{v} \approx 0.337$.

In effect, Theorems 1 and 2 give a new criterion function for calculating the large deviations rate. Below is a plot of the criterion functions for fixed scoring parameters $K=$ BLOSUM62, $\Delta=15, \delta=1$.

δ	Chan 2003	Independent Sections	Markov Sections	Altscul and Gish (1996)
1	18.1	16.1	14.4	≈ 8
2	15.0	13.0	11.3	≈ 6
3	13.0	10.9	9.2	≈ 5

Table 1. Boundary of logarithmic region provable using Chan (2003), Theorem 1 using independent sections, and Theorem 2 using Markov sections. The last column shows numerically determined boundaries.

Final Comments

Final Comments

- Local optimality play a large role in constraining the alignment...

Final Comments

- Local optimality play a large role in constraining the alignment...
- ...but only gets us about half way there. Constraints across multiple gaps is needed to get a more precise boundary.

Final Comments

- Local optimality play a large role in constraining the alignment...
- ...but only gets us about half way there. Constraints across multiple gaps is needed to get a more precise boundary.
- We have obtained a better lower bound for the large deviations rate. How good is our lower bound remains to be investigated.

Final Comments

- Local optimality play a large role in constraining the alignment...
- ...but only gets us about half way there. Constraints across multiple gaps is needed to get a more precise boundary.
- We have obtained a better lower bound for the large deviations rate. How good is our lower bound remains to be investigated.
- These results can be generalized to other types of scoring scenarios.

Final Comments

- Local optimality play a large role in constraining the alignment...
- ...but only gets us about half way there. Constraints across multiple gaps is needed to get a more precise boundary.
- We have obtained a better lower bound for the large deviations rate. How good is our lower bound remains to be investigated.
- These results can be generalized to other types of scoring scenarios.

Thank you!

