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Biological Sequence Alignments

x: ...RNATQRNDCAMFKRRPPSPEGEHIL...

y: ...AAQDCEMFPPAPREEGDHILMCAAT...
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Biological Sequence Alignments

x: ...RNATQRNDCAMFKRRPPSPEGEHIL...

y: ...AAQDCEMFPPAPREEGDHILMCAAT...

Substitution Matrix (K):

A R N · · ·

A 4 -1 -2 · · ·

R -1 5 0 · · ·

N -2 0 6 · · ·
...

...
...

...
. . .

Gap Penalties: gap open: ∆, gap extension: δ
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Biological Sequence Alignments

x: ...RNATQRNDCAMFKRRPPSPEGEHIL...

y: ...AAQDCEMFPPAPREEGDHILMCAAT...

Substitution Matrix (K):

A R N · · ·

A 4 -1 -2 · · ·

R -1 5 0 · · ·

N -2 0 6 · · ·
...

...
...

...
. . .

Gap Penalties: gap open: ∆, gap extension: δ

We do not allow simultaneous gaps in both sequences.
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Possible alignment: z = {(i1, j1), . . . , (iu, ju)}:

x: ...ATQRNDCAMFKRRPPSP--EGEHIL...

||| ||||| |||| ||||||

y: ...AAQ--DCEMF---PPAPREEGDHIL...
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Score: Sz(x,y) =
∑u

k=1 K(xik
, yjk

) − l∆ − mδ (here, l = 3 and m = 7).

3-a



Possible alignment: z = {(i1, j1), . . . , (iu, ju)}:

x: ...ATQRNDCAMFKRRPPSP--EGEHIL...

||| ||||| |||| ||||||

y: ...AAQ--DCEMF---PPAPREEGDHIL...

Score: Sz(x,y) =
∑u

k=1 K(xik
, yjk

) − l∆ − mδ (here, l = 3 and m = 7).

Maximum Sub-alignment Score: Hn(x,y) = maxz∈Z Sz(x,y)

3-b



Possible alignment: z = {(i1, j1), . . . , (iu, ju)}:

x: ...ATQRNDCAMFKRRPPSP--EGEHIL...

||| ||||| |||| ||||||

y: ...AAQ--DCEMF---PPAPREEGDHIL...

Score: Sz(x,y) =
∑u

k=1 K(xik
, yjk

) − l∆ − mδ (here, l = 3 and m = 7).

Maximum Sub-alignment Score: Hn(x,y) = maxz∈Z Sz(x,y)

Null Distribution: x, y iid ∼ µ

3-c



Possible alignment: z = {(i1, j1), . . . , (iu, ju)}:

x: ...ATQRNDCAMFKRRPPSP--EGEHIL...

||| ||||| |||| ||||||

y: ...AAQ--DCEMF---PPAPREEGDHIL...

Score: Sz(x,y) =
∑u

k=1 K(xik
, yjk

) − l∆ − mδ (here, l = 3 and m = 7).

Maximum Sub-alignment Score: Hn(x,y) = maxz∈Z Sz(x,y)

Null Distribution: x, y iid ∼ µ

Two Questions:

How does Hn(x,y) grow with n?

What is P0(Hn(x,y) > b) for large b?
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Basic Result: The Phase Transition Phenomenon

Let Gn(x,y) be the maximum alignment score of x and y, penalizing gaps at the ends.

By the theory of subadditive sequences,

α
.
= α(K, ∆, δ) = lim

n→∞

E(Gn)

n
exists.
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Basic Result: The Phase Transition Phenomenon

Let Gn(x,y) be the maximum alignment score of x and y, penalizing gaps at the ends.

By the theory of subadditive sequences,

α
.
= α(K, ∆, δ) = lim

n→∞

E(Gn)

n
exists.

Arratia and Waterman (1994) Showed that

α > 0 ⇒ P( lim
n→∞

Hn

n
= α) → 1

α < 0 ⇒ ∃ b s.t. ∀ ǫ > 0, P((1 − ǫ)b <
Hn

log(n)
< (2 + ǫ)b) → 1
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Brief Literature Review
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Brief Literature Review

1. Gaps NOT Allowed:
Dembo et. al. (1994, Ann. Probab.) showed that for scoring matrices K satisfying:

E0[K(x, y)] < 0, P0(K(x, y) > 0) > 0,

Hn(x,y) grows logarithmically with n and has extreme value type limiting distribution.
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A Theorem from Chan (2003)

Let (K, ∆, δ) be chosen such that the convex function

h(θ) =



1 + 2
∑

k≥1

e−θ(∆+δk)




∑

x,y∈A

eθK(x,y)µ(x)µ(y)

has a positive root of 1, with θ̃ being the larger root, then

P(Hn(x,y) ≥ b) ≤ n2e−θ̃b
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A Theorem from Chan (2003)

Let (K, ∆, δ) be chosen such that the convex function

h(θ) =



1 + 2
∑

k≥1

e−θ(∆+δk)




∑

x,y∈A

eθK(x,y)µ(x)µ(y)

has a positive root of 1, with θ̃ being the larger root, then

P(Hn(x,y) ≥ b) ≤ n2e−θ̃b

Works for K =Blosum62, ∆ = 18, δ = 1.
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Grossman and Yakir (2005)

Let

φ(θ) = lim
n→∞

1

n
log E(eθGn),

then φ(θ) = 0 has a positive root is necessary and sufficient for logarithmic region. The

root is the large deviations rate.

A result of similar nature is given in Chan (2005).
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Sketch of Proof (Chan 2003): Construct measure Q on Am ×An ×Z as follows:

1. Pick (i1, j1) uniformly from {1, . . . , n}2, set l = 1.

2. Recursively, pick the aligned pair (xil
, yjl

) from

f(x, y) = eθ̃K(x,y)−s(θ̃)µ(x)µ(y), where s(θ̃) = log
(

1 + 2
∑

k≥1 e−θg(k)
)

.

and (Gx
l , Gy

l ), the gap at position l, from

P((Gx
l , Gy

l ) = (k, 0)) = P((Gx
l , Gy

l ) = (0, k)) = e−θ̃g(k)−s(θ̃)

Let il+1 = il + Gx
l , jl+1 = jl + Gy

l .

3. Let z be the alignment produced in this process. Stop sampling when il > n, jl > n,

or Sz > b. All unaligned positions are iid ∼ µ.

Let Qz be the measure of (x,y) generated by alignment z. Let Q =
∑

z∈Z Qz . Let z∗

be the optimal alignment. Then

P(Hn(x,y) > b) = EQ

[
dP

dQ
; Hn(x,y) > b

]

≤ EQ

[
dP

dQz∗

; Hn(x,y) > b

]

≤ n2e−θ̃b
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An optimal alignment is heavily constrained around gaps...

Toy example: A = {0, 1}, K =




1 −1

−1 1




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An optimal alignment is heavily constrained around gaps...

Toy example: A = {0, 1}, K =




1 −1

−1 1





x: ...1 1 0 1 1...

y: ...1 1 1 0 0 0 1 1...
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Local Optimality Property
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Local Optimality Property

Definition: A Section of type (u, v, 1) is u aligned letters followed by a gap of length v in

x-sequence (similarly, type (u, v, 0) has gap in y-sequence.

Fact: Any alignment is composed of a sequence of sections. The sum of scores of the

sections is the score of the alignment. (Not including the gap penalty at the end.)

Define local move: φL

We can apply the move r times: φr
L = φ ∗ φ ∗ . . . φ

︸ ︷︷ ︸

r

For a section C of type (u, v, t),

NL(C) = |{r : S(φr
L(C)) = S(C)}|

IL(C) =







0, ∃r s.t. S(φr
L(C)) > S(C);

1
NL(C) , otherwise.
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Theorem 1

Let (K, ∆, δ) be chosen such that the convex function

2
∑

u≥1,v≥1

∑

x∈Au+v,
y∈Au

eθ(K(x,y)−∆−δv)IL(x,y)µ(x)µ(y)

has a positive root of 1, with the largest root denoted by θ̃, then exists constant B(θ̃) such

that

P(Hn(x,y) ≥ b) ≤ n2B(θ̃)e−θ̃b.
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Sketch of Proof (1): Let

q(u, v, 1) = q(u, v, 0) =
∑

x∈Au+v,y∈Au

eθ̃(K(x,y)−∆−δv)IL(x,y)µ(x)µ(y),

then q is a probability measure on the set of all possible section types. Also, for

x ∈ Au+v, y ∈ Au, let

qu,v,0(x,y) = qu,v,1(x,y) =
eθ̃(K(x,y)−∆−δv)IL(x,y)µ(x)µ(y)

q(u, v, 1)
,

then qu,v,· is a probability measure on the sequences of section type (u, v, ·).

Construct Q on Am ×An as follows:

1. Pick (i1, j1) uniformly from {1, . . . , n}2, set l = 1.

2. Pick the section type iid from q(u, v, t) and the letter sequence within the section from

the joint distribution qu,v,t.

3. Stop sampling when either the score exceeds b or one of the sequences exceeds n.

Let Qz be the measure of (x,y) generated by alignment z. Let Q =
∑

z∈Z Qz .
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Sketch of Proof (2): Let z have sections {Ck : 1 ≤ k ≤ l}. By construction of Qz , we

have:

dQz

dP
(x,y) =

1

n2
[

l∏

k=1

IL(Ck)]b(θ̃)eθ̃Sz(x,y)
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Sketch of Proof (2): Let z have sections {Ck : 1 ≤ k ≤ l}. By construction of Qz , we

have:

dQz

dP
(x,y) =

1

n2
[

l∏

k=1

IL(Ck)]b(θ̃)eθ̃Sz(x,y)

On the set A = {(x,y) : H(x,y) > b}, exists z∗
.
= z∗(x,y) which is locally optimal

such that Sz∗(x,y) > b. Let Φ(z∗) be all alignments reachable from z∗ through local

moves. Then,

dQ

dP
(x,y) >

∑

z∈Φ(z∗) dQz

dP
(x,y)

>

[
l∏

k=1

NL(Ck)

]

dQz∗

dP
(x,y)

= b(θ̃)eθ̃Sz∗ (x,y)/n2

> b(θ̃)eθ̃b/n2

Therefore,

P (A) = EQ(
dP

dQ
, A) <

1

n2
b−1(θ̃)e−θ̃b
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Extension to a Markov Model

We can improve on the result of Theorem 1 by also considering two adjacent sections

together and allowing wobbles in the right-to-left direction across the gap, φR.

For two adjacent sections C1 and C2

NR(C1, C2) = |{r : S(φr
R(C1, C2)) = S(C1, C2)}|

N(C1, C2) = NL(C1) + NR(C1, C2)

and

I(C1, C2) =







0, exists local move that improves the score;

1
N(C1,C2)

, otherwise.
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Theorem 2

Let T : Z+ ×Z+ × {0, 1} → Z+ be any 1-1, onto map. Let

M(θ)
.
= M(θ, K, ∆, δ) be the matrix with elements

M(θ)T (u1,v1),T (u2,v2) =
∑

x∈A⌊u1⌋+v1+⌈u2⌉+v2 ,

y∈A⌊u1⌋+⌈u2⌉

eθ(K(x,y)−∆−δv2)I(x,y)µ(x)µ(y).

If (K, ∆, δ) are chosen such that there exists a value of θ for which M(θ) has 1 as the

largest eigenvalue, with θ̃ being the largest such value, then exists constant B(θ̃) such that

P(Hn(x,y) ≥ b) ≤ n2B(θ̃)e−θ̃b.
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Lemma Let M be a matrix with positive elements. If the largest eigenvalue of M is 1

and vL, vR are the corresponding left and right eigenvectors, respectively, then

1. P = D−1MD is a stochastic matrix, where D = diag(vR).

2. Let π′ = [vR
1 vL

1 , vR
2 vL

2 , . . . ], then π/‖π‖ is the stationary distribution of P .

The proof of Theorem 2 is similar to that for Theorem 1, except for the sections of an

alignment are no longer drawn independently. Instead, they are drawn from a Markov Chain

with transition matrix constructed from M(θ̃).
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Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves

taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the

optimality indicator I(. . . ) for all section types.
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Technicalities...

Theorem 1 involves an infinite summation over all section types, and Theorem 2 involves

taking the eigenvalue of an infinite dimensional matrix. In practice, we can not calculate the

optimality indicator I(. . . ) for all section types.

Thus we cap the number of allowable transforms to a maximum of κ. Intuitively, in most

cases alignment score can not be increased by doing many consecutive transforms.

Then, the conditions for Theorems 1 and 2 can be easily verified using importance

sampling based Monte Carlo.
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Figure 1. For δ = 1 and increasing values of κ,the minimum value of ∆ that can be proven to be in the logarithmic

region. Dashed line is for non-Markov result, solid line is for Markov sections result.
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How well can we possibly do using local optimality?

For each κ, let z be an alignment composed of two stretches of κ aligned pairs with a gap

of length v in the middle. Then for all θ,

Ez[I
κ(z)] = Ez

[

maxφ eθK(φ(z))

∑

φ eθK(φ(z))

]

Then

lim
κ→∞

Ez[I
κ(z)] = λv,

where λv, v = 1, 2, . . . are the constants defined in Siegmund and Yakir (2000). Storey

and Siegmund (2001) showed that for all v, λv ≈ 0.337.
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In effect, Theorems 1 and 2 give a new criterion function for calculating the large deviations

rate. Below is a plot of the criterion functions for fixed scoring parameters

K = BLOSUM62, ∆ = 15, δ = 1.

0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

1

2

4

6

8

θ

K=BLOSUM62, ∆=14, δ=1

h
4
Markov(θ)

h
4
ind(θ

h
0
ind(θ)

hChan(θ)
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δ Chan 2003 Independent Sections Markov Sections Altscul and Gish (1996)

1 18.1 16.1 14.4 ≈ 8

2 15.0 13.0 11.3 ≈ 6

3 13.0 10.9 9.2 ≈ 5

Table 1. Boundary of logarithmic region provable using Chan (2003), Theorem 1 using independent sections, and

Theorem 2 using Markov sections. The last column shows numerically determined boundaries.
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Final Comments
• Local optimality play a large role in constraining the alignment...

• ...but only gets us about half way there. Constraints across multiple gaps is needed to

get a more precise boundary.

• We have obtained a better lower bound for the large deviations rate. How good is our

lower bound remains to be investigated.

• These results can be generalized to other types of scoring scenarios.

Thank you!
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