SEARCHING FOR UNUSUAL CLUSTERS OF PALINDROMES AND CLOSE INVERSIONS IN THE SARS VIRUS GENOME

June 4, 2003

Kwok-Pui Choi Department of Mathematics, NUS Department of Statistics and Applied Probability

> joint work with Louis H Y Chen, NUS David Chew, NUS Ming-Ying Leung, UTSA

Acknowledgement:

- David Chew for technical assistance in the preparation of this talk.
- helpful discussion with
 - -Louxin Zhang and Hock-Peng Chan
 - -some researchers in the Genome Institute of Singapore, particularly, PK.

- I. INTRODUCTION
- II. A TINY BIT OF BIOLOGY
- III. PALINDROMES AND CLOSE INVERSIONS
- IV. Measuring clusters of palindromes and close inversions in the SARS genome
- V. WHICH CLUSTERS *surprise* US? -SOME MATHEMATICAL AND STATISTICAL ANALYSIS
- VI. Some observations

I. INTRODUCTION

The SARS virus genome is

- \bullet a single stranded RNA
- \bullet positive stranded
- \bullet 29,711 bases
- AT rich:

(A, C, G, T) = (0.285, 0.200, 0.208, 0.307)

The following slide is taken from the SARS genome, an isolate (SIN2774), one of the primary contacts from the index case Basepairs from 20,001 to 23,500 GACCAGCACAAGCTAGCGTCAATGGAGTCACATTAATTGGAGAATCAGTAAAAACACAGTTTAACTACTTTAAGAAAGTAGACGGCATTATTCAACAGTT GCCTGAAACCTACTTTACTCAGAGCAGAGAGCTTAGAGGATTTTAAGCCCAGATCACAAATGGAAACTGACTTTCTCGAGCTCGCTATGGATGAATTCATA CAGCGATATAAGCTCGAGGGCTATGCCTTCGAACACATCGTTTATGGAGATTTCAGTCATGGACAACTTGGCGGTCTTCATTTAATGATAGGCTAGCCA AGCGCTCACAAGATTCACCACTTAAATTAGAGGATTTTATCCCTATGGACAGCACAGTGAAAAATTACTTCATAACAGATGCGCAAACAGGTTCATCAAA ATGTGTGTGTGTGTGTGATTGATCTTTACTTGATGACTTTGTCGAGATAATAAAGTCACAAGATTTGTCAGTGATTTCAAAAAGTGGTCAAGGTTACAATT CGATGCCTAACTTGTACAAGATGCAAAGAATGCTTCTTGAAAAGTGTGACCTTCAGAATTATGGTGAAAATGCTGTTATACCAAAAAGGAATAATGATGAA GGAGTTGCACCAGGTACAGCTGTGCTCAGACAATGGTTGCCAACTGGCACACTACTTGTCGATTCAGATCTTAATGACTTCGTCTCCGACGCAGATTCTA TGACTCTAAAGAAGGGTTTTTCACTTATCTGTGTGGATTTATAAAGCAAAAACTAGCCCTGGGTGGTTCTATAGCTGTAAAGATAACAGAGCATTCTTGG AATGCTGACCTTTACAAGCTTATGGGCCATTTCTCATGGTGGACAGCTTTTGTTACAAATGTAAATGCATCATCGTCGGAAGCATTTTTAATTGGGGCCTA ACTCTTTGACATGAGCAAAATTTCCTCTTTAAAATTAAGAGGAACTGCTGTGAATGTCTCTTAAGGAGAATCAAATCAATGATATGATTTATTCTCTTCTGGAA CTCTCACTAGTGGTAGTGACCTTGACCGGTGCACCACTTTTGATGATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTATGAGGGGGGGTTTACTA ACCCATGGGTACACAGACACACATACTATGATATTCGATAATGCATTTAATTGCACTTTCGAGTACATATCTGATGCCTTTTCGCTTGATGTTTCAGAAAAG TCAGGTAATTTTAAACACTTACGAGAGTTTGTGTTTAAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACCTATAGATGTAGTTCGTGATC TACCTTCTGGTTTTAACACTTTGAAACCTATTTTTAAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCCATTCTTACAGCCTTTTCACCTGCTCA AGACATTTGGGGCACGTCAGCTGCAGCCTATTTTGTTGGCTATTTAAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACAAATCACAGATGCT GTTGATTGTTCTCAAAATCCACTTGCTGAACTCAAATGCTCTGTTAAGAGCTTTGAGATTGACAAAGGAATTTACCAGACCTCTAATTTCAGGGTTGTTC CCTCAGGAGATGTTGTGAGATTCCCTAATATTACAAACTTGTGTGTCCTTTTGGAGAGGTTTTTAATGCTACTAAATTCCCTTCTGTCTATGCATGGGAGAG A A A A A A A A A A TTTCTA A TTGTGTTGCTGATTACTCTGTGCTCTA CA A CTCA A CATTTTTTCA A CTCTA A GTGCTATGGCGTTTCTGCCA CTA A GTTGA A T GATCTTTGCTTCTCCAATGTCTATGCAGATTCTTTTGTAGTCAAGGGAGATGATGTAGAGACAAATAGCGCCAGGACAAACTGGTGTTATTGCTGATTATA TCTTAGACATGGCAAGCTTAGGCCCTTTGAGAGAGACATATCTAATGTGCCTTTCTCCCCCTGATGGCAAACCTTGCACCCCACCTGCTCTTAATTGTTAT CGGTTTGTGGACCAAAAATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTAATGGACTCACTGGTACTGGTGTGTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAATTTGGCCGTGATGTTTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTGAAAATATTAGACATTTCACCT TGCTCTTTTGGGGGTGTAAGTGTAATTACACCTGGAACAAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGATGTTTCTACAG CAATTCATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTACTGGAAACAATGTATTCCAGACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATTCCTATTGGAGCTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAGCCAAAAATCTATTGTG

- Entire genome will take us 10 slides
- What can be learned from this sequence?
- Illustrated in Sean Eddy's web page

1	GATCCTTGTAGATTTTGAATTTGAAGTTTTTTCTCATTCCAAAACTCTGTGATCTGAAAT	60
61	AAAATGTCTCAAAAAsean eddy's home page.TATTTATCAGTTATGGTTTTCAA	120
121	AATTTTCTGACATACCGTTTTGCTTCTTTTTTTTCTCATCTTCTCAAATATCAATTGTGA	180
181	TAATCTGAcontact info.AATTTCTTTTCCTTTTTCCTTTTTCCAACAACTCCAGTGA	240
241	GAACTTTTGAATATCTTCAAGTGACTTCACCACATCAGAAGGTGTCAACGATCTTGTGAG	300
301	AACATCGAATGAAGATAlab home page.GTTACAGTTTTTCCTCCGACAATTCCTGA	360
361	TTTACGAACATCTTCTTCAAGCATTCTACAGATTTCTTGATGCTCTTCTAGGAGGATGTT	420
421	GAAATCCGAAGTTGobtaining reprints & lab publications.GGATCCGA	480
481	TTCAGATGGACGACCTGGCAGTCCGAGAGCCGTTCGAAGGAAAGATTCTTGTGAGAGAGG	540
541	CGTGAAhmmer.AGGGTATAGGTTCTTCTTCAGATTCATATCACCAACAGTTTGAATATC	600
601	CATTGCTTTCAGTTGAGCTTCGCATACACGACCAATTCCTCCAACCTAAAAAATTATCTA	660
661	${\tt GGTAAAACTAGAAGGTTATGCTTTAATAGTCTCACCTTACGAATCGGTAAATpfam.AAA}$	720
721	AACTCCATAATCGCGTTTTTATCATTTTCTAACACATATTGACCATTTGGTTTGTTCAAA	780
781	${\tt TCAGAA} \\ {\tt infernal.} \\ {\tt GCGAGCATAAAGTTAGATGCGATTCCAGCAGAACATGTTAATCCC} \\$	840
841	GTGAGTTGTTCAACTCGAAATCGAATTTCTCGAACAGCCTCCTCTCGTCCAGTTCCGAAC	900
901	${\tt TCCACATGGTCGTAGTAGATTTTTCCGCGATTTTTCGCATTTTGGACAGAT\underline{rfam.}CTTCG}$	960
961	ATTTTCAAGTCTTCCAAAGTATTTTCATTCTCGTCGAAACGGGGTAACCAACATGGACAA	1020
1021	TCbiological sequence analysis.CTAGTAAGCAAATAGTTTTTTGTTAATAA	1080
1081	TCAAATCTAAATCACTAACTTTTTTCTGTATTACTTGCCACATAGTCTGTCAAATCTATA	1140
1141	AATGCbio5495/bme537 computational molecular biology.TTTGTGAA	1200
1201	AATTGGCGACTGACTTTAGTGTATTTAGGGTAATTTCCTGGAACAATCGTTAGACTCGGA	1260
1261	CAAAGTTTATTTGAGATGAAGthe fine print.CGGACTCCAAAACGGCGAGCCAAG	1320
1321	TAGTTGGATGTGCTCTGAAAGAATAGATTTAAAGCTTTTCCGAAATCGAAAATTTACTTT	1380
1381	TCAAATTGAGTTAGGTGCTTACCAGCATTGCCGATGAGCCTACmy links.AACTGTTC	1440
1441	TCAGTGCAGGATTATCTCTCATTTCAACTGCGGCAAAATAAGCATCCATATCTATACAAA	1500
1501	CACAGTCTCTTGATAAATCTCTAGATGATTCCAGTTTCATCTCAAGATTCTCCATCTGAA	1560

Many approaches to learn from this sequence: Via

- homology search
- phylogenetic analysis
- under/over-represented of some specific words in the genome, such as CTAG, a palindrome itself.

 \bullet our approach is via a general class of word patterns: palindromes and close inversions

• etc ...

II. A tiny bit of biology

• 4 DNA/RNA nucleotides: A, C, G and T/U

Image: A state of the state

• Helices formed by complementary base pairing:

Watson-Crick pairs:

Both pairs are almost coplanar; almost always stacked onto other base pairs in an RNA structure.

Wobble pairs:

 $\begin{array}{rcl} G & \leftrightarrow & U & ({\rm some \ extent}) \\ G & \leftrightarrow & A & ({\rm more \ rarely}) \end{array}$

III. CLOSE INVERSION; PALINDROME

palindrome of length 2L

Example:

...GTAAC | GTTAC...

is a **palindrome** of length 10.

Example:

...GTAAC | nnnn | GTTAC...

is a **close inversion** of stem length 5 and loop length 4.

GACCAGCACAAGCTAGCGTCAATGGAGTCACATTAATTGGAGAATCAGTAAAAACACAGTTTAACTACTTTAAGAAAGTAGACGGCATTATTCAACAGTT GCCTGAAACCTACTTTACTCAGAGCAGAGAGCTTAGAGGATTTTAAGCCCAGATCACAAATGGAAACTGACTTT<mark>CTCGAG</mark>CTCGCTATGGATGAATTCATA AGCGCTCACAAGATTCACCACTTAAATTAGAGGATTTTATCCCTATGGACAGCACAGTGAAAAATTACTTCATAACAGATGCGCAAACAGGTTCATCAAA ATGTGTGTGTGTGTGTGATTGATCTTTACTTGATGACTTTGTCGAGATAATAAAGTCACAAGATTTGTCAGTGATTTCAAAAAGTGGTCAAGGTTACAATT CGATGCCTAACTTGTACAAGATGCAAAGAATGCTTCTTGAAAAGTGTGACCTTCAGAATTATGGTGAAAATGCTGTTATACCAAAAAGGAATAATGATGAA GGAGTTGCACCAGGTACAGCTGTGCTCAGACAATGGTTGCCAACTGGCACACTACTTGTCGATTCAGATCTTAATGACTTCGTCTCCGACGCAGATTCTA TGACTCTAAAGAAGGGTTTTTCACTTATCTGTGTGGATTTATAAAGCAAAAACTAGCCCTGGGTGGTTCTATAGCTGTAAAGATAACAGAGCATTCTTGG AATGCTGACCTTTACAAGCTTATGGGCCATTTCTCATGGTGGACAGCTTTTGTTACAAATGTAAATGCATCATCGTCGGAAGCATTTTTAATTGGGGCCTA ACTCTTTGACATGAGCAAAATTTCCTCTTAAAATTAAGAGGAACTGCTGTAATGTCTCTTAAGGAGAATCAAATCAATGATATGATTTATTCTCTTCTGGAA AAAGGTAGGCTTATCATTAGAGAAAACAACAGAGTTGTGGGTTTCAAGTGATATTCTTGTTAACAACTAAACGAACATGTTTATTTTCTTATTATTTCTTA CTCTCACTAGTGGTAGTGACCTTGACCGGTGCACCACTTTTGATGATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTATGAGGGGGGGTTTACTA ACCCATGGGTACACAGACACACATACTATGATATTCGATAATGCATTTAATTGCACTTTCGAGTACATATCTGATGCCTTTTCGCTTGATGTTTCAGAAAAG TCAGGTAATTTTAAACACTTACGAGAGTTTGTGTTTAAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACCTATAGATGTAGTTCGTGATC TACCTTCTGGTTTTAACACTTTGAAACCTATTTTTAAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCCATTCTTACAGCCTTTTCACCTGCTCA AGACATTTGGGGCACGTCAGCTGCAGCCTATTTTGTTGGCTATTTAAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACAAATCACAGATGCT GTTGATTGTTCTCAAAATCCACTTGCTGAACTCAAATGCTCTGTTAAGAGCTTTGAGATTGACAAAGGAATTTACCAGACCTCTAATTTCAGGGTTGTTC CCTCAGGAGATGTTGTGAGATTCCCTAATATTACAAACTTGTGTGTCCTTTTGGAGAGGGTTTTTAATGCTACTAAATTCCCTTCTGTCTATGCATGGGAGAG A A A A A A A A A A TTTCTA A TTGTGTTGCTGATTACTCTGTGCTCTA CA A CTCA A CATTTTTTCA A CTCTA A GTGCTATGGCGTTTCTGCCA CTA A GTTGA A T GATCTTTGCTTCTCCAATGTCTATGCAGATTCTTTTGTAGTCAAGGGAGATGATGTAGAGACAAATAGCGCCAGGACAAACTGGTGTTATTGCTGATTATA TCTTAGACATGGCAAGCTTAGGCCCTTTGAGAGAGACATATCTAATGTGCCTTTCTCCCCCTGATGGCAAACCTTGCACCCCACCTGCTCTTAATTGTTAT CGGTTTGTGGACCAAAAATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATTGGACTCACTGGTACTGGTGTGTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAATTTGGCCGTGATGTTTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTGAAAATATTAGACATTTCACCT TGCTCTTTTGGGGGGTGTAAGTGTAATTACACCTGGAACAAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGATGTTTCTACAG CAATTCATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTACTGGAAACAATGTATTCCAGACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATTCCTATTGGAGCTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAGCCAAAAATCTATTGTG

Palindromes are involved in a variety of biological processes:

- recognition sites for bacterial restriction enzymes mostly palindromic
- crucial roles in gene regulation and DNA replication processes
- appears related with DNA-protein binding

. . .

Close inversion:

• provides the possibility of forming hairpins and many other secondary structures

• Hairpins increase/decrease the rate of translation of mRNA dependent on its location.

by Peter De Rijk

stems: contiguous stacked base pairs are called stems;

loops: single stranded substrings of nucleotides bounded by base pairs in a stem;

hairpins (or called stem-loops): simple substructures consisting of a simple stem and loop;

bulges: single stranded bases occurring within one side of a stem;**bulge loops:** single stranded bases occurring within both sides of a stem;

multi-branched loops: loop from which 3 or more stems radiate;

psuedoknots: non-nested base pairs

Regions rich in palindromes/close inversions are interesting biologically

▲
▲
Back
Close

IV. CLUSTERS OF PALINDROMES/CLOSE INVERSIONS

• How do we measure the clustering of close inversions or palindromes?

- We propose two classes of measures:
 - A. Window based
 - 1. Count
 - 2. Affine score
 - 3. Log-prob score
 - B. Maximal segmental score and Excursion plot –adaptation of Karlin's approach
- \bullet Will apply these measures on the SARS genome sequence analysis A1. <u>Count</u>

Advantages of this scoring scheme:

• It is simple and intuitive.

18/33

 \bullet By a duality relation, it is related to $r\mbox{-scan}$ statistic, which is window free.

• Some successes:

- In Leung, Schachtel and Yu (1994), predicting the origin of replication/enhancer element in HCMV

- In Leung, Choi, Xia and Chen (2002), regions rich in palindromes:

 \cdot overlaps transcriptional regulators in EHV1

- \cdot contains the origins of replications in EBV
- \cdot close proximity of origins of replications in BHV1

However, it fails to predict origin of replication in HSV1 —it has a very *long* palindrome of length 144

A2. <u>Affine score</u>—to capture not just counts, but their lengths

- Choose a window size
- Identify all the palindromes (maximally extended) in the window
- score for each palindrome is defined as:

 $\frac{\text{length of one stem}}{L}$

• score for the window is the

total of scores

A3. Log-prob score—to capture length as well as the fact that

• Not all palindromes are 'equal'

 $-\mathrm{in}$ the sense of their likelihoods to appear in the genome.

Some are rarer than others

• For example, in a AT rich genome, the palindrome AGTTA | TAACT

occurs more frequently than

GACCG | CGGTC

• we define the score of a palindrome with numbers of **A** bases, N_A , and so on ...

$$\sum_{a \in \mathcal{A}} (-\log p_a) \times N_a$$

where p_A is the proportion of A in the genome.

• Can see it as a weighted sum of the basepair compositions of the palindromes–generalizing the affine score.

B. Maximal segmental score and Excursion plot

$$\cdot \cdot k^{\text{th}}$$
 base $\cdot \cdot \cdot$

We score each basepair, we score it as

 $X_k := \begin{cases} c & \text{if } k \text{th base inside a palindrome of length } \ge 2L \\ -1 & \text{otherwise} \end{cases}$

where c is to be suitably chosen such that $EX_k < 0$.

Define $E_0 = 0$, and inductively, for $1 \le k \le n$, $E_k = \max\{E_{k-1} + X_k, 0\}.$

• Plot $\{(k, E_k) : 1 \le k \le n\}$ -excursion plot.

↓
↓
Back
Close

- The excursion plot captures
 - -length of palindromes;
 - -proximity of neighboring palindromes;
 - -length of palindromes;
 - -window size free.

Choice of c. Let

$$\psi := P(X_k = 1).$$

 $EX_k < 0$ imposes

$$1 \le c < 1/\psi - 1.$$

Let p_U be an upper bound (given by a Bonferroni-type inequality), we *propose* to choose

$$c := 1/p_U - 1.$$

• p_U is computable from the base composition in the SARS genome.

↓
↓
Back
Close

window position (bp)

↓
↓
Back
Close

GIS (29711 bp): PLP Scores (min s: 3 , Linear Score : s/ 3 , s.w.l: 150)

window position (bp)

▲
▲
▲
Back
Close

Back

Close

Index

▲
▲
▲
Back
Close

V. WHICH CLUSTERS surprise US?

- \bullet These two cut-offs at 1% and 5% are based on Karlin's work:
- He assumed X_k 's being independent and identically distributed.
- Need to work out our case: X_k 's are dependent.

For class A measures of clustering:

• Chen-Stein's method for the Poisson process approximation showed that

• if the basepairs are IID, then occurrences of palindromes can be approximated by a Poisson process.

Leung, Choi, Xia and Chen (2002).

29/33

In progress:

For affine/Log-prob cases: We proceed as

 \bullet Given the window size and there are m such windows covering the entire sequence.

- For the kth window: score is S_k .
- For large c, want to compute

 $P(\max_{1 \le k \le m} S_k \ge c).$

• Due to overlap, compound Poisson approximation (Barbour, Chen and Loh, 1992) should be more useful:

Let

$$I_k := I(S_k \ge c), \quad 1 \le k \le m$$

and

$$W = I_1 + \dots + I_m.$$

Want to approximate

$$P(\max_{1 \le k \le m} S_k \ge c) = P(W \ge 1)$$
$$= 1 - P(W = 0)$$
$$\approx 1 - e^{-\lambda}$$

which reduces, for λ small, the computation of

$$\lambda = \sum_{k=1}^{m} E(I_k/Y_k)$$

where

$$Y_k := \sum_{r \in A_k} I_r.$$

VI. Some observations

• Excursion plot suggests 2 interesting regions:

Positions 1 to 1,000, and

Positions 20,190 to 23,996.

- 3 interesting sites of palindrome clusters in SARS genome
 - 1. Segment 1: 5,100 to 5,200
 - 2. Segment 2: 22,700 to 22,800 TTATAA | TTATAA

This palindrome occurs twice at positions 22,696 and 22,780 in a stretch of 96 bases.

3. Segment 3: 25,800 to 26,100

It has a very long perfect palindrome of length 22! TCTTTAACAAG|CTTGTTAAAGA

located from 25,946 to 25,967.

The next longest palindromes are of only lengths 14!

No.	start	end	S	lstem	rstem
72	5056	5067	6	CACTAC	GTAGTG
78	5191	5204	7	ATAACAA	TTGTTAT
87	5996	6007	6	TGATTT	AAATCA
97	6738	6749	6	AATTCT	AGAATT
134	10071	10082	6	ACAGTA	TACTGT
315	22696	22707	6	TTATAA	TTATAA
316	22777	22788	6	TAATTA	TAATTA
317	22780	22791	6	TTATAA	TTATAA
324	23220	23231	6	GTGTAA	TTACAC
337	23916	23927	6	GCTTCA	TGAAGC
391	28032	28045	7	ACCTTCA	TGAAGGT
405	29652	29665	7	TAAAATT	AATTTTA

Image: Arrow of the second second

What I have presented can be best summed up in the Chinese idiom:

抛砖引玉

Thank you very much for your attention!

↓
↓
↓
Back
Close