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Motivation from Separability

Definition

Given two disjoint sets A and B, a separator is a set S such that
A ⊆ S and B ⊆ S. S separates A from B.

What is the computational difficulty of separators?

Descriptive Set Theory: Any two disjoint analytic sets are
separable by a Borel set. [Luzin 1930]

Computability Theory: There exist disjoint c.e. sets A and B
that are computably inseparable. [Kleene 1950]

The set of provable formulas of Peano Arithmetic and the set of
refutable formulas are computably inseparable. [Smullyan 1958]
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Disjoint NP-Pairs and Separability

Definition

A disjoint NP-pair is a pair (A,B) such that A ∩ B = ∅ and
A,B ∈ NP. We write NP-pair for short.

Example: ({0x | x ∈ SAT}, {1x | x ∈ SAT})

Definition

An NP-pair is P-separable, if it has a separator that is in P.

Are certain NP-pairs P-separable?

Do P-inseparable NP-pairs exist?
(holds in computability theory [Kleene 1950])
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Example: Clique-Coloring Pair

CC0 = {(G, k) | graph G has a clique of size k }
CC1 = {(G, k) | graph G can be colored with k − 1 colors}

The sets are disjoint, since a clique of size k cannot be colored
with k − 1 colors.

CC0 and CC1 are NP-complete, hence (CC0,CC1) is an
NP-pair.

Surprisingly, this pair is P-separable [Pudlak 2003], a result
based on deep combinatorial ideas [Lovász 1979, Tardos
1988].
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P-Inseparable NP-Pairs

Theorem (Grollmann, Selman 1988)

1 If P 6= UP, then P-inseparable NP-pairs exist.
2 If P 6= NP ∩ coNP, then P-inseparable NP-pairs exist.
3 If secure PKCS exist, then P-inseparable NP-pairs exist.
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Reducibilities for NP-Pairs

Definition (Grollmann, Selman 1988)

Let (A,B) and (C,D) be NP-pairs.
1 (A,B) is many-one reducible to (C,D), (A,B) ≤p

m (C,D),
if there exists a polynomial-time computable function f
such that f (A) ⊆ C and f (B) ⊆ D.

2 (A,B) is Turing reducible to (C,D), (A,B) ≤p
T (C,D),

if there exists a polynomial-time oracle Turing machine M
such that for every separator T of (C,D), there exists a
separator S of (A,B) such that S ≤p

T T via M.

Hence the oracle access is like this:
If query q ∈ C ∪ D, then oracle tells us whether q ∈ C or q ∈ D.
If query q /∈ C ∪ D, then oracle can answer arbitrarily.

7



Disjoint NP-Pairs Propositional Proof Systems Single-Valued NP-Functions NP ∩ SPARSE

Completeness and NP-Hardness

Definition (Completeness)

An NP-pair (A,B) is ≤p
m-complete, if for every NP-pair (C,D) it

holds that (C,D) ≤p
m (A,B). Same Definition for ≤p

T .

Definition (NP-Hardness)

An NP-pair (A,B) is ≤p
m-hard for NP, if every separator of (A,B)

is ≤p
m-hard for NP. Same Definition for ≤p

T .

Do complete NP-pairs exist?
(holds in computability theory [Rogers 1967])

Do NP-hard NP-pairs exist?
(does not hold in computability theory [Shoenfield 1958])
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Do hard/complete NP-pairs exist?

Conjecture by [Even, Selman, Yacobi 1984]:
ESY-T: No NP-pair is ≤p

T -hard for NP.
ESY-m: No NP-pair is ≤p

m-hard for NP.

The conjectures hold in computability theory [Shoenfield 1958].

Theorem

1 ESY-T ⇒ NP 6= coNP and NP 6= UP [ESY 84].
2 If ESY-T is false, then ≤p

T -complete NP-pairs exist.
3 If ESY-m is false, then ≤p

m-complete NP-pairs exist.

Question for complete NP-pairs is related to proof systems ...
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Propositional Proof Systems

Definition (Cook, Reckow 1979)

A propositional proof system is a polynomial-time-computable
function f from Σ∗ onto TAUT. We write proof system for short.

If f (w) = ϕ, then we say w is an f -proof for the formula ϕ.
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Polynomially Bounded Proof Systems

Definition (Cook, Reckow 1979)

A propositional proof system f is polynomially bounded if there
is a polynomial p such that for all ϕ and all f -proofs w of ϕ, it
holds that |w | ≤ p(|ϕ|).

Theorem (Cook, Reckow 1979)

There exists a polynomially-bounded proof system if and only if
NP = coNP.
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Polynomially Bounded Proof Systems

Proof: ∃ poly-bounded proof system f ⇐ NP = coNP.

If NP = coNP, then there is an NP-machine N accepting TAUT.

f (〈ϕ,w〉) :=

{
ϕ, if w is accepting path of N on input ϕ
true, otherwise.

f ∈ FP and f : Σ∗ → TAUT.

ϕ ∈ TAUT ⇒ N(ϕ) has accepting path w ⇒ f (〈ϕ,w〉) = ϕ.

Hence f is onto and therefore a proof system.

f is polynomially bounded, since |w | ≤ poly(|ϕ|).
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Polynomially Bounded Proof Systems

Proof: ∃ poly-bounded proof system f ⇒ NP = coNP.

NP machine N on input ϕ:
guess polynomial-length f -proof w
accept if and only if f (w) = ϕ

N accepts TAUT.

Hence TAUT ∈ NP and NP = coNP.
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Simulation and Optimal Proof Systems

Definition (Cook, Reckow 1979)

Let f and g be proof systems. We say f simulates g, if there is a
function h and a polynomial p such that for all w , it holds that
f (h(w)) = g(w) and |h(w)| ≤ p(|w |).

Definition

A proof system that simulates every other proof system is
called optimal.

Do optimal proof systems exist?
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Do Optimal Proof Systems exist?

Theorem (Cook, Reckow 1979)

If NP = coNP, then optimal proof systems exist.

Proof.

By NP = coNP, there is a polynomially bounded proof system f .

We show that f simulates every proof system g.

h(w) := the lexicographically smallest v such that f (v) = g(w).

Hence f (h(w)) = g(w).

|h(w)| ≤ poly(|g(w)|), since f is a poly-bounded proof system.

poly(|g(w)|) ≤ poly(w), since g is polynomial-time computable.

So |h(w)| ≤ poly(|w |), hence f simulates g.

Is there evidence for the non-existence of optimal proof systems?
15



Disjoint NP-Pairs Propositional Proof Systems Single-Valued NP-Functions NP ∩ SPARSE

Canonical NP-pairs of Proof Systems

Razborov’s Idea:
Each (optimal) proof system induces a (complete) NP-pair.

Definition (Razborov 1994)

Let f be a proof system. The canonical pair (SAT∗,REFf ) is
defined by

SAT∗ = {(ϕ,1m) | ϕ ∈ SAT and m ≥ 0}
REFf = {(ϕ,1m) | ∃y , |y | ≤ m, such that f (y) = ¬ϕ}

Idea: SAT∗ = satisfiable formulas (which have short proofs)
REFf = unsatisfiable formulas that have short refutations

The restriction to short refutations is necessary,
since (SAT,SAT) is not an NP-pair, unless NP=coNP.
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Simulation implies Reducibility of Canonical Pairs

Theorem (Razborov 1994)

Let f and g be proof systems. If f is simulated by g, then

(SAT∗,REFf ) ≤p
m (SAT∗,REFg).

This shows:
If g is an optimal proof system, then at least all canonical pairs
are ≤p

m reducible to (SAT∗,REFg).

This already suffices for ≤p
m-completeness ...
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NP-pairs and Canonical Pairs: same Degree Structure

Theorem (Glaßer, Selman, Zhang 2007)

For every NP-pair (A,B), there exists a proof system f such
that (A,B) ≡p

m (SAT∗,REFf ).

Corollary

If f is an optimal proof system, then (SAT∗,REFf ) is a
≤p

m-complete NP-pair.

Proof.

For any NP-pair (A,B) , there is a proof system g such that
(A,B) ≡p

m (SAT∗,REFg). Since g is simulated by f , we have
(A,B) ≤p

m (SAT∗,REFg) ≤p
m (SAT∗,REFf ).
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NP-hard canonical pairs

Corollary

The following statements are equivalent.
1 NP = coNP
2 ESY-m is false, i.e., ∃ NP-pairs that are ≤p

m-hard for NP
3 ∃ canonical pairs of proof systems that are ≤p

m-hard for NP
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Single-Valued NP-Functions

Definition

A single-valued NP-function is a partial function f such that
there exists a nondeterministic, polynomial-time
Turing-transducer T such that for all x :

If f (x) is not defined, then T on x has no accepting paths.
If f (x) = y , then T on x has accepting paths and each of
them outputs y .

NPSV denotes the class of all single-valued NP-functions.

20



Disjoint NP-Pairs Propositional Proof Systems Single-Valued NP-Functions NP ∩ SPARSE

Reducibility and Completeness

Definition (Reducibility)

Let f ,g ∈ NPSV. We say that f many-one reduces to g, f ≤p
m g,

if there is a polynomial-time computable function h such that
g(h(x)) = f (x).

Definition (Completeness)

A function g ∈ NPSV is ≤p
m-complete, if f ≤p

m g for all
f ∈ NPSV.

Are there complete functions in NPSV?
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Uniform Enumerations

Hartmanis and Hemachandra 1988:
UP has a complete set iff UP is uniformly enumerable.

Let {Ni}i≥0 be a standard effective enumeration of nondet.
poly-time Turing machines. Let {Ti}i≥0 be a standard effective
enumeration of nondet. poly-time Turing machine transducers.

Definition

DisjNP is uniformly enumerable if there is a total computable
function f : Σ∗ → Σ∗ × Σ∗ such that:

1 ∀(i , j) ∈ range(f ) [(L(Ni),L(Nj)) ∈ DisjNP]

2 ∀(C,D) ∈ DisjNP ∃(i , j)
[(i , j) ∈ range(f ) and C = L(Ni) and D = L(Nj)]
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Continued

For each i ≥ 0, let F (Ti) denote the partial, possibly
multivalued, function computed by transducer Ti .

Definition

NPSV is uniformly enumerable if there is a total computable
function f : Σ∗ → Σ∗ such that:

1 ∀i ∈ range(f ) [F (Ti) ∈ NPSV]

2 ∀g ∈ NPSV ∃i [i ∈ range(f ) and g = F (Ti)]
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Complete NP-Pairs and Complete NPSV-Functions

Theorem (Glasser, Selman, Sengupta 2005)

The following statements are equivalent.
1 There exist ≤p

m-complete NP-pairs.
2 NPSV has ≤p

m-complete functions.

The statements in the theorem are equivalent to:
The class of NP-pairs is uniformly enumerable.
NPSV is uniformly enumerable.
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NP ∩ SPARSE and optimal proof systems

Definition

A set of words S is sparse if there exists a polynomial p such
that S contains at most p(n) words of length ≤ n.

Do optimal proof systems exist?

Theorem (Köbler, Meßner, Torán 2003)

If optimal proof systems exist, then NP ∩ SPARSE has
≤p

m-complete sets.

We tend to believe that NP ∩ SPARSE has no complete sets.

Interpret the theorem as evidence that optimal proof systems
do not exist.
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Summary

 

∃ canonical pairs that are 
m-hard for NP 

∃ NP-pairs that are 
m-hard for NP 

NP=coNP 

∃ optimal proof systems 

∃ NP-pairs that are 
T-hard for NP 

∃ T-complete NP-pairs 

∃ m-complete NP-pairs ∃ m-complete 
NPSV-functions 

∃ m-complete sets 
in NP∩SPARSE 
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More Connections

The talk skipped known connections to:
Promise Problems
≤p

T -complete NPSV-functions
NP-hard NPSV-functions
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Thank you!
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