Disjoint NP-Pairs and Propositional Proof Systems

C. Glaßer, A. Hughes, A. Selman, N. Wisiol

August 2017

1

1 Disjoint NP-Pairs

- 2 Propositional Proof Systems
- 3 Single-Valued NP-Functions

4 NP \cap SPARSE

Motivation from Separability

Definition

Given two disjoint sets *A* and *B*, a *separator* is a set *S* such that $A \subseteq S$ and $B \subseteq \overline{S}$. *S* separates *A* from *B*.

What is the computational difficulty of separators?

Descriptive Set Theory: Any two disjoint analytic sets are separable by a Borel set. [Luzin 1930]

Computability Theory: There exist disjoint c.e. sets *A* and *B* that are computably inseparable. [Kleene 1950]

The set of provable formulas of Peano Arithmetic and the set of refutable formulas are computably inseparable. [Smullyan 1958]

Disjoint NP-Pairs and Separability

Definition

A *disjoint NP-pair* is a pair (A, B) such that $A \cap B = \emptyset$ and $A, B \in NP$. We write *NP-pair* for short.

Example: $({0x | x \in SAT}, {1x | x \in SAT})$

Definition

An NP-pair is *P-separable*, if it has a separator that is in P.

Are certain NP-pairs P-separable?

Do P-inseparable NP-pairs exist? (holds in computability theory [Kleene 1950])

Example: Clique-Coloring Pair

- $CC_0 = \{(G, k) \mid \text{graph } G \text{ has a clique of size } k \}$
- $CC_1 = \{(G, k) | \text{graph } G \text{ can be colored with } k 1 \text{ colors} \}$

The sets are disjoint, since a clique of size k cannot be colored with k - 1 colors.

 CC_0 and CC_1 are NP-complete, hence (CC_0, CC_1) is an NP-pair.

Surprisingly, this pair is P-separable [Pudlak 2003], a result based on deep combinatorial ideas [Lovász 1979, Tardos 1988].

P-Inseparable NP-Pairs

Theorem (Grollmann, Selman 1988)

- **1** If $P \neq UP$, then P-inseparable NP-pairs exist.
- **2** If $P \neq NP \cap coNP$, then P-inseparable NP-pairs exist.
- 3 If secure PKCS exist, then P-inseparable NP-pairs exist.

Reducibilities for NP-Pairs

Definition (Grollmann, Selman 1988)

Let (A, B) and (C, D) be NP-pairs.

- 1 (*A*, *B*) is *many-one reducible* to (*C*, *D*), (*A*, *B*) \leq_m^p (*C*, *D*), if there exists a polynomial-time computable function *f* such that $f(A) \subseteq C$ and $f(B) \subseteq D$.
- 2 (*A*, *B*) is *Turing reducible* to (*C*, *D*), (*A*, *B*) \leq_T^p (*C*, *D*), if there exists a polynomial-time oracle Turing machine *M* such that for every separator *T* of (*C*, *D*), there exists a separator *S* of (*A*, *B*) such that $S \leq_T^p T$ via *M*.

Hence the oracle access is like this:

If query $q \in C \cup D$, then oracle tells us whether $q \in C$ or $q \in D$. If query $q \notin C \cup D$, then oracle can answer arbitrarily.

Completeness and NP-Hardness

Definition (Completeness)

An NP-pair (A, B) is \leq_m^{p} -complete, if for every NP-pair (C, D) it holds that $(C, D) \leq_m^{p} (A, B)$. Same Definition for \leq_T^{p} .

Definition (NP-Hardness)

An NP-pair (*A*, *B*) is \leq_m^p -hard for NP, if every separator of (*A*, *B*) is \leq_m^p -hard for NP. Same Definition for \leq_T^p .

Do complete NP-pairs exist?

(holds in computability theory [Rogers 1967])

Do NP-hard NP-pairs exist?

(does not hold in computability theory [Shoenfield 1958])

Do hard/complete NP-pairs exist?

Conjecture by [Even, Selman, Yacobi 1984]:

- **ESY-T**: No NP-pair is \leq_T^p -hard for NP.
- **ESY-m:** No NP-pair is \leq_m^p -hard for NP.

The conjectures hold in computability theory [Shoenfield 1958].

Theorem **1** ESY-T \Rightarrow NP \neq coNP and NP \neq UP [ESY 84].

- **2** If ESY-T is false, then \leq_T^p -complete NP-pairs exist.
- **3** If ESY-m is false, then \leq_m^p -complete NP-pairs exist.

Question for complete NP-pairs is related to proof systems ...

Propositional Proof Systems

Definition (Cook, Reckow 1979)

A propositional proof system is a polynomial-time-computable function f from Σ^* onto TAUT. We write proof system for short.

If $f(w) = \varphi$, then we say *w* is an *f*-proof for the formula φ .

NP ∩ SPARSE

Polynomially Bounded Proof Systems

Definition (Cook, Reckow 1979)

A propositional proof system *f* is *polynomially bounded* if there is a polynomial *p* such that for all φ and all *f*-proofs *w* of φ , it holds that $|w| \le p(|\varphi|)$.

Theorem (Cook, Reckow 1979)

There exists a polynomially-bounded proof system if and only if NP = coNP.

Polynomially Bounded Proof Systems

Proof: \exists poly-bounded proof system $f \leftarrow NP = coNP$.

If NP = coNP, then there is an NP-machine N accepting TAUT.

 $f(\langle \varphi, w \rangle) := \begin{cases} \varphi, & \text{if } w \text{ is accepting path of } N \text{ on input } \varphi \\ \text{true, } & \text{otherwise.} \end{cases}$

 $f \in \mathsf{FP} \text{ and } f : \Sigma^* \to \mathsf{TAUT}.$

 $\varphi \in \mathsf{TAUT} \Rightarrow \mathsf{N}(\varphi)$ has accepting path $w \Rightarrow \mathsf{f}(\langle \varphi, w \rangle) = \varphi$.

Hence *f* is onto and therefore a proof system.

f is polynomially bounded, since $|w| \leq poly(|\varphi|)$.

NP ∩ SPARSE

Polynomially Bounded Proof Systems

Proof: \exists poly-bounded proof system $f \Rightarrow NP = coNP$.

NP machine N on input φ :

- guess polynomial-length f-proof w
- accept if and only if $f(w) = \varphi$

N accepts TAUT.

Hence TAUT \in NP and NP = coNP.

NP ∩ SPARSE

Simulation and Optimal Proof Systems

Definition (Cook, Reckow 1979)

Let *f* and *g* be proof systems. We say *f* simulates *g*, if there is a function *h* and a polynomial *p* such that for all *w*, it holds that f(h(w)) = g(w) and $|h(w)| \le p(|w|)$.

Definition

A proof system that simulates every other proof system is called *optimal*.

Do optimal proof systems exist?

Do Optimal Proof Systems exist?

Theorem (Cook, Reckow 1979)

If NP = coNP, then optimal proof systems exist.

Proof.

By NP = coNP, there is a polynomially bounded proof system f.

We show that f simulates every proof system g.

h(w) := the lexicographically smallest v such that f(v) = g(w). Hence f(h(w)) = g(w).

 $|h(w)| \le poly(|g(w)|)$, since *f* is a poly-bounded proof system. $poly(|g(w)|) \le poly(w)$, since *g* is polynomial-time computable. So $|h(w)| \le poly(|w|)$, hence *f* simulates *g*.

Is there evidence for the non-existence of optimal proof systems?

Canonical NP-pairs of Proof Systems

Razborov's Idea: Each (optimal) proof system induces a (complete) NP-pair.

Definition (Razborov 1994)

Let *f* be a proof system. The *canonical pair* (SAT^{*}, REF_{*f*}) is defined by

$$\begin{array}{lll} \mathsf{SAT}^* &=& \{(\varphi, 1^m) \mid \varphi \in \mathsf{SAT} \text{ and } m \geq 0\} \\ \mathsf{REF}_f &=& \{(\varphi, 1^m) \mid \exists y, |y| \leq m, \text{ such that } f(y) = \neg \varphi\} \end{array}$$

Idea: SAT^{*} = satisfiable formulas (which have short proofs) REF_f = unsatisfiable formulas that have short refutations

The restriction to *short* refutations is necessary, since (SAT, \overline{SAT}) is not an NP-pair, unless NP=coNP.

NP ∩ SPARSE

Simulation implies Reducibility of Canonical Pairs

Theorem (Razborov 1994)

Let f and g be proof systems. If f is simulated by g, then

```
(SAT^*, REF_f) \leq_m^p (SAT^*, REF_g).
```

This shows:

If *g* is an optimal proof system, then at least all canonical pairs are \leq_m^p reducible to (SAT*, REF_g).

This already suffices for \leq_m^p -completeness ...

NP-pairs and Canonical Pairs: same Degree Structure

Theorem (Glaßer, Selman, Zhang 2007)

For every NP-pair (A, B), there exists a proof system f such that $(A, B) \equiv_m^p (SAT^*, REF_f)$.

Corollary

If f is an optimal proof system, then (SAT^*, REF_f) is a \leq_m^p -complete NP-pair.

Proof.

For any NP-pair (A, B), there is a proof system g such that $(A, B) \equiv_m^p (SAT^*, REF_g)$. Since g is simulated by f, we have $(A, B) \leq_m^p (SAT^*, REF_g) \leq_m^p (SAT^*, REF_f)$.

NP-hard canonical pairs

Corollary

The following statements are equivalent.

- 1 NP = coNP
- **2** ESY-m is false, i.e., \exists NP-pairs that are \leq_m^p -hard for NP
- **3** \exists canonical pairs of proof systems that are \leq_m^p -hard for NP

Single-Valued NP-Functions

Definition

A single-valued NP-function is a partial function f such that there exists a nondeterministic, polynomial-time Turing-transducer T such that for all x:

- If f(x) is not defined, then T on x has no accepting paths.
- If f(x) = y, then T on x has accepting paths and each of them outputs y.

NPSV denotes the class of all single-valued NP-functions.

Reducibility and Completeness

Definition (Reducibility)

Let $f, g \in NPSV$. We say that f many-one reduces to $g, f \leq_m^p g$, if there is a polynomial-time computable function h such that g(h(x)) = f(x).

Definition (Completeness)

A function $g \in NPSV$ is \leq_m^p -complete, if $f \leq_m^p g$ for all $f \in NPSV$.

Are there complete functions in NPSV?

Uniform Enumerations

Hartmanis and Hemachandra 1988:

UP has a complete set iff UP is uniformly enumerable.

Let $\{N_i\}_{i\geq 0}$ be a standard effective enumeration of nondet. poly-time Turing machines. Let $\{T_i\}_{i\geq 0}$ be a standard effective enumeration of nondet. poly-time Turing machine transducers.

Definition

DisjNP is *uniformly enumerable* if there is a total computable function $f : \Sigma^* \to \Sigma^* \times \Sigma^*$ such that:

1
$$\forall (i,j) \in range(f) \ [(L(N_i), L(N_j)) \in DisjNP]$$

2
$$\forall$$
(*C*, *D*) ∈ DisjNP \exists (*i*, *j*)
[(*i*, *j*) ∈ *range*(*f*) and *C* = *L*(*N_i*) and *D* = *L*(*N_i*)]

Continued

For each $i \ge 0$, let $F(T_i)$ denote the partial, possibly multivalued, function computed by transducer T_i .

Definition

NPSV is *uniformly enumerable* if there is a total computable function $f : \Sigma^* \to \Sigma^*$ such that:

1
$$\forall i \in range(f) \ [F(T_i) \in NPSV]$$

2 $\forall g \in \text{NPSV} \exists i \ [i \in range(f) \text{ and } g = F(T_i)]$

Complete NP-Pairs and Complete NPSV-Functions

Theorem (Glasser, Selman, Sengupta 2005)

The following statements are equivalent.

- **1** There exist \leq_m^p -complete NP-pairs.
- **2** NPSV has \leq_m^p -complete functions.

The statements in the theorem are equivalent to:

- The class of NP-pairs is uniformly enumerable.
- NPSV is uniformly enumerable.

$NP \cap SPARSE$ and optimal proof systems

Definition

A set of words *S* is *sparse* if there exists a polynomial *p* such that *S* contains at most p(n) words of length $\leq n$.

Do optimal proof systems exist?

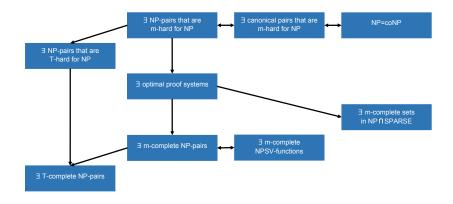
Theorem (Köbler, Meßner, Torán 2003)

If optimal proof systems exist, then NP \cap SPARSE has \leq_m^p -complete sets.

We tend to believe that NP \cap SPARSE has no complete sets.

Interpret the theorem as evidence that optimal proof systems do not exist.

Summary



More Connections

The talk skipped known connections to:

- Promise Problems
- $\leq \leq_T^p$ -complete NPSV-functions
- NP-hard NPSV-functions

Thank you!